Files
TrinityCore/dep/CascLib/src/common/Common.cpp
2015-01-11 23:02:19 +00:00

662 lines
22 KiB
C++

/*****************************************************************************/
/* CascCommon.cpp Copyright (c) Ladislav Zezula 2014 */
/*---------------------------------------------------------------------------*/
/* Common functions for CascLib */
/*---------------------------------------------------------------------------*/
/* Date Ver Who Comment */
/* -------- ---- --- ------- */
/* 29.04.14 1.00 Lad The first version of CascCommon.cpp */
/*****************************************************************************/
#define __CASCLIB_SELF__
#include "../CascLib.h"
#include "../CascCommon.h"
//-----------------------------------------------------------------------------
// Conversion to uppercase/lowercase
// Converts ASCII characters to lowercase
// Converts slash (0x2F) to backslash (0x5C)
unsigned char AsciiToLowerTable[256] =
{
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F,
0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, 0x2D, 0x2E, 0x5C,
0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, 0x3D, 0x3E, 0x3F,
0x40, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6A, 0x6B, 0x6C, 0x6D, 0x6E, 0x6F,
0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7A, 0x5B, 0x5C, 0x5D, 0x5E, 0x5F,
0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6A, 0x6B, 0x6C, 0x6D, 0x6E, 0x6F,
0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7A, 0x7B, 0x7C, 0x7D, 0x7E, 0x7F,
0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8A, 0x8B, 0x8C, 0x8D, 0x8E, 0x8F,
0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9A, 0x9B, 0x9C, 0x9D, 0x9E, 0x9F,
0xA0, 0xA1, 0xA2, 0xA3, 0xA4, 0xA5, 0xA6, 0xA7, 0xA8, 0xA9, 0xAA, 0xAB, 0xAC, 0xAD, 0xAE, 0xAF,
0xB0, 0xB1, 0xB2, 0xB3, 0xB4, 0xB5, 0xB6, 0xB7, 0xB8, 0xB9, 0xBA, 0xBB, 0xBC, 0xBD, 0xBE, 0xBF,
0xC0, 0xC1, 0xC2, 0xC3, 0xC4, 0xC5, 0xC6, 0xC7, 0xC8, 0xC9, 0xCA, 0xCB, 0xCC, 0xCD, 0xCE, 0xCF,
0xD0, 0xD1, 0xD2, 0xD3, 0xD4, 0xD5, 0xD6, 0xD7, 0xD8, 0xD9, 0xDA, 0xDB, 0xDC, 0xDD, 0xDE, 0xDF,
0xE0, 0xE1, 0xE2, 0xE3, 0xE4, 0xE5, 0xE6, 0xE7, 0xE8, 0xE9, 0xEA, 0xEB, 0xEC, 0xED, 0xEE, 0xEF,
0xF0, 0xF1, 0xF2, 0xF3, 0xF4, 0xF5, 0xF6, 0xF7, 0xF8, 0xF9, 0xFA, 0xFB, 0xFC, 0xFD, 0xFE, 0xFF
};
// Converts ASCII characters to uppercase
// Converts slash (0x2F) to backslash (0x5C)
unsigned char AsciiToUpperTable[256] =
{
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F,
0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, 0x2D, 0x2E, 0x5C,
0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, 0x3D, 0x3E, 0x3F,
0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0x4A, 0x4B, 0x4C, 0x4D, 0x4E, 0x4F,
0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5A, 0x5B, 0x5C, 0x5D, 0x5E, 0x5F,
0x60, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0x4A, 0x4B, 0x4C, 0x4D, 0x4E, 0x4F,
0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5A, 0x7B, 0x7C, 0x7D, 0x7E, 0x7F,
0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8A, 0x8B, 0x8C, 0x8D, 0x8E, 0x8F,
0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9A, 0x9B, 0x9C, 0x9D, 0x9E, 0x9F,
0xA0, 0xA1, 0xA2, 0xA3, 0xA4, 0xA5, 0xA6, 0xA7, 0xA8, 0xA9, 0xAA, 0xAB, 0xAC, 0xAD, 0xAE, 0xAF,
0xB0, 0xB1, 0xB2, 0xB3, 0xB4, 0xB5, 0xB6, 0xB7, 0xB8, 0xB9, 0xBA, 0xBB, 0xBC, 0xBD, 0xBE, 0xBF,
0xC0, 0xC1, 0xC2, 0xC3, 0xC4, 0xC5, 0xC6, 0xC7, 0xC8, 0xC9, 0xCA, 0xCB, 0xCC, 0xCD, 0xCE, 0xCF,
0xD0, 0xD1, 0xD2, 0xD3, 0xD4, 0xD5, 0xD6, 0xD7, 0xD8, 0xD9, 0xDA, 0xDB, 0xDC, 0xDD, 0xDE, 0xDF,
0xE0, 0xE1, 0xE2, 0xE3, 0xE4, 0xE5, 0xE6, 0xE7, 0xE8, 0xE9, 0xEA, 0xEB, 0xEC, 0xED, 0xEE, 0xEF,
0xF0, 0xF1, 0xF2, 0xF3, 0xF4, 0xF5, 0xF6, 0xF7, 0xF8, 0xF9, 0xFA, 0xFB, 0xFC, 0xFD, 0xFE, 0xFF
};
unsigned char IntToHexChar[] = "0123456789abcdef";
//-----------------------------------------------------------------------------
// GetLastError/SetLastError support for non-Windows platform
#ifndef PLATFORM_WINDOWS
static int nLastError = ERROR_SUCCESS;
int GetLastError()
{
return nLastError;
}
void SetLastError(int nError)
{
nLastError = nError;
}
#endif
//-----------------------------------------------------------------------------
// String manipulation
void CopyString(char * szTarget, const char * szSource, size_t cchLength)
{
memcpy(szTarget, szSource, cchLength);
szTarget[cchLength] = 0;
}
void CopyString(wchar_t * szTarget, const char * szSource, size_t cchLength)
{
mbstowcs(szTarget, szSource, cchLength);
szTarget[cchLength] = 0;
}
void CopyString(char * szTarget, const wchar_t * szSource, size_t cchLength)
{
wcstombs(szTarget, szSource, cchLength);
szTarget[cchLength] = 0;
}
char * NewStr(const char * szString, size_t nCharsToReserve)
{
char * szNewString = NULL;
size_t nLength;
if(szString != NULL)
{
nLength = strlen(szString);
szNewString = CASC_ALLOC(char, nLength + nCharsToReserve + 1);
if(szNewString != NULL)
{
memcpy(szNewString, szString, nLength);
szNewString[nLength] = 0;
}
}
return szNewString;
}
wchar_t * NewStr(const wchar_t * szString, size_t nCharsToReserve)
{
wchar_t * szNewString = NULL;
size_t nLength;
if(szString != NULL)
{
nLength = wcslen(szString);
szNewString = CASC_ALLOC(wchar_t, nLength + nCharsToReserve + 1);
if(szNewString != NULL)
{
memcpy(szNewString, szString, nLength * sizeof(wchar_t));
szNewString[nLength] = 0;
}
}
return szNewString;
}
TCHAR * NewStrFromAnsi(LPBYTE pbStringBegin, LPBYTE pbStringEnd)
{
TCHAR * szNewString = NULL;
TCHAR * szStringPtr = NULL;
size_t nLength = (size_t)(pbStringEnd - pbStringBegin);
if(pbStringEnd > pbStringBegin)
{
szNewString = szStringPtr = CASC_ALLOC(TCHAR, nLength + 1);
if(szNewString != NULL)
{
CopyString(szStringPtr, (const char *)pbStringBegin, nLength);
szStringPtr[nLength] = 0;
}
}
return szNewString;
}
TCHAR * CombinePath(const TCHAR * szDirectory, const TCHAR * szSubDir)
{
TCHAR * szFullPath = NULL;
TCHAR * szPathPtr;
size_t nLength1 = 0;
size_t nLength2 = 0;
// Calculate lengths of each part
if(szDirectory != NULL)
{
// Get the length of the directory
nLength1 = _tcslen(szDirectory);
// Cut all ending backslashes
while(nLength1 > 0 && szDirectory[nLength1 - 1] == _T(PATH_SEPARATOR))
nLength1--;
}
if(szSubDir != NULL)
{
// Cut all leading backslashes
while(szSubDir[0] == _T(PATH_SEPARATOR))
szSubDir++;
// Get the length of the subdir
nLength2 = _tcslen(szSubDir);
// Cut all ending backslashes
while(nLength2 > 0 && szSubDir[nLength2 - 1] == _T(PATH_SEPARATOR))
nLength2--;
}
// Allocate space for the full path
szFullPath = szPathPtr = CASC_ALLOC(TCHAR, nLength1 + nLength2 + 2);
if(szFullPath != NULL)
{
// Copy the directory
if(szDirectory != NULL && nLength1 != 0)
{
memcpy(szPathPtr, szDirectory, (nLength1 * sizeof(TCHAR)));
szPathPtr += nLength1;
}
// Copy the sub-directory
if(szSubDir != NULL && nLength2 != 0)
{
// Append backslash to the previous one
if(szPathPtr > szFullPath)
*szPathPtr++ = _T(PATH_SEPARATOR);
// Copy the string
memcpy(szPathPtr, szSubDir, (nLength2 * sizeof(TCHAR)));
szPathPtr += nLength2;
}
// Terminate the string
szPathPtr[0] = 0;
}
return szFullPath;
}
void NormalizeFileName_UpperBkSlash(const char * szSrcFileName, char * szTrgFileName)
{
size_t i;
// Normalize the file name: ToLower + BackSlashToSlash
for(i = 0; szSrcFileName[i] != 0; i++)
szTrgFileName[i] = AsciiToUpperTable[szSrcFileName[i]];
szTrgFileName[i] = 0;
}
void NormalizeFileName_LowerSlash(char * szFileName)
{
// Normalize the file name: ToLower + BackSlashToSlash
for(size_t i = 0; szFileName[i] != 0; i++)
{
szFileName[i] = AsciiToLowerTable[szFileName[i]];
szFileName[i] = (szFileName[i] != '\\') ? szFileName[i] : '/';
}
}
int ConvertDigitToInt32(const TCHAR * szString, PDWORD PtrValue)
{
BYTE Digit;
Digit = (BYTE)(AsciiToUpperTable[szString[0]] - _T('0'));
if(Digit > 9)
Digit -= 'A' - '9' - 1;
PtrValue[0] = Digit;
return (Digit > 0x0F) ? ERROR_BAD_FORMAT : ERROR_SUCCESS;
}
int ConvertStringToInt32(const TCHAR * szString, size_t nMaxDigits, PDWORD PtrValue)
{
// The number of digits must be even
assert((nMaxDigits & 0x01) == 0);
assert(nMaxDigits <= 8);
// Prepare the variables
PtrValue[0] = 0;
nMaxDigits >>= 1;
// Convert the string up to the number of digits
for(size_t i = 0; i < nMaxDigits; i++)
{
BYTE DigitOne;
BYTE DigitTwo;
DigitOne = (BYTE)(AsciiToUpperTable[szString[0]] - _T('0'));
if(DigitOne > 9)
DigitOne -= 'A' - '9' - 1;
DigitTwo = (BYTE)(AsciiToUpperTable[szString[1]] - _T('0'));
if(DigitTwo > 9)
DigitTwo -= 'A' - '9' - 1;
if(DigitOne > 0x0F || DigitTwo > 0x0F)
return ERROR_BAD_FORMAT;
PtrValue[0] = (PtrValue[0] << 0x08) | (DigitOne << 0x04) | DigitTwo;
szString += 2;
}
return ERROR_SUCCESS;
}
char * StringFromBinary(LPBYTE pbBinary, size_t cbBinary, char * szBuffer)
{
char * szSaveBuffer = szBuffer;
// Convert the string to the array of MD5
// Copy the blob data as text
for(size_t i = 0; i < cbBinary; i++)
{
*szBuffer++ = IntToHexChar[pbBinary[0] >> 0x04];
*szBuffer++ = IntToHexChar[pbBinary[0] & 0x0F];
pbBinary++;
}
// Terminate the string
*szBuffer = 0;
return szSaveBuffer;
}
//-----------------------------------------------------------------------------
// File name utilities
const wchar_t * GetPlainFileName(const wchar_t * szFileName)
{
const wchar_t * szPlainName = szFileName;
while(*szFileName != 0)
{
if(*szFileName == '\\' || *szFileName == '/')
szPlainName = szFileName + 1;
szFileName++;
}
return szPlainName;
}
const char * GetPlainFileName(const char * szFileName)
{
const char * szPlainName = szFileName;
while(*szFileName != 0)
{
if(*szFileName == '\\' || *szFileName == '/')
szPlainName = szFileName + 1;
szFileName++;
}
return szPlainName;
}
bool CheckWildCard(const char * szString, const char * szWildCard)
{
const char * szSubString;
int nSubStringLength;
int nMatchCount = 0;
// When the mask is empty, it never matches
if(szWildCard == NULL || *szWildCard == 0)
return false;
// If the wildcard contains just "*", then it always matches
if(szWildCard[0] == '*' && szWildCard[1] == 0)
return true;
// Do normal test
for(;;)
{
// If there is '?' in the wildcard, we skip one char
while(*szWildCard == '?')
{
szWildCard++;
szString++;
}
// If there is '*', means zero or more chars. We have to
// find the sequence after '*'
if(*szWildCard == '*')
{
// More stars is equal to one star
while(*szWildCard == '*' || *szWildCard == '?')
szWildCard++;
// If we found end of the wildcard, it's a match
if(*szWildCard == 0)
return true;
// Determine the length of the substring in szWildCard
szSubString = szWildCard;
while(*szSubString != 0 && *szSubString != '?' && *szSubString != '*')
szSubString++;
nSubStringLength = (int)(szSubString - szWildCard);
nMatchCount = 0;
// Now we have to find a substring in szString,
// that matches the substring in szWildCard
while(*szString != 0)
{
// Calculate match count
while(nMatchCount < nSubStringLength)
{
if(AsciiToUpperTable[(BYTE)szString[nMatchCount]] != AsciiToUpperTable[(BYTE)szWildCard[nMatchCount]])
break;
if(szString[nMatchCount] == 0)
break;
nMatchCount++;
}
// If the match count has reached substring length, we found a match
if(nMatchCount == nSubStringLength)
{
szWildCard += nMatchCount;
szString += nMatchCount;
break;
}
// No match, move to the next char in szString
nMatchCount = 0;
szString++;
}
}
else
{
// If we came to the end of the string, compare it to the wildcard
if(AsciiToUpperTable[(BYTE)*szString] != AsciiToUpperTable[(BYTE)*szWildCard])
return false;
// If we arrived to the end of the string, it's a match
if(*szString == 0)
return true;
// Otherwise, continue in comparing
szWildCard++;
szString++;
}
}
}
//-----------------------------------------------------------------------------
// Hashing functions
bool IsValidMD5(LPBYTE pbMd5)
{
BYTE BitSummary = 0;
// The MD5 is considered invalid of it is zeroed
BitSummary |= pbMd5[0x00] | pbMd5[0x01] | pbMd5[0x02] | pbMd5[0x03] | pbMd5[0x04] | pbMd5[0x05] | pbMd5[0x06] | pbMd5[0x07];
BitSummary |= pbMd5[0x08] | pbMd5[0x09] | pbMd5[0x0A] | pbMd5[0x0B] | pbMd5[0x0C] | pbMd5[0x0D] | pbMd5[0x0E] | pbMd5[0x0F];
return (BitSummary != 0);
}
bool VerifyDataBlockHash(void * pvDataBlock, DWORD cbDataBlock, LPBYTE expected_md5)
{
hash_state md5_state;
BYTE md5_digest[MD5_HASH_SIZE];
// Don't verify the block if the MD5 is not valid.
if(!IsValidMD5(expected_md5))
return true;
// Calculate the MD5 of the data block
md5_init(&md5_state);
md5_process(&md5_state, (unsigned char *)pvDataBlock, cbDataBlock);
md5_done(&md5_state, md5_digest);
// Does the MD5's match?
return (memcmp(md5_digest, expected_md5, MD5_HASH_SIZE) == 0);
}
void CalculateDataBlockHash(void * pvDataBlock, DWORD cbDataBlock, LPBYTE md5_hash)
{
hash_state md5_state;
md5_init(&md5_state);
md5_process(&md5_state, (unsigned char *)pvDataBlock, cbDataBlock);
md5_done(&md5_state, md5_hash);
}
//-----------------------------------------------------------------------------
// We have our own qsort implementation, optimized for using array of pointers
#define STKSIZ (8*sizeof(void*) - 2)
#define SWAP_ENTRIES(index1, index2) \
{ \
temp = base[index1]; \
base[index1] = base[index2]; \
base[index2] = temp; \
}
void qsort_pointer_array(void ** base, size_t num, int (*compare)(const void *, const void *, const void *), const void * context)
{
size_t lo, hi; /* ends of sub-array currently sorting */
size_t mid; /* points to middle of subarray */
size_t loguy, higuy; /* traveling pointers for partition step */
size_t size; /* size of the sub-array */
size_t lostk[STKSIZ], histk[STKSIZ];
void * temp;
int stkptr; /* stack for saving sub-array to be processed */
/* validation section */
assert(base != NULL);
assert(compare != NULL);
if (num < 2)
return; /* nothing to do */
stkptr = 0; /* initialize stack */
lo = 0;
hi = (num-1); /* initialize limits */
/* this entry point is for pseudo-recursion calling: setting
lo and hi and jumping to here is like recursion, but stkptr is
preserved, locals aren't, so we preserve stuff on the stack */
recurse:
size = (hi - lo) + 1; /* number of el's to sort */
/* First we pick a partitioning element. The efficiency of the
algorithm demands that we find one that is approximately the median
of the values, but also that we select one fast. We choose the
median of the first, middle, and last elements, to avoid bad
performance in the face of already sorted data, or data that is made
up of multiple sorted runs appended together. Testing shows that a
median-of-three algorithm provides better performance than simply
picking the middle element for the latter case. */
mid = lo + (size / 2); /* find middle element */
/* Sort the first, middle, last elements into order */
if (compare(context, base[lo], base[mid]) > 0) {
SWAP_ENTRIES(lo, mid);
}
if (compare(context, base[lo], base[hi]) > 0) {
SWAP_ENTRIES(lo, hi);
}
if (compare(context, base[mid], base[hi]) > 0) {
SWAP_ENTRIES(mid, hi);
}
/* We now wish to partition the array into three pieces, one consisting
of elements <= partition element, one of elements equal to the
partition element, and one of elements > than it. This is done
below; comments indicate conditions established at every step. */
loguy = lo;
higuy = hi;
/* Note that higuy decreases and loguy increases on every iteration,
so loop must terminate. */
for (;;) {
/* lo <= loguy < hi, lo < higuy <= hi,
A[i] <= A[mid] for lo <= i <= loguy,
A[i] > A[mid] for higuy <= i < hi,
A[hi] >= A[mid] */
/* The doubled loop is to avoid calling comp(mid,mid), since some
existing comparison funcs don't work when passed the same
value for both pointers. */
if (mid > loguy) {
do {
loguy ++;
} while (loguy < mid && compare(context, base[loguy], base[mid]) <= 0);
}
if (mid <= loguy) {
do {
loguy ++;
} while (loguy <= hi && compare(context, base[loguy], base[mid]) <= 0);
}
/* lo < loguy <= hi+1, A[i] <= A[mid] for lo <= i < loguy,
either loguy > hi or A[loguy] > A[mid] */
do {
higuy --;
} while (higuy > mid && compare(context, base[higuy], base[mid]) > 0);
/* lo <= higuy < hi, A[i] > A[mid] for higuy < i < hi,
either higuy == lo or A[higuy] <= A[mid] */
if (higuy < loguy)
break;
/* if loguy > hi or higuy == lo, then we would have exited, so
A[loguy] > A[mid], A[higuy] <= A[mid],
loguy <= hi, higuy > lo */
SWAP_ENTRIES(loguy, higuy);
/* If the partition element was moved, follow it. Only need
to check for mid == higuy, since before the swap,
A[loguy] > A[mid] implies loguy != mid. */
if (mid == higuy)
mid = loguy;
/* A[loguy] <= A[mid], A[higuy] > A[mid]; so condition at top
of loop is re-established */
}
/* A[i] <= A[mid] for lo <= i < loguy,
A[i] > A[mid] for higuy < i < hi,
A[hi] >= A[mid]
higuy < loguy
implying:
higuy == loguy-1
or higuy == hi - 1, loguy == hi + 1, A[hi] == A[mid] */
/* Find adjacent elements equal to the partition element. The
doubled loop is to avoid calling comp(mid,mid), since some
existing comparison funcs don't work when passed the same value
for both pointers. */
higuy ++;
if (mid < higuy) {
do {
higuy --;
} while (higuy > mid && compare(context, base[higuy], base[mid]) == 0);
}
if (mid >= higuy) {
do {
higuy --;
} while (higuy > lo && compare(context, base[higuy], base[mid]) == 0);
}
/* OK, now we have the following:
higuy < loguy
lo <= higuy <= hi
A[i] <= A[mid] for lo <= i <= higuy
A[i] == A[mid] for higuy < i < loguy
A[i] > A[mid] for loguy <= i < hi
A[hi] >= A[mid] */
/* We've finished the partition, now we want to sort the subarrays
[lo, higuy] and [loguy, hi].
We do the smaller one first to minimize stack usage.
We only sort arrays of length 2 or more.*/
if ( higuy - lo >= hi - loguy ) {
if (lo < higuy) {
lostk[stkptr] = lo;
histk[stkptr] = higuy;
++stkptr;
} /* save big recursion for later */
if (loguy < hi) {
lo = loguy;
goto recurse; /* do small recursion */
}
}
else {
if (loguy < hi) {
lostk[stkptr] = loguy;
histk[stkptr] = hi;
++stkptr; /* save big recursion for later */
}
if (lo < higuy) {
hi = higuy;
goto recurse; /* do small recursion */
}
}
/* We have sorted the array, except for any pending sorts on the stack.
Check if there are any, and do them. */
--stkptr;
if (stkptr >= 0) {
lo = lostk[stkptr];
hi = histk[stkptr];
goto recurse; /* pop subarray from stack */
}
else
return; /* all subarrays done */
}