Core/Crypto: Switch away from most deprecated openssl functions and removed upper version limit

This commit is contained in:
Shauren
2022-05-03 17:03:57 +02:00
parent c68f52568f
commit bc87f7b337
11 changed files with 325 additions and 214 deletions

View File

@@ -16,22 +16,12 @@
*/
#include "RSA.h"
#include "BigNumber.h"
#include <openssl/bn.h>
#include "HMAC.h"
#include <openssl/pem.h>
#include <algorithm>
#include <iterator>
#include <memory>
#include <vector>
#define CHECK_AND_DECLARE_FUNCTION_TYPE(name, publicKey, privateKey) \
static_assert(std::is_same<decltype(&publicKey), decltype(&privateKey)>::value, \
"Public key and private key functions must have the same signature"); \
using name ## _t = decltype(&publicKey); \
template <typename KeyTag> inline name ## _t get_ ## name () { return nullptr; } \
template <> inline name ## _t get_ ## name<Trinity::Crypto::RSA::PublicKey>() { return &publicKey; } \
template <> inline name ## _t get_ ## name<Trinity::Crypto::RSA::PrivateKey>() { return &privateKey; }
namespace
{
struct BIODeleter
@@ -42,41 +32,170 @@ struct BIODeleter
}
};
CHECK_AND_DECLARE_FUNCTION_TYPE(PEM_read, PEM_read_bio_RSAPublicKey, PEM_read_bio_RSAPrivateKey);
CHECK_AND_DECLARE_FUNCTION_TYPE(RSA_encrypt, RSA_public_encrypt, RSA_private_encrypt);
}
Trinity::Crypto::RSA::RSA()
struct HMAC_SHA256_MD
{
_rsa = RSA_new();
struct CTX_DATA
{
Trinity::Crypto::HMAC_SHA256* hmac;
};
#if TRINITY_COMPILER == TRINITY_COMPILER_GNU
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wdeprecated-declarations"
#else
#pragma warning(push)
#pragma warning(disable: 4996)
#endif
HMAC_SHA256_MD()
{
_md = EVP_MD_meth_new(NID_sha256, NID_sha256WithRSAEncryption);
EVP_MD_meth_set_result_size(_md, Trinity::Crypto::Constants::SHA256_DIGEST_LENGTH_BYTES);
EVP_MD_meth_set_flags(_md, EVP_MD_FLAG_DIGALGID_ABSENT);
EVP_MD_meth_set_init(_md, &Init);
EVP_MD_meth_set_update(_md, &UpdateData);
EVP_MD_meth_set_final(_md, &Finalize);
EVP_MD_meth_set_copy(_md, &Copy);
EVP_MD_meth_set_cleanup(_md, &Cleanup);
EVP_MD_meth_set_input_blocksize(_md, SHA256_CBLOCK);
EVP_MD_meth_set_app_datasize(_md, sizeof(EVP_MD*) + sizeof(CTX_DATA*));
}
HMAC_SHA256_MD(HMAC_SHA256_MD const&) = delete;
HMAC_SHA256_MD(HMAC_SHA256_MD&&) = delete;
HMAC_SHA256_MD& operator=(HMAC_SHA256_MD const&) = delete;
HMAC_SHA256_MD& operator=(HMAC_SHA256_MD&&) = delete;
~HMAC_SHA256_MD()
{
EVP_MD_meth_free(_md);
_md = nullptr;
}
#if TRINITY_COMPILER == TRINITY_COMPILER_GNU
#pragma GCC diagnostic pop
#else
#pragma warning(pop)
#endif
operator EVP_MD const* () const
{
return _md;
}
static int Init(EVP_MD_CTX* ctx)
{
Cleanup(ctx);
return 1;
}
static int UpdateData(EVP_MD_CTX* ctx, const void* data, size_t count)
{
CTX_DATA* ctxData = reinterpret_cast<CTX_DATA*>(EVP_MD_CTX_md_data(ctx));
if (!ctxData->hmac)
return 0;
ctxData->hmac->UpdateData(reinterpret_cast<uint8 const*>(data), count);
return 1;
}
static int Finalize(EVP_MD_CTX* ctx, unsigned char* md)
{
CTX_DATA* ctxData = reinterpret_cast<CTX_DATA*>(EVP_MD_CTX_md_data(ctx));
if (!ctxData->hmac)
return 0;
ctxData->hmac->Finalize();
memcpy(md, ctxData->hmac->GetDigest().data(), ctxData->hmac->GetDigest().size());
return 1;
}
// post-processing after openssl memcpys from source to dest (no need to cleanup dest)
static int Copy(EVP_MD_CTX* to, EVP_MD_CTX const* from)
{
CTX_DATA const* ctxDataFrom = reinterpret_cast<CTX_DATA const*>(EVP_MD_CTX_md_data(from));
CTX_DATA* ctxDataTo = reinterpret_cast<CTX_DATA*>(EVP_MD_CTX_md_data(to));
if (ctxDataFrom->hmac)
ctxDataTo->hmac = new Trinity::Crypto::HMAC_SHA256(*ctxDataFrom->hmac);
return 1;
}
static int Cleanup(EVP_MD_CTX* ctx)
{
CTX_DATA* data = reinterpret_cast<CTX_DATA*>(EVP_MD_CTX_md_data(ctx));
if (data->hmac)
{
delete data->hmac;
data->hmac = nullptr;
}
return 1;
}
private:
EVP_MD* _md;
} HmacSha256Md;
}
Trinity::Crypto::RSA::RSA(RSA&& rsa)
namespace Trinity::Crypto
{
_rsa = rsa._rsa;
rsa._rsa = RSA_new();
}
Trinity::Crypto::RSA::~RSA()
EVP_MD const* RsaSignature::SHA256::GetGenerator() const
{
RSA_free(_rsa);
return EVP_sha256();
}
template <typename KeyTag>
bool Trinity::Crypto::RSA::LoadFromFile(std::string const& fileName, KeyTag)
void RsaSignature::SHA256::PostInitCustomizeContext(EVP_MD_CTX*)
{
}
EVP_MD const* RsaSignature::HMAC_SHA256::GetGenerator() const
{
return HmacSha256Md;
}
void RsaSignature::HMAC_SHA256::PostInitCustomizeContext(EVP_MD_CTX* ctx)
{
HMAC_SHA256_MD::CTX_DATA* ctxData = reinterpret_cast<HMAC_SHA256_MD::CTX_DATA*>(EVP_MD_CTX_md_data(ctx));
if (ctxData->hmac)
delete ctxData->hmac;
ctxData->hmac = new Crypto::HMAC_SHA256(_key, _keyLength);
}
RsaSignature::RsaSignature()
{
_ctx = Impl::GenericHashImpl::MakeCTX();
}
RsaSignature::RsaSignature(RsaSignature&& rsa) noexcept
{
_ctx = rsa._ctx;
rsa._ctx = Impl::GenericHashImpl::MakeCTX();
}
RsaSignature::~RsaSignature()
{
EVP_MD_CTX_free(_ctx);
}
bool RsaSignature::LoadKeyFromFile(std::string const& fileName)
{
std::unique_ptr<BIO, BIODeleter> keyBIO(BIO_new_file(fileName.c_str(), "r"));
if (!keyBIO)
return false;
if (!get_PEM_read<KeyTag>()(keyBIO.get(), &_rsa, nullptr, nullptr))
_key = EVP_PKEY_new();
if (!PEM_read_bio_PrivateKey(keyBIO.get(), &_key, nullptr, nullptr))
return false;
return true;
}
template <typename KeyTag>
bool Trinity::Crypto::RSA::LoadFromString(std::string const& keyPem, KeyTag)
bool RsaSignature::LoadKeyFromString(std::string const& keyPem)
{
std::unique_ptr<BIO, BIODeleter> keyBIO(BIO_new_mem_buf(
const_cast<char*>(keyPem.c_str()) /*api hack - this function assumes memory is readonly but lacks const modifier*/,
@@ -84,51 +203,26 @@ bool Trinity::Crypto::RSA::LoadFromString(std::string const& keyPem, KeyTag)
if (!keyBIO)
return false;
if (!get_PEM_read<KeyTag>()(keyBIO.get(), &_rsa, nullptr, nullptr))
_key = EVP_PKEY_new();
if (!PEM_read_bio_PrivateKey(keyBIO.get(), &_key, nullptr, nullptr))
return false;
return true;
}
BigNumber Trinity::Crypto::RSA::GetModulus() const
bool RsaSignature::Sign(uint8 const* message, std::size_t messageLength, DigestGenerator& generator, std::vector<uint8>& output)
{
BigNumber bn;
#if defined(OPENSSL_VERSION_NUMBER) && OPENSSL_VERSION_NUMBER >= 0x10100000L
const BIGNUM* rsa_n;
RSA_get0_key(_rsa, &rsa_n, nullptr, nullptr);
BN_copy(bn.BN(), rsa_n);
#else
BN_copy(bn.BN(), _rsa->n);
#endif
return bn;
}
size_t signatureLength = 0;
EVP_DigestSignInit(_ctx, nullptr, generator.GetGenerator(), nullptr, _key);
generator.PostInitCustomizeContext(_ctx);
EVP_DigestSignUpdate(_ctx, message, messageLength);
int result = EVP_DigestSignFinal(_ctx, nullptr, &signatureLength);
if (result == 0)
return false;
template <typename KeyTag>
bool Trinity::Crypto::RSA::Encrypt(uint8 const* data, std::size_t dataLength, uint8* output, int32 paddingType)
{
std::vector<uint8> inputData(std::make_reverse_iterator(data + dataLength), std::make_reverse_iterator(data));
int result = get_RSA_encrypt<KeyTag>()(inputData.size(), inputData.data(), output, _rsa, paddingType);
std::reverse(output, output + GetOutputSize());
return result != -1;
}
bool Trinity::Crypto::RSA::Sign(int32 hashType, uint8 const* dataHash, std::size_t dataHashLength, uint8* output)
{
uint32 signatureLength = 0;
int result = RSA_sign(hashType, dataHash, dataHashLength, output, &signatureLength, _rsa);
std::reverse(output, output + GetOutputSize());
output.resize(signatureLength);
result = EVP_DigestSignFinal(_ctx, output.data(), &signatureLength);
std::reverse(output.begin(), output.end());
return result != 0;
}
namespace Trinity
{
namespace Crypto
{
template TC_COMMON_API bool RSA::LoadFromFile(std::string const& fileName, RSA::PublicKey);
template TC_COMMON_API bool RSA::LoadFromFile(std::string const& fileName, RSA::PrivateKey);
template TC_COMMON_API bool RSA::LoadFromString(std::string const& keyPem, RSA::PublicKey);
template TC_COMMON_API bool RSA::LoadFromString(std::string const& keyPem, RSA::PrivateKey);
template TC_COMMON_API bool RSA::Encrypt<RSA::PublicKey>(uint8 const* data, std::size_t dataLength, uint8* output, int32 paddingType);
template TC_COMMON_API bool RSA::Encrypt<RSA::PrivateKey>(uint8 const* data, std::size_t dataLength, uint8* output, int32 paddingType);
}
}