Files
TrinityCore/dep/jemalloc/src/jemalloc.c
click c412328991 Revert "DEP: Updated Jemalloc to Version 2.5" - this version of the jemalloc-library is crashy at best, and should not have been pushed.
Further investigations on why this occurs is required before it will be slammed into master.
This reverts commit 126fd13e5d.
2012-04-23 20:23:30 +02:00

1760 lines
36 KiB
C

#define JEMALLOC_C_
#include "jemalloc/internal/jemalloc_internal.h"
/******************************************************************************/
/* Data. */
malloc_mutex_t arenas_lock;
arena_t **arenas;
unsigned narenas;
static unsigned next_arena;
#ifndef NO_TLS
__thread arena_t *arenas_tls JEMALLOC_ATTR(tls_model("initial-exec"));
#else
pthread_key_t arenas_tsd;
#endif
#ifdef JEMALLOC_STATS
# ifndef NO_TLS
__thread thread_allocated_t thread_allocated_tls;
# else
pthread_key_t thread_allocated_tsd;
# endif
#endif
/* Set to true once the allocator has been initialized. */
static bool malloc_initialized = false;
/* Used to let the initializing thread recursively allocate. */
static pthread_t malloc_initializer = (unsigned long)0;
/* Used to avoid initialization races. */
static malloc_mutex_t init_lock = MALLOC_MUTEX_INITIALIZER;
#ifdef DYNAMIC_PAGE_SHIFT
size_t pagesize;
size_t pagesize_mask;
size_t lg_pagesize;
#endif
unsigned ncpus;
/* Runtime configuration options. */
const char *JEMALLOC_P(malloc_conf) JEMALLOC_ATTR(visibility("default"));
#ifdef JEMALLOC_DEBUG
bool opt_abort = true;
# ifdef JEMALLOC_FILL
bool opt_junk = true;
# endif
#else
bool opt_abort = false;
# ifdef JEMALLOC_FILL
bool opt_junk = false;
# endif
#endif
#ifdef JEMALLOC_SYSV
bool opt_sysv = false;
#endif
#ifdef JEMALLOC_XMALLOC
bool opt_xmalloc = false;
#endif
#ifdef JEMALLOC_FILL
bool opt_zero = false;
#endif
size_t opt_narenas = 0;
/******************************************************************************/
/* Function prototypes for non-inline static functions. */
static void wrtmessage(void *cbopaque, const char *s);
static void stats_print_atexit(void);
static unsigned malloc_ncpus(void);
#if (defined(JEMALLOC_STATS) && defined(NO_TLS))
static void thread_allocated_cleanup(void *arg);
#endif
static bool malloc_conf_next(char const **opts_p, char const **k_p,
size_t *klen_p, char const **v_p, size_t *vlen_p);
static void malloc_conf_error(const char *msg, const char *k, size_t klen,
const char *v, size_t vlen);
static void malloc_conf_init(void);
static bool malloc_init_hard(void);
/******************************************************************************/
/* malloc_message() setup. */
#ifdef JEMALLOC_HAVE_ATTR
JEMALLOC_ATTR(visibility("hidden"))
#else
static
#endif
void
wrtmessage(void *cbopaque, const char *s)
{
#ifdef JEMALLOC_CC_SILENCE
int result =
#endif
write(STDERR_FILENO, s, strlen(s));
#ifdef JEMALLOC_CC_SILENCE
if (result < 0)
result = errno;
#endif
}
void (*JEMALLOC_P(malloc_message))(void *, const char *s)
JEMALLOC_ATTR(visibility("default")) = wrtmessage;
/******************************************************************************/
/*
* Begin miscellaneous support functions.
*/
/* Create a new arena and insert it into the arenas array at index ind. */
arena_t *
arenas_extend(unsigned ind)
{
arena_t *ret;
/* Allocate enough space for trailing bins. */
ret = (arena_t *)base_alloc(offsetof(arena_t, bins)
+ (sizeof(arena_bin_t) * nbins));
if (ret != NULL && arena_new(ret, ind) == false) {
arenas[ind] = ret;
return (ret);
}
/* Only reached if there is an OOM error. */
/*
* OOM here is quite inconvenient to propagate, since dealing with it
* would require a check for failure in the fast path. Instead, punt
* by using arenas[0]. In practice, this is an extremely unlikely
* failure.
*/
malloc_write("<jemalloc>: Error initializing arena\n");
if (opt_abort)
abort();
return (arenas[0]);
}
/*
* Choose an arena based on a per-thread value (slow-path code only, called
* only by choose_arena()).
*/
arena_t *
choose_arena_hard(void)
{
arena_t *ret;
if (narenas > 1) {
malloc_mutex_lock(&arenas_lock);
if ((ret = arenas[next_arena]) == NULL)
ret = arenas_extend(next_arena);
next_arena = (next_arena + 1) % narenas;
malloc_mutex_unlock(&arenas_lock);
} else
ret = arenas[0];
ARENA_SET(ret);
return (ret);
}
/*
* glibc provides a non-standard strerror_r() when _GNU_SOURCE is defined, so
* provide a wrapper.
*/
int
buferror(int errnum, char *buf, size_t buflen)
{
#ifdef _GNU_SOURCE
char *b = strerror_r(errno, buf, buflen);
if (b != buf) {
strncpy(buf, b, buflen);
buf[buflen-1] = '\0';
}
return (0);
#else
return (strerror_r(errno, buf, buflen));
#endif
}
static void
stats_print_atexit(void)
{
#if (defined(JEMALLOC_TCACHE) && defined(JEMALLOC_STATS))
unsigned i;
/*
* Merge stats from extant threads. This is racy, since individual
* threads do not lock when recording tcache stats events. As a
* consequence, the final stats may be slightly out of date by the time
* they are reported, if other threads continue to allocate.
*/
for (i = 0; i < narenas; i++) {
arena_t *arena = arenas[i];
if (arena != NULL) {
tcache_t *tcache;
/*
* tcache_stats_merge() locks bins, so if any code is
* introduced that acquires both arena and bin locks in
* the opposite order, deadlocks may result.
*/
malloc_mutex_lock(&arena->lock);
ql_foreach(tcache, &arena->tcache_ql, link) {
tcache_stats_merge(tcache, arena);
}
malloc_mutex_unlock(&arena->lock);
}
}
#endif
JEMALLOC_P(malloc_stats_print)(NULL, NULL, NULL);
}
/*
* End miscellaneous support functions.
*/
/******************************************************************************/
/*
* Begin initialization functions.
*/
static unsigned
malloc_ncpus(void)
{
unsigned ret;
long result;
result = sysconf(_SC_NPROCESSORS_ONLN);
if (result == -1) {
/* Error. */
ret = 1;
}
ret = (unsigned)result;
return (ret);
}
#if (defined(JEMALLOC_STATS) && defined(NO_TLS))
static void
thread_allocated_cleanup(void *arg)
{
uint64_t *allocated = (uint64_t *)arg;
if (allocated != NULL)
idalloc(allocated);
}
#endif
/*
* FreeBSD's pthreads implementation calls malloc(3), so the malloc
* implementation has to take pains to avoid infinite recursion during
* initialization.
*/
static inline bool
malloc_init(void)
{
if (malloc_initialized == false)
return (malloc_init_hard());
return (false);
}
static bool
malloc_conf_next(char const **opts_p, char const **k_p, size_t *klen_p,
char const **v_p, size_t *vlen_p)
{
bool accept;
const char *opts = *opts_p;
*k_p = opts;
for (accept = false; accept == false;) {
switch (*opts) {
case 'A': case 'B': case 'C': case 'D': case 'E':
case 'F': case 'G': case 'H': case 'I': case 'J':
case 'K': case 'L': case 'M': case 'N': case 'O':
case 'P': case 'Q': case 'R': case 'S': case 'T':
case 'U': case 'V': case 'W': case 'X': case 'Y':
case 'Z':
case 'a': case 'b': case 'c': case 'd': case 'e':
case 'f': case 'g': case 'h': case 'i': case 'j':
case 'k': case 'l': case 'm': case 'n': case 'o':
case 'p': case 'q': case 'r': case 's': case 't':
case 'u': case 'v': case 'w': case 'x': case 'y':
case 'z':
case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9':
case '_':
opts++;
break;
case ':':
opts++;
*klen_p = (uintptr_t)opts - 1 - (uintptr_t)*k_p;
*v_p = opts;
accept = true;
break;
case '\0':
if (opts != *opts_p) {
malloc_write("<jemalloc>: Conf string "
"ends with key\n");
}
return (true);
default:
malloc_write("<jemalloc>: Malformed conf "
"string\n");
return (true);
}
}
for (accept = false; accept == false;) {
switch (*opts) {
case ',':
opts++;
/*
* Look ahead one character here, because the
* next time this function is called, it will
* assume that end of input has been cleanly
* reached if no input remains, but we have
* optimistically already consumed the comma if
* one exists.
*/
if (*opts == '\0') {
malloc_write("<jemalloc>: Conf string "
"ends with comma\n");
}
*vlen_p = (uintptr_t)opts - 1 - (uintptr_t)*v_p;
accept = true;
break;
case '\0':
*vlen_p = (uintptr_t)opts - (uintptr_t)*v_p;
accept = true;
break;
default:
opts++;
break;
}
}
*opts_p = opts;
return (false);
}
static void
malloc_conf_error(const char *msg, const char *k, size_t klen, const char *v,
size_t vlen)
{
char buf[PATH_MAX + 1];
malloc_write("<jemalloc>: ");
malloc_write(msg);
malloc_write(": ");
memcpy(buf, k, klen);
memcpy(&buf[klen], ":", 1);
memcpy(&buf[klen+1], v, vlen);
buf[klen+1+vlen] = '\0';
malloc_write(buf);
malloc_write("\n");
}
static void
malloc_conf_init(void)
{
unsigned i;
char buf[PATH_MAX + 1];
const char *opts, *k, *v;
size_t klen, vlen;
for (i = 0; i < 3; i++) {
/* Get runtime configuration. */
switch (i) {
case 0:
if (JEMALLOC_P(malloc_conf) != NULL) {
/*
* Use options that were compiled into the
* program.
*/
opts = JEMALLOC_P(malloc_conf);
} else {
/* No configuration specified. */
buf[0] = '\0';
opts = buf;
}
break;
case 1: {
int linklen;
const char *linkname =
#ifdef JEMALLOC_PREFIX
"/etc/"JEMALLOC_PREFIX"malloc.conf"
#else
"/etc/malloc.conf"
#endif
;
if ((linklen = readlink(linkname, buf,
sizeof(buf) - 1)) != -1) {
/*
* Use the contents of the "/etc/malloc.conf"
* symbolic link's name.
*/
buf[linklen] = '\0';
opts = buf;
} else {
/* No configuration specified. */
buf[0] = '\0';
opts = buf;
}
break;
}
case 2: {
const char *envname =
#ifdef JEMALLOC_PREFIX
JEMALLOC_CPREFIX"MALLOC_CONF"
#else
"MALLOC_CONF"
#endif
;
if ((opts = getenv(envname)) != NULL) {
/*
* Do nothing; opts is already initialized to
* the value of the JEMALLOC_OPTIONS
* environment variable.
*/
} else {
/* No configuration specified. */
buf[0] = '\0';
opts = buf;
}
break;
}
default:
/* NOTREACHED */
assert(false);
buf[0] = '\0';
opts = buf;
}
while (*opts != '\0' && malloc_conf_next(&opts, &k, &klen, &v,
&vlen) == false) {
#define CONF_HANDLE_BOOL(n) \
if (sizeof(#n)-1 == klen && strncmp(#n, k, \
klen) == 0) { \
if (strncmp("true", v, vlen) == 0 && \
vlen == sizeof("true")-1) \
opt_##n = true; \
else if (strncmp("false", v, vlen) == \
0 && vlen == sizeof("false")-1) \
opt_##n = false; \
else { \
malloc_conf_error( \
"Invalid conf value", \
k, klen, v, vlen); \
} \
continue; \
}
#define CONF_HANDLE_SIZE_T(n, min, max) \
if (sizeof(#n)-1 == klen && strncmp(#n, k, \
klen) == 0) { \
unsigned long ul; \
char *end; \
\
errno = 0; \
ul = strtoul(v, &end, 0); \
if (errno != 0 || (uintptr_t)end - \
(uintptr_t)v != vlen) { \
malloc_conf_error( \
"Invalid conf value", \
k, klen, v, vlen); \
} else if (ul < min || ul > max) { \
malloc_conf_error( \
"Out-of-range conf value", \
k, klen, v, vlen); \
} else \
opt_##n = ul; \
continue; \
}
#define CONF_HANDLE_SSIZE_T(n, min, max) \
if (sizeof(#n)-1 == klen && strncmp(#n, k, \
klen) == 0) { \
long l; \
char *end; \
\
errno = 0; \
l = strtol(v, &end, 0); \
if (errno != 0 || (uintptr_t)end - \
(uintptr_t)v != vlen) { \
malloc_conf_error( \
"Invalid conf value", \
k, klen, v, vlen); \
} else if (l < (ssize_t)min || l > \
(ssize_t)max) { \
malloc_conf_error( \
"Out-of-range conf value", \
k, klen, v, vlen); \
} else \
opt_##n = l; \
continue; \
}
#define CONF_HANDLE_CHAR_P(n, d) \
if (sizeof(#n)-1 == klen && strncmp(#n, k, \
klen) == 0) { \
size_t cpylen = (vlen <= \
sizeof(opt_##n)-1) ? vlen : \
sizeof(opt_##n)-1; \
strncpy(opt_##n, v, cpylen); \
opt_##n[cpylen] = '\0'; \
continue; \
}
CONF_HANDLE_BOOL(abort)
CONF_HANDLE_SIZE_T(lg_qspace_max, LG_QUANTUM,
PAGE_SHIFT-1)
CONF_HANDLE_SIZE_T(lg_cspace_max, LG_QUANTUM,
PAGE_SHIFT-1)
/*
* Chunks always require at least one * header page,
* plus one data page.
*/
CONF_HANDLE_SIZE_T(lg_chunk, PAGE_SHIFT+1,
(sizeof(size_t) << 3) - 1)
CONF_HANDLE_SIZE_T(narenas, 1, SIZE_T_MAX)
CONF_HANDLE_SSIZE_T(lg_dirty_mult, -1,
(sizeof(size_t) << 3) - 1)
CONF_HANDLE_BOOL(stats_print)
#ifdef JEMALLOC_FILL
CONF_HANDLE_BOOL(junk)
CONF_HANDLE_BOOL(zero)
#endif
#ifdef JEMALLOC_SYSV
CONF_HANDLE_BOOL(sysv)
#endif
#ifdef JEMALLOC_XMALLOC
CONF_HANDLE_BOOL(xmalloc)
#endif
#ifdef JEMALLOC_TCACHE
CONF_HANDLE_BOOL(tcache)
CONF_HANDLE_SSIZE_T(lg_tcache_gc_sweep, -1,
(sizeof(size_t) << 3) - 1)
CONF_HANDLE_SSIZE_T(lg_tcache_max, -1,
(sizeof(size_t) << 3) - 1)
#endif
#ifdef JEMALLOC_PROF
CONF_HANDLE_BOOL(prof)
CONF_HANDLE_CHAR_P(prof_prefix, "jeprof")
CONF_HANDLE_SIZE_T(lg_prof_bt_max, 0, LG_PROF_BT_MAX)
CONF_HANDLE_BOOL(prof_active)
CONF_HANDLE_SSIZE_T(lg_prof_sample, 0,
(sizeof(uint64_t) << 3) - 1)
CONF_HANDLE_BOOL(prof_accum)
CONF_HANDLE_SSIZE_T(lg_prof_tcmax, -1,
(sizeof(size_t) << 3) - 1)
CONF_HANDLE_SSIZE_T(lg_prof_interval, -1,
(sizeof(uint64_t) << 3) - 1)
CONF_HANDLE_BOOL(prof_gdump)
CONF_HANDLE_BOOL(prof_leak)
#endif
#ifdef JEMALLOC_SWAP
CONF_HANDLE_BOOL(overcommit)
#endif
malloc_conf_error("Invalid conf pair", k, klen, v,
vlen);
#undef CONF_HANDLE_BOOL
#undef CONF_HANDLE_SIZE_T
#undef CONF_HANDLE_SSIZE_T
#undef CONF_HANDLE_CHAR_P
}
/* Validate configuration of options that are inter-related. */
if (opt_lg_qspace_max+1 >= opt_lg_cspace_max) {
malloc_write("<jemalloc>: Invalid lg_[qc]space_max "
"relationship; restoring defaults\n");
opt_lg_qspace_max = LG_QSPACE_MAX_DEFAULT;
opt_lg_cspace_max = LG_CSPACE_MAX_DEFAULT;
}
}
}
static bool
malloc_init_hard(void)
{
arena_t *init_arenas[1];
malloc_mutex_lock(&init_lock);
if (malloc_initialized || malloc_initializer == pthread_self()) {
/*
* Another thread initialized the allocator before this one
* acquired init_lock, or this thread is the initializing
* thread, and it is recursively allocating.
*/
malloc_mutex_unlock(&init_lock);
return (false);
}
if (malloc_initializer != (unsigned long)0) {
/* Busy-wait until the initializing thread completes. */
do {
malloc_mutex_unlock(&init_lock);
CPU_SPINWAIT;
malloc_mutex_lock(&init_lock);
} while (malloc_initialized == false);
malloc_mutex_unlock(&init_lock);
return (false);
}
#ifdef DYNAMIC_PAGE_SHIFT
/* Get page size. */
{
long result;
result = sysconf(_SC_PAGESIZE);
assert(result != -1);
pagesize = (unsigned)result;
/*
* We assume that pagesize is a power of 2 when calculating
* pagesize_mask and lg_pagesize.
*/
assert(((result - 1) & result) == 0);
pagesize_mask = result - 1;
lg_pagesize = ffs((int)result) - 1;
}
#endif
#ifdef JEMALLOC_PROF
prof_boot0();
#endif
malloc_conf_init();
/* Register fork handlers. */
if (pthread_atfork(jemalloc_prefork, jemalloc_postfork,
jemalloc_postfork) != 0) {
malloc_write("<jemalloc>: Error in pthread_atfork()\n");
if (opt_abort)
abort();
}
if (ctl_boot()) {
malloc_mutex_unlock(&init_lock);
return (true);
}
if (opt_stats_print) {
/* Print statistics at exit. */
if (atexit(stats_print_atexit) != 0) {
malloc_write("<jemalloc>: Error in atexit()\n");
if (opt_abort)
abort();
}
}
if (chunk_boot()) {
malloc_mutex_unlock(&init_lock);
return (true);
}
if (base_boot()) {
malloc_mutex_unlock(&init_lock);
return (true);
}
#ifdef JEMALLOC_PROF
prof_boot1();
#endif
if (arena_boot()) {
malloc_mutex_unlock(&init_lock);
return (true);
}
#ifdef JEMALLOC_TCACHE
tcache_boot();
#endif
if (huge_boot()) {
malloc_mutex_unlock(&init_lock);
return (true);
}
#if (defined(JEMALLOC_STATS) && defined(NO_TLS))
/* Initialize allocation counters before any allocations can occur. */
if (pthread_key_create(&thread_allocated_tsd, thread_allocated_cleanup)
!= 0) {
malloc_mutex_unlock(&init_lock);
return (true);
}
#endif
/*
* Create enough scaffolding to allow recursive allocation in
* malloc_ncpus().
*/
narenas = 1;
arenas = init_arenas;
memset(arenas, 0, sizeof(arena_t *) * narenas);
/*
* Initialize one arena here. The rest are lazily created in
* choose_arena_hard().
*/
arenas_extend(0);
if (arenas[0] == NULL) {
malloc_mutex_unlock(&init_lock);
return (true);
}
/*
* Assign the initial arena to the initial thread, in order to avoid
* spurious creation of an extra arena if the application switches to
* threaded mode.
*/
ARENA_SET(arenas[0]);
malloc_mutex_init(&arenas_lock);
#ifdef JEMALLOC_PROF
if (prof_boot2()) {
malloc_mutex_unlock(&init_lock);
return (true);
}
#endif
/* Get number of CPUs. */
malloc_initializer = pthread_self();
malloc_mutex_unlock(&init_lock);
ncpus = malloc_ncpus();
malloc_mutex_lock(&init_lock);
if (opt_narenas == 0) {
/*
* For SMP systems, create more than one arena per CPU by
* default.
*/
if (ncpus > 1)
opt_narenas = ncpus << 2;
else
opt_narenas = 1;
}
narenas = opt_narenas;
/*
* Make sure that the arenas array can be allocated. In practice, this
* limit is enough to allow the allocator to function, but the ctl
* machinery will fail to allocate memory at far lower limits.
*/
if (narenas > chunksize / sizeof(arena_t *)) {
char buf[UMAX2S_BUFSIZE];
narenas = chunksize / sizeof(arena_t *);
malloc_write("<jemalloc>: Reducing narenas to limit (");
malloc_write(u2s(narenas, 10, buf));
malloc_write(")\n");
}
next_arena = (narenas > 0) ? 1 : 0;
#ifdef NO_TLS
if (pthread_key_create(&arenas_tsd, NULL) != 0) {
malloc_mutex_unlock(&init_lock);
return (true);
}
#endif
/* Allocate and initialize arenas. */
arenas = (arena_t **)base_alloc(sizeof(arena_t *) * narenas);
if (arenas == NULL) {
malloc_mutex_unlock(&init_lock);
return (true);
}
/*
* Zero the array. In practice, this should always be pre-zeroed,
* since it was just mmap()ed, but let's be sure.
*/
memset(arenas, 0, sizeof(arena_t *) * narenas);
/* Copy the pointer to the one arena that was already initialized. */
arenas[0] = init_arenas[0];
#ifdef JEMALLOC_ZONE
/* Register the custom zone. */
malloc_zone_register(create_zone());
/*
* Convert the default szone to an "overlay zone" that is capable of
* deallocating szone-allocated objects, but allocating new objects
* from jemalloc.
*/
szone2ozone(malloc_default_zone());
#endif
malloc_initialized = true;
malloc_mutex_unlock(&init_lock);
return (false);
}
#ifdef JEMALLOC_ZONE
JEMALLOC_ATTR(constructor)
void
jemalloc_darwin_init(void)
{
if (malloc_init_hard())
abort();
}
#endif
/*
* End initialization functions.
*/
/******************************************************************************/
/*
* Begin malloc(3)-compatible functions.
*/
JEMALLOC_ATTR(malloc)
JEMALLOC_ATTR(visibility("default"))
void *
JEMALLOC_P(malloc)(size_t size)
{
void *ret;
#if (defined(JEMALLOC_PROF) || defined(JEMALLOC_STATS))
size_t usize
# ifdef JEMALLOC_CC_SILENCE
= 0
# endif
;
#endif
#ifdef JEMALLOC_PROF
prof_thr_cnt_t *cnt
# ifdef JEMALLOC_CC_SILENCE
= NULL
# endif
;
#endif
if (malloc_init()) {
ret = NULL;
goto OOM;
}
if (size == 0) {
#ifdef JEMALLOC_SYSV
if (opt_sysv == false)
#endif
size = 1;
#ifdef JEMALLOC_SYSV
else {
# ifdef JEMALLOC_XMALLOC
if (opt_xmalloc) {
malloc_write("<jemalloc>: Error in malloc(): "
"invalid size 0\n");
abort();
}
# endif
ret = NULL;
goto RETURN;
}
#endif
}
#ifdef JEMALLOC_PROF
if (opt_prof) {
usize = s2u(size);
if ((cnt = prof_alloc_prep(usize)) == NULL) {
ret = NULL;
goto OOM;
}
if (prof_promote && (uintptr_t)cnt != (uintptr_t)1U && usize <=
small_maxclass) {
ret = imalloc(small_maxclass+1);
if (ret != NULL)
arena_prof_promoted(ret, usize);
} else
ret = imalloc(size);
} else
#endif
{
#ifdef JEMALLOC_STATS
usize = s2u(size);
#endif
ret = imalloc(size);
}
OOM:
if (ret == NULL) {
#ifdef JEMALLOC_XMALLOC
if (opt_xmalloc) {
malloc_write("<jemalloc>: Error in malloc(): "
"out of memory\n");
abort();
}
#endif
errno = ENOMEM;
}
#ifdef JEMALLOC_SYSV
RETURN:
#endif
#ifdef JEMALLOC_PROF
if (opt_prof && ret != NULL)
prof_malloc(ret, usize, cnt);
#endif
#ifdef JEMALLOC_STATS
if (ret != NULL) {
assert(usize == isalloc(ret));
ALLOCATED_ADD(usize, 0);
}
#endif
return (ret);
}
JEMALLOC_ATTR(nonnull(1))
JEMALLOC_ATTR(visibility("default"))
int
JEMALLOC_P(posix_memalign)(void **memptr, size_t alignment, size_t size)
{
int ret;
void *result;
#if (defined(JEMALLOC_PROF) || defined(JEMALLOC_STATS))
size_t usize
# ifdef JEMALLOC_CC_SILENCE
= 0
# endif
;
#endif
#ifdef JEMALLOC_PROF
prof_thr_cnt_t *cnt
# ifdef JEMALLOC_CC_SILENCE
= NULL
# endif
;
#endif
if (malloc_init())
result = NULL;
else {
if (size == 0) {
#ifdef JEMALLOC_SYSV
if (opt_sysv == false)
#endif
size = 1;
#ifdef JEMALLOC_SYSV
else {
# ifdef JEMALLOC_XMALLOC
if (opt_xmalloc) {
malloc_write("<jemalloc>: Error in "
"posix_memalign(): invalid size "
"0\n");
abort();
}
# endif
result = NULL;
*memptr = NULL;
ret = 0;
goto RETURN;
}
#endif
}
/* Make sure that alignment is a large enough power of 2. */
if (((alignment - 1) & alignment) != 0
|| alignment < sizeof(void *)) {
#ifdef JEMALLOC_XMALLOC
if (opt_xmalloc) {
malloc_write("<jemalloc>: Error in "
"posix_memalign(): invalid alignment\n");
abort();
}
#endif
result = NULL;
ret = EINVAL;
goto RETURN;
}
#ifdef JEMALLOC_PROF
if (opt_prof) {
usize = sa2u(size, alignment, NULL);
if ((cnt = prof_alloc_prep(usize)) == NULL) {
result = NULL;
ret = EINVAL;
} else {
if (prof_promote && (uintptr_t)cnt !=
(uintptr_t)1U && usize <= small_maxclass) {
result = ipalloc(small_maxclass+1,
alignment, false);
if (result != NULL) {
arena_prof_promoted(result,
usize);
}
} else {
result = ipalloc(size, alignment,
false);
}
}
} else
#endif
{
#ifdef JEMALLOC_STATS
usize = sa2u(size, alignment, NULL);
#endif
result = ipalloc(size, alignment, false);
}
}
if (result == NULL) {
#ifdef JEMALLOC_XMALLOC
if (opt_xmalloc) {
malloc_write("<jemalloc>: Error in posix_memalign(): "
"out of memory\n");
abort();
}
#endif
ret = ENOMEM;
goto RETURN;
}
*memptr = result;
ret = 0;
RETURN:
#ifdef JEMALLOC_STATS
if (result != NULL) {
assert(usize == isalloc(result));
ALLOCATED_ADD(usize, 0);
}
#endif
#ifdef JEMALLOC_PROF
if (opt_prof && result != NULL)
prof_malloc(result, usize, cnt);
#endif
return (ret);
}
JEMALLOC_ATTR(malloc)
JEMALLOC_ATTR(visibility("default"))
void *
JEMALLOC_P(calloc)(size_t num, size_t size)
{
void *ret;
size_t num_size;
#if (defined(JEMALLOC_PROF) || defined(JEMALLOC_STATS))
size_t usize
# ifdef JEMALLOC_CC_SILENCE
= 0
# endif
;
#endif
#ifdef JEMALLOC_PROF
prof_thr_cnt_t *cnt
# ifdef JEMALLOC_CC_SILENCE
= NULL
# endif
;
#endif
if (malloc_init()) {
num_size = 0;
ret = NULL;
goto RETURN;
}
num_size = num * size;
if (num_size == 0) {
#ifdef JEMALLOC_SYSV
if ((opt_sysv == false) && ((num == 0) || (size == 0)))
#endif
num_size = 1;
#ifdef JEMALLOC_SYSV
else {
ret = NULL;
goto RETURN;
}
#endif
/*
* Try to avoid division here. We know that it isn't possible to
* overflow during multiplication if neither operand uses any of the
* most significant half of the bits in a size_t.
*/
} else if (((num | size) & (SIZE_T_MAX << (sizeof(size_t) << 2)))
&& (num_size / size != num)) {
/* size_t overflow. */
ret = NULL;
goto RETURN;
}
#ifdef JEMALLOC_PROF
if (opt_prof) {
usize = s2u(num_size);
if ((cnt = prof_alloc_prep(usize)) == NULL) {
ret = NULL;
goto RETURN;
}
if (prof_promote && (uintptr_t)cnt != (uintptr_t)1U && usize
<= small_maxclass) {
ret = icalloc(small_maxclass+1);
if (ret != NULL)
arena_prof_promoted(ret, usize);
} else
ret = icalloc(num_size);
} else
#endif
{
#ifdef JEMALLOC_STATS
usize = s2u(num_size);
#endif
ret = icalloc(num_size);
}
RETURN:
if (ret == NULL) {
#ifdef JEMALLOC_XMALLOC
if (opt_xmalloc) {
malloc_write("<jemalloc>: Error in calloc(): out of "
"memory\n");
abort();
}
#endif
errno = ENOMEM;
}
#ifdef JEMALLOC_PROF
if (opt_prof && ret != NULL)
prof_malloc(ret, usize, cnt);
#endif
#ifdef JEMALLOC_STATS
if (ret != NULL) {
assert(usize == isalloc(ret));
ALLOCATED_ADD(usize, 0);
}
#endif
return (ret);
}
JEMALLOC_ATTR(visibility("default"))
void *
JEMALLOC_P(realloc)(void *ptr, size_t size)
{
void *ret;
#if (defined(JEMALLOC_PROF) || defined(JEMALLOC_STATS))
size_t usize
# ifdef JEMALLOC_CC_SILENCE
= 0
# endif
;
size_t old_size = 0;
#endif
#ifdef JEMALLOC_PROF
prof_thr_cnt_t *cnt
# ifdef JEMALLOC_CC_SILENCE
= NULL
# endif
;
prof_ctx_t *old_ctx
# ifdef JEMALLOC_CC_SILENCE
= NULL
# endif
;
#endif
if (size == 0) {
#ifdef JEMALLOC_SYSV
if (opt_sysv == false)
#endif
size = 1;
#ifdef JEMALLOC_SYSV
else {
if (ptr != NULL) {
#if (defined(JEMALLOC_PROF) || defined(JEMALLOC_STATS))
old_size = isalloc(ptr);
#endif
#ifdef JEMALLOC_PROF
if (opt_prof) {
old_ctx = prof_ctx_get(ptr);
cnt = NULL;
}
#endif
idalloc(ptr);
}
#ifdef JEMALLOC_PROF
else if (opt_prof) {
old_ctx = NULL;
cnt = NULL;
}
#endif
ret = NULL;
goto RETURN;
}
#endif
}
if (ptr != NULL) {
assert(malloc_initialized || malloc_initializer ==
pthread_self());
#if (defined(JEMALLOC_PROF) || defined(JEMALLOC_STATS))
old_size = isalloc(ptr);
#endif
#ifdef JEMALLOC_PROF
if (opt_prof) {
usize = s2u(size);
old_ctx = prof_ctx_get(ptr);
if ((cnt = prof_alloc_prep(usize)) == NULL) {
ret = NULL;
goto OOM;
}
if (prof_promote && (uintptr_t)cnt != (uintptr_t)1U &&
usize <= small_maxclass) {
ret = iralloc(ptr, small_maxclass+1, 0, 0,
false, false);
if (ret != NULL)
arena_prof_promoted(ret, usize);
} else
ret = iralloc(ptr, size, 0, 0, false, false);
} else
#endif
{
#ifdef JEMALLOC_STATS
usize = s2u(size);
#endif
ret = iralloc(ptr, size, 0, 0, false, false);
}
#ifdef JEMALLOC_PROF
OOM:
#endif
if (ret == NULL) {
#ifdef JEMALLOC_XMALLOC
if (opt_xmalloc) {
malloc_write("<jemalloc>: Error in realloc(): "
"out of memory\n");
abort();
}
#endif
errno = ENOMEM;
}
} else {
#ifdef JEMALLOC_PROF
if (opt_prof)
old_ctx = NULL;
#endif
if (malloc_init()) {
#ifdef JEMALLOC_PROF
if (opt_prof)
cnt = NULL;
#endif
ret = NULL;
} else {
#ifdef JEMALLOC_PROF
if (opt_prof) {
usize = s2u(size);
if ((cnt = prof_alloc_prep(usize)) == NULL)
ret = NULL;
else {
if (prof_promote && (uintptr_t)cnt !=
(uintptr_t)1U && usize <=
small_maxclass) {
ret = imalloc(small_maxclass+1);
if (ret != NULL) {
arena_prof_promoted(ret,
usize);
}
} else
ret = imalloc(size);
}
} else
#endif
{
#ifdef JEMALLOC_STATS
usize = s2u(size);
#endif
ret = imalloc(size);
}
}
if (ret == NULL) {
#ifdef JEMALLOC_XMALLOC
if (opt_xmalloc) {
malloc_write("<jemalloc>: Error in realloc(): "
"out of memory\n");
abort();
}
#endif
errno = ENOMEM;
}
}
#ifdef JEMALLOC_SYSV
RETURN:
#endif
#ifdef JEMALLOC_PROF
if (opt_prof)
prof_realloc(ret, usize, cnt, old_size, old_ctx);
#endif
#ifdef JEMALLOC_STATS
if (ret != NULL) {
assert(usize == isalloc(ret));
ALLOCATED_ADD(usize, old_size);
}
#endif
return (ret);
}
JEMALLOC_ATTR(visibility("default"))
void
JEMALLOC_P(free)(void *ptr)
{
if (ptr != NULL) {
#if (defined(JEMALLOC_PROF) || defined(JEMALLOC_STATS))
size_t usize;
#endif
assert(malloc_initialized || malloc_initializer ==
pthread_self());
#ifdef JEMALLOC_STATS
usize = isalloc(ptr);
#endif
#ifdef JEMALLOC_PROF
if (opt_prof) {
# ifndef JEMALLOC_STATS
usize = isalloc(ptr);
# endif
prof_free(ptr, usize);
}
#endif
#ifdef JEMALLOC_STATS
ALLOCATED_ADD(0, usize);
#endif
idalloc(ptr);
}
}
/*
* End malloc(3)-compatible functions.
*/
/******************************************************************************/
/*
* Begin non-standard override functions.
*
* These overrides are omitted if the JEMALLOC_PREFIX is defined, since the
* entire point is to avoid accidental mixed allocator usage.
*/
#ifndef JEMALLOC_PREFIX
#ifdef JEMALLOC_OVERRIDE_MEMALIGN
JEMALLOC_ATTR(malloc)
JEMALLOC_ATTR(visibility("default"))
void *
JEMALLOC_P(memalign)(size_t alignment, size_t size)
{
void *ret;
#ifdef JEMALLOC_CC_SILENCE
int result =
#endif
JEMALLOC_P(posix_memalign)(&ret, alignment, size);
#ifdef JEMALLOC_CC_SILENCE
if (result != 0)
return (NULL);
#endif
return (ret);
}
#endif
#ifdef JEMALLOC_OVERRIDE_VALLOC
JEMALLOC_ATTR(malloc)
JEMALLOC_ATTR(visibility("default"))
void *
JEMALLOC_P(valloc)(size_t size)
{
void *ret;
#ifdef JEMALLOC_CC_SILENCE
int result =
#endif
JEMALLOC_P(posix_memalign)(&ret, PAGE_SIZE, size);
#ifdef JEMALLOC_CC_SILENCE
if (result != 0)
return (NULL);
#endif
return (ret);
}
#endif
#endif /* JEMALLOC_PREFIX */
/*
* End non-standard override functions.
*/
/******************************************************************************/
/*
* Begin non-standard functions.
*/
JEMALLOC_ATTR(visibility("default"))
size_t
JEMALLOC_P(malloc_usable_size)(const void *ptr)
{
size_t ret;
assert(malloc_initialized || malloc_initializer == pthread_self());
#ifdef JEMALLOC_IVSALLOC
ret = ivsalloc(ptr);
#else
assert(ptr != NULL);
ret = isalloc(ptr);
#endif
return (ret);
}
JEMALLOC_ATTR(visibility("default"))
void
JEMALLOC_P(malloc_stats_print)(void (*write_cb)(void *, const char *),
void *cbopaque, const char *opts)
{
stats_print(write_cb, cbopaque, opts);
}
JEMALLOC_ATTR(visibility("default"))
int
JEMALLOC_P(mallctl)(const char *name, void *oldp, size_t *oldlenp, void *newp,
size_t newlen)
{
if (malloc_init())
return (EAGAIN);
return (ctl_byname(name, oldp, oldlenp, newp, newlen));
}
JEMALLOC_ATTR(visibility("default"))
int
JEMALLOC_P(mallctlnametomib)(const char *name, size_t *mibp, size_t *miblenp)
{
if (malloc_init())
return (EAGAIN);
return (ctl_nametomib(name, mibp, miblenp));
}
JEMALLOC_ATTR(visibility("default"))
int
JEMALLOC_P(mallctlbymib)(const size_t *mib, size_t miblen, void *oldp,
size_t *oldlenp, void *newp, size_t newlen)
{
if (malloc_init())
return (EAGAIN);
return (ctl_bymib(mib, miblen, oldp, oldlenp, newp, newlen));
}
JEMALLOC_INLINE void *
iallocm(size_t size, size_t alignment, bool zero)
{
if (alignment != 0)
return (ipalloc(size, alignment, zero));
else if (zero)
return (icalloc(size));
else
return (imalloc(size));
}
JEMALLOC_ATTR(nonnull(1))
JEMALLOC_ATTR(visibility("default"))
int
JEMALLOC_P(allocm)(void **ptr, size_t *rsize, size_t size, int flags)
{
void *p;
size_t usize;
size_t alignment = (ZU(1) << (flags & ALLOCM_LG_ALIGN_MASK)
& (SIZE_T_MAX-1));
bool zero = flags & ALLOCM_ZERO;
#ifdef JEMALLOC_PROF
prof_thr_cnt_t *cnt;
#endif
assert(ptr != NULL);
assert(size != 0);
if (malloc_init())
goto OOM;
#ifdef JEMALLOC_PROF
if (opt_prof) {
usize = (alignment == 0) ? s2u(size) : sa2u(size, alignment,
NULL);
if ((cnt = prof_alloc_prep(usize)) == NULL)
goto OOM;
if (prof_promote && (uintptr_t)cnt != (uintptr_t)1U && usize <=
small_maxclass) {
p = iallocm(small_maxclass+1, alignment, zero);
if (p == NULL)
goto OOM;
arena_prof_promoted(p, usize);
} else {
p = iallocm(size, alignment, zero);
if (p == NULL)
goto OOM;
}
if (rsize != NULL)
*rsize = usize;
} else
#endif
{
p = iallocm(size, alignment, zero);
if (p == NULL)
goto OOM;
#ifndef JEMALLOC_STATS
if (rsize != NULL)
#endif
{
usize = (alignment == 0) ? s2u(size) : sa2u(size,
alignment, NULL);
#ifdef JEMALLOC_STATS
if (rsize != NULL)
#endif
*rsize = usize;
}
}
*ptr = p;
#ifdef JEMALLOC_STATS
assert(usize == isalloc(p));
ALLOCATED_ADD(usize, 0);
#endif
return (ALLOCM_SUCCESS);
OOM:
#ifdef JEMALLOC_XMALLOC
if (opt_xmalloc) {
malloc_write("<jemalloc>: Error in allocm(): "
"out of memory\n");
abort();
}
#endif
*ptr = NULL;
return (ALLOCM_ERR_OOM);
}
JEMALLOC_ATTR(nonnull(1))
JEMALLOC_ATTR(visibility("default"))
int
JEMALLOC_P(rallocm)(void **ptr, size_t *rsize, size_t size, size_t extra,
int flags)
{
void *p, *q;
size_t usize;
#if (defined(JEMALLOC_PROF) || defined(JEMALLOC_STATS))
size_t old_size;
#endif
size_t alignment = (ZU(1) << (flags & ALLOCM_LG_ALIGN_MASK)
& (SIZE_T_MAX-1));
bool zero = flags & ALLOCM_ZERO;
bool no_move = flags & ALLOCM_NO_MOVE;
#ifdef JEMALLOC_PROF
prof_thr_cnt_t *cnt;
prof_ctx_t *old_ctx;
#endif
assert(ptr != NULL);
assert(*ptr != NULL);
assert(size != 0);
assert(SIZE_T_MAX - size >= extra);
assert(malloc_initialized || malloc_initializer == pthread_self());
p = *ptr;
#ifdef JEMALLOC_PROF
if (opt_prof) {
/*
* usize isn't knowable before iralloc() returns when extra is
* non-zero. Therefore, compute its maximum possible value and
* use that in prof_alloc_prep() to decide whether to capture a
* backtrace. prof_realloc() will use the actual usize to
* decide whether to sample.
*/
size_t max_usize = (alignment == 0) ? s2u(size+extra) :
sa2u(size+extra, alignment, NULL);
old_size = isalloc(p);
old_ctx = prof_ctx_get(p);
if ((cnt = prof_alloc_prep(max_usize)) == NULL)
goto OOM;
if (prof_promote && (uintptr_t)cnt != (uintptr_t)1U && max_usize
<= small_maxclass) {
q = iralloc(p, small_maxclass+1, (small_maxclass+1 >=
size+extra) ? 0 : size+extra - (small_maxclass+1),
alignment, zero, no_move);
if (q == NULL)
goto ERR;
usize = isalloc(q);
arena_prof_promoted(q, usize);
} else {
q = iralloc(p, size, extra, alignment, zero, no_move);
if (q == NULL)
goto ERR;
usize = isalloc(q);
}
prof_realloc(q, usize, cnt, old_size, old_ctx);
} else
#endif
{
#ifdef JEMALLOC_STATS
old_size = isalloc(p);
#endif
q = iralloc(p, size, extra, alignment, zero, no_move);
if (q == NULL)
goto ERR;
#ifndef JEMALLOC_STATS
if (rsize != NULL)
#endif
{
usize = isalloc(q);
#ifdef JEMALLOC_STATS
if (rsize != NULL)
#endif
*rsize = usize;
}
}
*ptr = q;
#ifdef JEMALLOC_STATS
ALLOCATED_ADD(usize, old_size);
#endif
return (ALLOCM_SUCCESS);
ERR:
if (no_move)
return (ALLOCM_ERR_NOT_MOVED);
#ifdef JEMALLOC_PROF
OOM:
#endif
#ifdef JEMALLOC_XMALLOC
if (opt_xmalloc) {
malloc_write("<jemalloc>: Error in rallocm(): "
"out of memory\n");
abort();
}
#endif
return (ALLOCM_ERR_OOM);
}
JEMALLOC_ATTR(nonnull(1))
JEMALLOC_ATTR(visibility("default"))
int
JEMALLOC_P(sallocm)(const void *ptr, size_t *rsize, int flags)
{
size_t sz;
assert(malloc_initialized || malloc_initializer == pthread_self());
#ifdef JEMALLOC_IVSALLOC
sz = ivsalloc(ptr);
#else
assert(ptr != NULL);
sz = isalloc(ptr);
#endif
assert(rsize != NULL);
*rsize = sz;
return (ALLOCM_SUCCESS);
}
JEMALLOC_ATTR(nonnull(1))
JEMALLOC_ATTR(visibility("default"))
int
JEMALLOC_P(dallocm)(void *ptr, int flags)
{
#if (defined(JEMALLOC_PROF) || defined(JEMALLOC_STATS))
size_t usize;
#endif
assert(ptr != NULL);
assert(malloc_initialized || malloc_initializer == pthread_self());
#ifdef JEMALLOC_STATS
usize = isalloc(ptr);
#endif
#ifdef JEMALLOC_PROF
if (opt_prof) {
# ifndef JEMALLOC_STATS
usize = isalloc(ptr);
# endif
prof_free(ptr, usize);
}
#endif
#ifdef JEMALLOC_STATS
ALLOCATED_ADD(0, usize);
#endif
idalloc(ptr);
return (ALLOCM_SUCCESS);
}
/*
* End non-standard functions.
*/
/******************************************************************************/
/*
* The following functions are used by threading libraries for protection of
* malloc during fork().
*/
void
jemalloc_prefork(void)
{
unsigned i;
/* Acquire all mutexes in a safe order. */
malloc_mutex_lock(&arenas_lock);
for (i = 0; i < narenas; i++) {
if (arenas[i] != NULL)
malloc_mutex_lock(&arenas[i]->lock);
}
malloc_mutex_lock(&base_mtx);
malloc_mutex_lock(&huge_mtx);
#ifdef JEMALLOC_DSS
malloc_mutex_lock(&dss_mtx);
#endif
#ifdef JEMALLOC_SWAP
malloc_mutex_lock(&swap_mtx);
#endif
}
void
jemalloc_postfork(void)
{
unsigned i;
/* Release all mutexes, now that fork() has completed. */
#ifdef JEMALLOC_SWAP
malloc_mutex_unlock(&swap_mtx);
#endif
#ifdef JEMALLOC_DSS
malloc_mutex_unlock(&dss_mtx);
#endif
malloc_mutex_unlock(&huge_mtx);
malloc_mutex_unlock(&base_mtx);
for (i = 0; i < narenas; i++) {
if (arenas[i] != NULL)
malloc_mutex_unlock(&arenas[i]->lock);
}
malloc_mutex_unlock(&arenas_lock);
}
/******************************************************************************/