aboutsummaryrefslogtreecommitdiff
path: root/externals/SFMT
diff options
context:
space:
mode:
Diffstat (limited to 'externals/SFMT')
-rw-r--r--externals/SFMT/SFMT-alti.h156
-rw-r--r--externals/SFMT/SFMT-params.h97
-rw-r--r--externals/SFMT/SFMT-sse2.h121
-rw-r--r--externals/SFMT/SFMT.c620
-rw-r--r--externals/SFMT/SFMT.h157
5 files changed, 0 insertions, 1151 deletions
diff --git a/externals/SFMT/SFMT-alti.h b/externals/SFMT/SFMT-alti.h
deleted file mode 100644
index df3186cbbd7..00000000000
--- a/externals/SFMT/SFMT-alti.h
+++ /dev/null
@@ -1,156 +0,0 @@
-/**
- * @file SFMT-alti.h
- *
- * @brief SIMD oriented Fast Mersenne Twister(SFMT)
- * pseudorandom number generator
- *
- * @author Mutsuo Saito (Hiroshima University)
- * @author Makoto Matsumoto (Hiroshima University)
- *
- * Copyright (C) 2007 Mutsuo Saito, Makoto Matsumoto and Hiroshima
- * University. All rights reserved.
- *
- * The new BSD License is applied to this software.
- * see LICENSE.txt
- */
-
-#ifndef SFMT_ALTI_H
-#define SFMT_ALTI_H
-
-inline static vector unsigned int vec_recursion(vector unsigned int a,
- vector unsigned int b,
- vector unsigned int c,
- vector unsigned int d)
- ALWAYSINLINE;
-
-/**
- * This function represents the recursion formula in AltiVec and BIG ENDIAN.
- * @param a a 128-bit part of the interal state array
- * @param b a 128-bit part of the interal state array
- * @param c a 128-bit part of the interal state array
- * @param d a 128-bit part of the interal state array
- * @return output
- */
-inline static vector unsigned int vec_recursion(vector unsigned int a,
- vector unsigned int b,
- vector unsigned int c,
- vector unsigned int d) {
-
- const vector unsigned int sl1 = ALTI_SL1;
- const vector unsigned int sr1 = ALTI_SR1;
-#ifdef ONLY64
- const vector unsigned int mask = ALTI_MSK64;
- const vector unsigned char perm_sl = ALTI_SL2_PERM64;
- const vector unsigned char perm_sr = ALTI_SR2_PERM64;
-#else
- const vector unsigned int mask = ALTI_MSK;
- const vector unsigned char perm_sl = ALTI_SL2_PERM;
- const vector unsigned char perm_sr = ALTI_SR2_PERM;
-#endif
- vector unsigned int v, w, x, y, z;
- x = vec_perm(a, (vector unsigned int)perm_sl, perm_sl);
- v = a;
- y = vec_sr(b, sr1);
- z = vec_perm(c, (vector unsigned int)perm_sr, perm_sr);
- w = vec_sl(d, sl1);
- z = vec_xor(z, w);
- y = vec_and(y, mask);
- v = vec_xor(v, x);
- z = vec_xor(z, y);
- z = vec_xor(z, v);
- return z;
-}
-
-/**
- * This function fills the internal state array with pseudorandom
- * integers.
- */
-inline static void gen_rand_all(void) {
- int i;
- vector unsigned int r, r1, r2;
-
- r1 = sfmt[N - 2].s;
- r2 = sfmt[N - 1].s;
- for (i = 0; i < N - POS1; i++) {
- r = vec_recursion(sfmt[i].s, sfmt[i + POS1].s, r1, r2);
- sfmt[i].s = r;
- r1 = r2;
- r2 = r;
- }
- for (; i < N; i++) {
- r = vec_recursion(sfmt[i].s, sfmt[i + POS1 - N].s, r1, r2);
- sfmt[i].s = r;
- r1 = r2;
- r2 = r;
- }
-}
-
-/**
- * This function fills the user-specified array with pseudorandom
- * integers.
- *
- * @param array an 128-bit array to be filled by pseudorandom numbers.
- * @param size number of 128-bit pesudorandom numbers to be generated.
- */
-inline static void gen_rand_array(w128_t *array, int size) {
- int i, j;
- vector unsigned int r, r1, r2;
-
- r1 = sfmt[N - 2].s;
- r2 = sfmt[N - 1].s;
- for (i = 0; i < N - POS1; i++) {
- r = vec_recursion(sfmt[i].s, sfmt[i + POS1].s, r1, r2);
- array[i].s = r;
- r1 = r2;
- r2 = r;
- }
- for (; i < N; i++) {
- r = vec_recursion(sfmt[i].s, array[i + POS1 - N].s, r1, r2);
- array[i].s = r;
- r1 = r2;
- r2 = r;
- }
- /* main loop */
- for (; i < size - N; i++) {
- r = vec_recursion(array[i - N].s, array[i + POS1 - N].s, r1, r2);
- array[i].s = r;
- r1 = r2;
- r2 = r;
- }
- for (j = 0; j < 2 * N - size; j++) {
- sfmt[j].s = array[j + size - N].s;
- }
- for (; i < size; i++) {
- r = vec_recursion(array[i - N].s, array[i + POS1 - N].s, r1, r2);
- array[i].s = r;
- sfmt[j++].s = r;
- r1 = r2;
- r2 = r;
- }
-}
-
-#ifndef ONLY64
-#if defined(__APPLE__)
-#define ALTI_SWAP (vector unsigned char) \
- (4, 5, 6, 7, 0, 1, 2, 3, 12, 13, 14, 15, 8, 9, 10, 11)
-#else
-#define ALTI_SWAP {4, 5, 6, 7, 0, 1, 2, 3, 12, 13, 14, 15, 8, 9, 10, 11}
-#endif
-/**
- * This function swaps high and low 32-bit of 64-bit integers in user
- * specified array.
- *
- * @param array an 128-bit array to be swaped.
- * @param size size of 128-bit array.
- */
-inline static void swap(w128_t *array, int size) {
- int i;
- const vector unsigned char perm = ALTI_SWAP;
-
- for (i = 0; i < size; i++) {
- array[i].s = vec_perm(array[i].s, (vector unsigned int)perm, perm);
- }
-}
-#endif
-
-#endif
diff --git a/externals/SFMT/SFMT-params.h b/externals/SFMT/SFMT-params.h
deleted file mode 100644
index 661bbf26a28..00000000000
--- a/externals/SFMT/SFMT-params.h
+++ /dev/null
@@ -1,97 +0,0 @@
-#ifndef SFMT_PARAMS_H
-#define SFMT_PARAMS_H
-
-#if !defined(MEXP)
-#ifdef __GNUC__
- #warning "MEXP is not defined. I assume MEXP is 19937."
-#endif
- #define MEXP 19937
-#endif
-/*-----------------
- BASIC DEFINITIONS
- -----------------*/
-/** Mersenne Exponent. The period of the sequence
- * is a multiple of 2^MEXP-1.
- * #define MEXP 19937 */
-/** SFMT generator has an internal state array of 128-bit integers,
- * and N is its size. */
-#define N (MEXP / 128 + 1)
-/** N32 is the size of internal state array when regarded as an array
- * of 32-bit integers.*/
-#define N32 (N * 4)
-/** N64 is the size of internal state array when regarded as an array
- * of 64-bit integers.*/
-#define N64 (N * 2)
-
-/*----------------------
- the parameters of SFMT
- following definitions are in paramsXXXX.h file.
- ----------------------*/
-/** the pick up position of the array.
-#define POS1 122
-*/
-
-/** the parameter of shift left as four 32-bit registers.
-#define SL1 18
- */
-
-/** the parameter of shift left as one 128-bit register.
- * The 128-bit integer is shifted by (SL2 * 8) bits.
-#define SL2 1
-*/
-
-/** the parameter of shift right as four 32-bit registers.
-#define SR1 11
-*/
-
-/** the parameter of shift right as one 128-bit register.
- * The 128-bit integer is shifted by (SL2 * 8) bits.
-#define SR2 1
-*/
-
-/** A bitmask, used in the recursion. These parameters are introduced
- * to break symmetry of SIMD.
-#define MSK1 0xdfffffefU
-#define MSK2 0xddfecb7fU
-#define MSK3 0xbffaffffU
-#define MSK4 0xbffffff6U
-*/
-
-/** These definitions are part of a 128-bit period certification vector.
-#define PARITY1 0x00000001U
-#define PARITY2 0x00000000U
-#define PARITY3 0x00000000U
-#define PARITY4 0xc98e126aU
-*/
-
-#if MEXP == 607
- #include "SFMT-params607.h"
-#elif MEXP == 1279
- #include "SFMT-params1279.h"
-#elif MEXP == 2281
- #include "SFMT-params2281.h"
-#elif MEXP == 4253
- #include "SFMT-params4253.h"
-#elif MEXP == 11213
- #include "SFMT-params11213.h"
-#elif MEXP == 19937
- #include "SFMT-params19937.h"
-#elif MEXP == 44497
- #include "SFMT-params44497.h"
-#elif MEXP == 86243
- #include "SFMT-params86243.h"
-#elif MEXP == 132049
- #include "SFMT-params132049.h"
-#elif MEXP == 216091
- #include "SFMT-params216091.h"
-#else
-#ifdef __GNUC__
- #error "MEXP is not valid."
- #undef MEXP
-#else
- #undef MEXP
-#endif
-
-#endif
-
-#endif /* SFMT_PARAMS_H */
diff --git a/externals/SFMT/SFMT-sse2.h b/externals/SFMT/SFMT-sse2.h
deleted file mode 100644
index 4e91d9c6121..00000000000
--- a/externals/SFMT/SFMT-sse2.h
+++ /dev/null
@@ -1,121 +0,0 @@
-/**
- * @file SFMT-sse2.h
- * @brief SIMD oriented Fast Mersenne Twister(SFMT) for Intel SSE2
- *
- * @author Mutsuo Saito (Hiroshima University)
- * @author Makoto Matsumoto (Hiroshima University)
- *
- * @note We assume LITTLE ENDIAN in this file
- *
- * Copyright (C) 2006, 2007 Mutsuo Saito, Makoto Matsumoto and Hiroshima
- * University. All rights reserved.
- *
- * The new BSD License is applied to this software, see LICENSE.txt
- */
-
-#ifndef SFMT_SSE2_H
-#define SFMT_SSE2_H
-
-PRE_ALWAYS static __m128i mm_recursion(__m128i *a, __m128i *b, __m128i c,
- __m128i d, __m128i mask) ALWAYSINLINE;
-
-/**
- * This function represents the recursion formula.
- * @param a a 128-bit part of the interal state array
- * @param b a 128-bit part of the interal state array
- * @param c a 128-bit part of the interal state array
- * @param d a 128-bit part of the interal state array
- * @param mask 128-bit mask
- * @return output
- */
-PRE_ALWAYS static __m128i mm_recursion(__m128i *a, __m128i *b,
- __m128i c, __m128i d, __m128i mask) {
- __m128i v, x, y, z;
-
- x = _mm_load_si128(a);
- y = _mm_srli_epi32(*b, SR1);
- z = _mm_srli_si128(c, SR2);
- v = _mm_slli_epi32(d, SL1);
- z = _mm_xor_si128(z, x);
- z = _mm_xor_si128(z, v);
- x = _mm_slli_si128(x, SL2);
- y = _mm_and_si128(y, mask);
- z = _mm_xor_si128(z, x);
- z = _mm_xor_si128(z, y);
- return z;
-}
-
-/**
- * This function fills the internal state array with pseudorandom
- * integers.
- */
-inline static void gen_rand_all(void) {
- int i;
- __m128i r, r1, r2, mask;
- mask = _mm_set_epi32(MSK4, MSK3, MSK2, MSK1);
-
- r1 = _mm_load_si128(&sfmt[N - 2].si);
- r2 = _mm_load_si128(&sfmt[N - 1].si);
- for (i = 0; i < N - POS1; i++) {
- r = mm_recursion(&sfmt[i].si, &sfmt[i + POS1].si, r1, r2, mask);
- _mm_store_si128(&sfmt[i].si, r);
- r1 = r2;
- r2 = r;
- }
- for (; i < N; i++) {
- r = mm_recursion(&sfmt[i].si, &sfmt[i + POS1 - N].si, r1, r2, mask);
- _mm_store_si128(&sfmt[i].si, r);
- r1 = r2;
- r2 = r;
- }
-}
-
-/**
- * This function fills the user-specified array with pseudorandom
- * integers.
- *
- * @param array an 128-bit array to be filled by pseudorandom numbers.
- * @param size number of 128-bit pesudorandom numbers to be generated.
- */
-inline static void gen_rand_array(w128_t *array, int size) {
- int i, j;
- __m128i r, r1, r2, mask;
- mask = _mm_set_epi32(MSK4, MSK3, MSK2, MSK1);
-
- r1 = _mm_load_si128(&sfmt[N - 2].si);
- r2 = _mm_load_si128(&sfmt[N - 1].si);
- for (i = 0; i < N - POS1; i++) {
- r = mm_recursion(&sfmt[i].si, &sfmt[i + POS1].si, r1, r2, mask);
- _mm_store_si128(&array[i].si, r);
- r1 = r2;
- r2 = r;
- }
- for (; i < N; i++) {
- r = mm_recursion(&sfmt[i].si, &array[i + POS1 - N].si, r1, r2, mask);
- _mm_store_si128(&array[i].si, r);
- r1 = r2;
- r2 = r;
- }
- /* main loop */
- for (; i < size - N; i++) {
- r = mm_recursion(&array[i - N].si, &array[i + POS1 - N].si, r1, r2,
- mask);
- _mm_store_si128(&array[i].si, r);
- r1 = r2;
- r2 = r;
- }
- for (j = 0; j < 2 * N - size; j++) {
- r = _mm_load_si128(&array[j + size - N].si);
- _mm_store_si128(&sfmt[j].si, r);
- }
- for (; i < size; i++) {
- r = mm_recursion(&array[i - N].si, &array[i + POS1 - N].si, r1, r2,
- mask);
- _mm_store_si128(&array[i].si, r);
- _mm_store_si128(&sfmt[j++].si, r);
- r1 = r2;
- r2 = r;
- }
-}
-
-#endif
diff --git a/externals/SFMT/SFMT.c b/externals/SFMT/SFMT.c
deleted file mode 100644
index d36465d9e14..00000000000
--- a/externals/SFMT/SFMT.c
+++ /dev/null
@@ -1,620 +0,0 @@
-/**
- * @file SFMT.c
- * @brief SIMD oriented Fast Mersenne Twister(SFMT)
- *
- * @author Mutsuo Saito (Hiroshima University)
- * @author Makoto Matsumoto (Hiroshima University)
- *
- * Copyright (C) 2006,2007 Mutsuo Saito, Makoto Matsumoto and Hiroshima
- * University. All rights reserved.
- *
- * The new BSD License is applied to this software, see LICENSE.txt
- */
-#include <string.h>
-#include <assert.h>
-#include "SFMT.h"
-#include "SFMT-params.h"
-
-#if defined(__BIG_ENDIAN__) && !defined(__amd64) && !defined(BIG_ENDIAN64)
-#define BIG_ENDIAN64 1
-#endif
-#if defined(HAVE_ALTIVEC) && !defined(BIG_ENDIAN64)
-#define BIG_ENDIAN64 1
-#endif
-#if defined(ONLY64) && !defined(BIG_ENDIAN64)
- #if defined(__GNUC__)
- #error "-DONLY64 must be specified with -DBIG_ENDIAN64"
- #endif
-#undef ONLY64
-#endif
-/*------------------------------------------------------
- 128-bit SIMD data type for Altivec, SSE2 or standard C
- ------------------------------------------------------*/
-#if defined(HAVE_ALTIVEC)
- #if !defined(__APPLE__)
- #include <altivec.h>
- #endif
-/** 128-bit data structure */
-union W128_T {
- vector unsigned int s;
- uint32_t u[4];
-};
-/** 128-bit data type */
-typedef union W128_T w128_t;
-
-#elif defined(HAVE_SSE2)
- #include <emmintrin.h>
-
-/** 128-bit data structure */
-union W128_T {
- __m128i si;
- uint32_t u[4];
-};
-/** 128-bit data type */
-typedef union W128_T w128_t;
-
-#else
-
-/** 128-bit data structure */
-struct W128_T {
- uint32_t u[4];
-};
-/** 128-bit data type */
-typedef struct W128_T w128_t;
-
-#endif
-
-/*--------------------------------------
- FILE GLOBAL VARIABLES
- internal state, index counter and flag
- --------------------------------------*/
-/** the 128-bit internal state array */
-static w128_t sfmt[N];
-/** the 32bit integer pointer to the 128-bit internal state array */
-static uint32_t *psfmt32 = &sfmt[0].u[0];
-#if !defined(BIG_ENDIAN64) || defined(ONLY64)
-/** the 64bit integer pointer to the 128-bit internal state array */
-static uint64_t *psfmt64 = (uint64_t *)&sfmt[0].u[0];
-#endif
-/** index counter to the 32-bit internal state array */
-static int idx;
-/** a flag: it is 0 if and only if the internal state is not yet
- * initialized. */
-static int initialized = 0;
-/** a parity check vector which certificate the period of 2^{MEXP} */
-static uint32_t parity[4] = {PARITY1, PARITY2, PARITY3, PARITY4};
-
-/*----------------
- STATIC FUNCTIONS
- ----------------*/
-inline static int idxof(int i);
-inline static void rshift128(w128_t *out, w128_t const *in, int shift);
-inline static void lshift128(w128_t *out, w128_t const *in, int shift);
-inline static void gen_rand_all(void);
-inline static void gen_rand_array(w128_t *array, int size);
-inline static uint32_t func1(uint32_t x);
-inline static uint32_t func2(uint32_t x);
-static void period_certification(void);
-#if defined(BIG_ENDIAN64) && !defined(ONLY64)
-inline static void swap(w128_t *array, int size);
-#endif
-
-#if defined(HAVE_ALTIVEC)
- #include "SFMT-alti.h"
-#elif defined(HAVE_SSE2)
- #include "SFMT-sse2.h"
-#endif
-
-/**
- * This function simulate a 64-bit index of LITTLE ENDIAN
- * in BIG ENDIAN machine.
- */
-#ifdef ONLY64
-inline static int idxof(int i) {
- return i ^ 1;
-}
-#else
-inline static int idxof(int i) {
- return i;
-}
-#endif
-/**
- * This function simulates SIMD 128-bit right shift by the standard C.
- * The 128-bit integer given in in is shifted by (shift * 8) bits.
- * This function simulates the LITTLE ENDIAN SIMD.
- * @param out the output of this function
- * @param in the 128-bit data to be shifted
- * @param shift the shift value
- */
-#ifdef ONLY64
-inline static void rshift128(w128_t *out, w128_t const *in, int shift) {
- uint64_t th, tl, oh, ol;
-
- th = ((uint64_t)in->u[2] << 32) | ((uint64_t)in->u[3]);
- tl = ((uint64_t)in->u[0] << 32) | ((uint64_t)in->u[1]);
-
- oh = th >> (shift * 8);
- ol = tl >> (shift * 8);
- ol |= th << (64 - shift * 8);
- out->u[0] = (uint32_t)(ol >> 32);
- out->u[1] = (uint32_t)ol;
- out->u[2] = (uint32_t)(oh >> 32);
- out->u[3] = (uint32_t)oh;
-}
-#else
-inline static void rshift128(w128_t *out, w128_t const *in, int shift) {
- uint64_t th, tl, oh, ol;
-
- th = ((uint64_t)in->u[3] << 32) | ((uint64_t)in->u[2]);
- tl = ((uint64_t)in->u[1] << 32) | ((uint64_t)in->u[0]);
-
- oh = th >> (shift * 8);
- ol = tl >> (shift * 8);
- ol |= th << (64 - shift * 8);
- out->u[1] = (uint32_t)(ol >> 32);
- out->u[0] = (uint32_t)ol;
- out->u[3] = (uint32_t)(oh >> 32);
- out->u[2] = (uint32_t)oh;
-}
-#endif
-/**
- * This function simulates SIMD 128-bit left shift by the standard C.
- * The 128-bit integer given in in is shifted by (shift * 8) bits.
- * This function simulates the LITTLE ENDIAN SIMD.
- * @param out the output of this function
- * @param in the 128-bit data to be shifted
- * @param shift the shift value
- */
-#ifdef ONLY64
-inline static void lshift128(w128_t *out, w128_t const *in, int shift) {
- uint64_t th, tl, oh, ol;
-
- th = ((uint64_t)in->u[2] << 32) | ((uint64_t)in->u[3]);
- tl = ((uint64_t)in->u[0] << 32) | ((uint64_t)in->u[1]);
-
- oh = th << (shift * 8);
- ol = tl << (shift * 8);
- oh |= tl >> (64 - shift * 8);
- out->u[0] = (uint32_t)(ol >> 32);
- out->u[1] = (uint32_t)ol;
- out->u[2] = (uint32_t)(oh >> 32);
- out->u[3] = (uint32_t)oh;
-}
-#else
-inline static void lshift128(w128_t *out, w128_t const *in, int shift) {
- uint64_t th, tl, oh, ol;
-
- th = ((uint64_t)in->u[3] << 32) | ((uint64_t)in->u[2]);
- tl = ((uint64_t)in->u[1] << 32) | ((uint64_t)in->u[0]);
-
- oh = th << (shift * 8);
- ol = tl << (shift * 8);
- oh |= tl >> (64 - shift * 8);
- out->u[1] = (uint32_t)(ol >> 32);
- out->u[0] = (uint32_t)ol;
- out->u[3] = (uint32_t)(oh >> 32);
- out->u[2] = (uint32_t)oh;
-}
-#endif
-
-/**
- * This function represents the recursion formula.
- * @param r output
- * @param a a 128-bit part of the internal state array
- * @param b a 128-bit part of the internal state array
- * @param c a 128-bit part of the internal state array
- * @param d a 128-bit part of the internal state array
- */
-#if (!defined(HAVE_ALTIVEC)) && (!defined(HAVE_SSE2))
-#ifdef ONLY64
-inline static void do_recursion(w128_t *r, w128_t *a, w128_t *b, w128_t *c,
- w128_t *d) {
- w128_t x;
- w128_t y;
-
- lshift128(&x, a, SL2);
- rshift128(&y, c, SR2);
- r->u[0] = a->u[0] ^ x.u[0] ^ ((b->u[0] >> SR1) & MSK2) ^ y.u[0]
- ^ (d->u[0] << SL1);
- r->u[1] = a->u[1] ^ x.u[1] ^ ((b->u[1] >> SR1) & MSK1) ^ y.u[1]
- ^ (d->u[1] << SL1);
- r->u[2] = a->u[2] ^ x.u[2] ^ ((b->u[2] >> SR1) & MSK4) ^ y.u[2]
- ^ (d->u[2] << SL1);
- r->u[3] = a->u[3] ^ x.u[3] ^ ((b->u[3] >> SR1) & MSK3) ^ y.u[3]
- ^ (d->u[3] << SL1);
-}
-#else
-inline static void do_recursion(w128_t *r, w128_t *a, w128_t *b, w128_t *c,
- w128_t *d) {
- w128_t x;
- w128_t y;
-
- lshift128(&x, a, SL2);
- rshift128(&y, c, SR2);
- r->u[0] = a->u[0] ^ x.u[0] ^ ((b->u[0] >> SR1) & MSK1) ^ y.u[0]
- ^ (d->u[0] << SL1);
- r->u[1] = a->u[1] ^ x.u[1] ^ ((b->u[1] >> SR1) & MSK2) ^ y.u[1]
- ^ (d->u[1] << SL1);
- r->u[2] = a->u[2] ^ x.u[2] ^ ((b->u[2] >> SR1) & MSK3) ^ y.u[2]
- ^ (d->u[2] << SL1);
- r->u[3] = a->u[3] ^ x.u[3] ^ ((b->u[3] >> SR1) & MSK4) ^ y.u[3]
- ^ (d->u[3] << SL1);
-}
-#endif
-#endif
-
-#if (!defined(HAVE_ALTIVEC)) && (!defined(HAVE_SSE2))
-/**
- * This function fills the internal state array with pseudorandom
- * integers.
- */
-inline static void gen_rand_all(void) {
- int i;
- w128_t *r1, *r2;
-
- r1 = &sfmt[N - 2];
- r2 = &sfmt[N - 1];
- for (i = 0; i < N - POS1; i++) {
- do_recursion(&sfmt[i], &sfmt[i], &sfmt[i + POS1], r1, r2);
- r1 = r2;
- r2 = &sfmt[i];
- }
- for (; i < N; i++) {
- do_recursion(&sfmt[i], &sfmt[i], &sfmt[i + POS1 - N], r1, r2);
- r1 = r2;
- r2 = &sfmt[i];
- }
-}
-
-/**
- * This function fills the user-specified array with pseudorandom
- * integers.
- *
- * @param array an 128-bit array to be filled by pseudorandom numbers.
- * @param size number of 128-bit pseudorandom numbers to be generated.
- */
-inline static void gen_rand_array(w128_t *array, int size) {
- int i, j;
- w128_t *r1, *r2;
-
- r1 = &sfmt[N - 2];
- r2 = &sfmt[N - 1];
- for (i = 0; i < N - POS1; i++) {
- do_recursion(&array[i], &sfmt[i], &sfmt[i + POS1], r1, r2);
- r1 = r2;
- r2 = &array[i];
- }
- for (; i < N; i++) {
- do_recursion(&array[i], &sfmt[i], &array[i + POS1 - N], r1, r2);
- r1 = r2;
- r2 = &array[i];
- }
- for (; i < size - N; i++) {
- do_recursion(&array[i], &array[i - N], &array[i + POS1 - N], r1, r2);
- r1 = r2;
- r2 = &array[i];
- }
- for (j = 0; j < 2 * N - size; j++) {
- sfmt[j] = array[j + size - N];
- }
- for (; i < size; i++, j++) {
- do_recursion(&array[i], &array[i - N], &array[i + POS1 - N], r1, r2);
- r1 = r2;
- r2 = &array[i];
- sfmt[j] = array[i];
- }
-}
-#endif
-
-#if defined(BIG_ENDIAN64) && !defined(ONLY64) && !defined(HAVE_ALTIVEC)
-inline static void swap(w128_t *array, int size) {
- int i;
- uint32_t x, y;
-
- for (i = 0; i < size; i++) {
- x = array[i].u[0];
- y = array[i].u[2];
- array[i].u[0] = array[i].u[1];
- array[i].u[2] = array[i].u[3];
- array[i].u[1] = x;
- array[i].u[3] = y;
- }
-}
-#endif
-/**
- * This function represents a function used in the initialization
- * by init_by_array
- * @param x 32-bit integer
- * @return 32-bit integer
- */
-static uint32_t func1(uint32_t x) {
- return (x ^ (x >> 27)) * (uint32_t)1664525UL;
-}
-
-/**
- * This function represents a function used in the initialization
- * by init_by_array
- * @param x 32-bit integer
- * @return 32-bit integer
- */
-static uint32_t func2(uint32_t x) {
- return (x ^ (x >> 27)) * (uint32_t)1566083941UL;
-}
-
-/**
- * This function certificate the period of 2^{MEXP}
- */
-static void period_certification(void) {
- int inner = 0;
- int i, j;
- uint32_t work;
-
- for (i = 0; i < 4; i++)
- inner ^= psfmt32[idxof(i)] & parity[i];
- for (i = 16; i > 0; i >>= 1)
- inner ^= inner >> i;
- inner &= 1;
- /* check OK */
- if (inner == 1) {
- return;
- }
- /* check NG, and modification */
- for (i = 0; i < 4; i++) {
- work = 1;
- for (j = 0; j < 32; j++) {
- if ((work & parity[i]) != 0) {
- psfmt32[idxof(i)] ^= work;
- return;
- }
- work = work << 1;
- }
- }
-}
-
-/*----------------
- PUBLIC FUNCTIONS
- ----------------*/
-/**
- * This function returns the identification string.
- * The string shows the word size, the Mersenne exponent,
- * and all parameters of this generator.
- */
-const char *get_idstring(void) {
- return IDSTR;
-}
-
-/**
- * This function returns the minimum size of array used for \b
- * fill_array32() function.
- * @return minimum size of array used for fill_array32() function.
- */
-int get_min_array_size32(void) {
- return N32;
-}
-
-/**
- * This function returns the minimum size of array used for \b
- * fill_array64() function.
- * @return minimum size of array used for fill_array64() function.
- */
-int get_min_array_size64(void) {
- return N64;
-}
-
-#ifndef ONLY64
-/**
- * This function generates and returns 32-bit pseudorandom number.
- * init_gen_rand or init_by_array must be called before this function.
- * @return 32-bit pseudorandom number
- */
-uint32_t gen_rand32(void) {
- uint32_t r;
-
- assert(initialized);
- if (idx >= N32) {
- gen_rand_all();
- idx = 0;
- }
- r = psfmt32[idx++];
- return r;
-}
-#endif
-/**
- * This function generates and returns 64-bit pseudorandom number.
- * init_gen_rand or init_by_array must be called before this function.
- * The function gen_rand64 should not be called after gen_rand32,
- * unless an initialization is again executed.
- * @return 64-bit pseudorandom number
- */
-uint64_t gen_rand64(void) {
-#if defined(BIG_ENDIAN64) && !defined(ONLY64)
- uint32_t r1, r2;
-#else
- uint64_t r;
-#endif
-
- assert(initialized);
- assert(idx % 2 == 0);
-
- if (idx >= N32) {
- gen_rand_all();
- idx = 0;
- }
-#if defined(BIG_ENDIAN64) && !defined(ONLY64)
- r1 = psfmt32[idx];
- r2 = psfmt32[idx + 1];
- idx += 2;
- return ((uint64_t)r2 << 32) | r1;
-#else
- r = psfmt64[idx / 2];
- idx += 2;
- return r;
-#endif
-}
-
-#ifndef ONLY64
-/**
- * This function generates pseudorandom 32-bit integers in the
- * specified array[] by one call. The number of pseudorandom integers
- * is specified by the argument size, which must be at least 624 and a
- * multiple of four. The generation by this function is much faster
- * than the following gen_rand function.
- *
- * For initialization, init_gen_rand or init_by_array must be called
- * before the first call of this function. This function can not be
- * used after calling gen_rand function, without initialization.
- *
- * @param array an array where pseudorandom 32-bit integers are filled
- * by this function. The pointer to the array must be \b "aligned"
- * (namely, must be a multiple of 16) in the SIMD version, since it
- * refers to the address of a 128-bit integer. In the standard C
- * version, the pointer is arbitrary.
- *
- * @param size the number of 32-bit pseudorandom integers to be
- * generated. size must be a multiple of 4, and greater than or equal
- * to (MEXP / 128 + 1) * 4.
- *
- * @note \b memalign or \b posix_memalign is available to get aligned
- * memory. Mac OSX doesn't have these functions, but \b malloc of OSX
- * returns the pointer to the aligned memory block.
- */
-void fill_array32(uint32_t *array, int size) {
- assert(initialized);
- assert(idx == N32);
- assert(size % 4 == 0);
- assert(size >= N32);
-
- gen_rand_array((w128_t *)array, size / 4);
- idx = N32;
-}
-#endif
-
-/**
- * This function generates pseudorandom 64-bit integers in the
- * specified array[] by one call. The number of pseudorandom integers
- * is specified by the argument size, which must be at least 312 and a
- * multiple of two. The generation by this function is much faster
- * than the following gen_rand function.
- *
- * For initialization, init_gen_rand or init_by_array must be called
- * before the first call of this function. This function can not be
- * used after calling gen_rand function, without initialization.
- *
- * @param array an array where pseudorandom 64-bit integers are filled
- * by this function. The pointer to the array must be "aligned"
- * (namely, must be a multiple of 16) in the SIMD version, since it
- * refers to the address of a 128-bit integer. In the standard C
- * version, the pointer is arbitrary.
- *
- * @param size the number of 64-bit pseudorandom integers to be
- * generated. size must be a multiple of 2, and greater than or equal
- * to (MEXP / 128 + 1) * 2
- *
- * @note \b memalign or \b posix_memalign is available to get aligned
- * memory. Mac OSX doesn't have these functions, but \b malloc of OSX
- * returns the pointer to the aligned memory block.
- */
-void fill_array64(uint64_t *array, int size) {
- assert(initialized);
- assert(idx == N32);
- assert(size % 2 == 0);
- assert(size >= N64);
-
- gen_rand_array((w128_t *)array, size / 2);
- idx = N32;
-
-#if defined(BIG_ENDIAN64) && !defined(ONLY64)
- swap((w128_t *)array, size /2);
-#endif
-}
-
-/**
- * This function initializes the internal state array with a 32-bit
- * integer seed.
- *
- * @param seed a 32-bit integer used as the seed.
- */
-void init_gen_rand(uint32_t seed) {
- int i;
-
- psfmt32[idxof(0)] = seed;
- for (i = 1; i < N32; i++) {
- psfmt32[idxof(i)] = 1812433253UL * (psfmt32[idxof(i - 1)]
- ^ (psfmt32[idxof(i - 1)] >> 30))
- + i;
- }
- idx = N32;
- period_certification();
- initialized = 1;
-}
-
-/**
- * This function initializes the internal state array,
- * with an array of 32-bit integers used as the seeds
- * @param init_key the array of 32-bit integers, used as a seed.
- * @param key_length the length of init_key.
- */
-void init_by_array(uint32_t *init_key, int key_length) {
- int i, j, count;
- uint32_t r;
- int lag;
- int mid;
- int size = N * 4;
-
- if (size >= 623) {
- lag = 11;
- } else if (size >= 68) {
- lag = 7;
- } else if (size >= 39) {
- lag = 5;
- } else {
- lag = 3;
- }
- mid = (size - lag) / 2;
-
- memset(sfmt, 0x8b, sizeof(sfmt));
- if (key_length + 1 > N32) {
- count = key_length + 1;
- } else {
- count = N32;
- }
- r = func1(psfmt32[idxof(0)] ^ psfmt32[idxof(mid)]
- ^ psfmt32[idxof(N32 - 1)]);
- psfmt32[idxof(mid)] += r;
- r += key_length;
- psfmt32[idxof(mid + lag)] += r;
- psfmt32[idxof(0)] = r;
-
- count--;
- for (i = 1, j = 0; (j < count) && (j < key_length); j++) {
- r = func1(psfmt32[idxof(i)] ^ psfmt32[idxof((i + mid) % N32)]
- ^ psfmt32[idxof((i + N32 - 1) % N32)]);
- psfmt32[idxof((i + mid) % N32)] += r;
- r += init_key[j] + i;
- psfmt32[idxof((i + mid + lag) % N32)] += r;
- psfmt32[idxof(i)] = r;
- i = (i + 1) % N32;
- }
- for (; j < count; j++) {
- r = func1(psfmt32[idxof(i)] ^ psfmt32[idxof((i + mid) % N32)]
- ^ psfmt32[idxof((i + N32 - 1) % N32)]);
- psfmt32[idxof((i + mid) % N32)] += r;
- r += i;
- psfmt32[idxof((i + mid + lag) % N32)] += r;
- psfmt32[idxof(i)] = r;
- i = (i + 1) % N32;
- }
- for (j = 0; j < N32; j++) {
- r = func2(psfmt32[idxof(i)] + psfmt32[idxof((i + mid) % N32)]
- + psfmt32[idxof((i + N32 - 1) % N32)]);
- psfmt32[idxof((i + mid) % N32)] ^= r;
- r -= i;
- psfmt32[idxof((i + mid + lag) % N32)] ^= r;
- psfmt32[idxof(i)] = r;
- i = (i + 1) % N32;
- }
-
- idx = N32;
- period_certification();
- initialized = 1;
-}
diff --git a/externals/SFMT/SFMT.h b/externals/SFMT/SFMT.h
deleted file mode 100644
index 7c8b35e9e95..00000000000
--- a/externals/SFMT/SFMT.h
+++ /dev/null
@@ -1,157 +0,0 @@
-/**
- * @file SFMT.h
- *
- * @brief SIMD oriented Fast Mersenne Twister(SFMT) pseudorandom
- * number generator
- *
- * @author Mutsuo Saito (Hiroshima University)
- * @author Makoto Matsumoto (Hiroshima University)
- *
- * Copyright (C) 2006, 2007 Mutsuo Saito, Makoto Matsumoto and Hiroshima
- * University. All rights reserved.
- *
- * The new BSD License is applied to this software.
- * see LICENSE.txt
- *
- * @note We assume that your system has inttypes.h. If your system
- * doesn't have inttypes.h, you have to typedef uint32_t and uint64_t,
- * and you have to define PRIu64 and PRIx64 in this file as follows:
- * @verbatim
- typedef unsigned int uint32_t
- typedef unsigned long long uint64_t
- #define PRIu64 "llu"
- #define PRIx64 "llx"
-@endverbatim
- * uint32_t must be exactly 32-bit unsigned integer type (no more, no
- * less), and uint64_t must be exactly 64-bit unsigned integer type.
- * PRIu64 and PRIx64 are used for printf function to print 64-bit
- * unsigned int and 64-bit unsigned int in hexadecimal format.
- */
-
-#ifndef SFMT_H
-#define SFMT_H
-
-#include <stdio.h>
-
-#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L)
- #include <inttypes.h>
-#elif defined(_MSC_VER) || defined(__BORLANDC__)
- typedef unsigned int uint32_t;
- typedef unsigned __int64 uint64_t;
- #define inline __inline
-#else
- #include <inttypes.h>
- #if defined(__GNUC__)
- #define inline __inline__
- #endif
-#endif
-
-#ifndef PRIu64
- #if defined(_MSC_VER) || defined(__BORLANDC__)
- #define PRIu64 "I64u"
- #define PRIx64 "I64x"
- #else
- #define PRIu64 "llu"
- #define PRIx64 "llx"
- #endif
-#endif
-
-#if defined(__GNUC__)
-#define ALWAYSINLINE __attribute__((always_inline))
-#else
-#define ALWAYSINLINE
-#endif
-
-#if defined(_MSC_VER)
- #if _MSC_VER >= 1200
- #define PRE_ALWAYS __forceinline
- #else
- #define PRE_ALWAYS inline
- #endif
-#else
- #define PRE_ALWAYS inline
-#endif
-
-uint32_t gen_rand32(void);
-uint64_t gen_rand64(void);
-void fill_array32(uint32_t *array, int size);
-void fill_array64(uint64_t *array, int size);
-void init_gen_rand(uint32_t seed);
-void init_by_array(uint32_t *init_key, int key_length);
-const char *get_idstring(void);
-int get_min_array_size32(void);
-int get_min_array_size64(void);
-
-/* These real versions are due to Isaku Wada */
-/** generates a random number on [0,1]-real-interval */
-inline static double to_real1(uint32_t v)
-{
- return v * (1.0/4294967295.0);
- /* divided by 2^32-1 */
-}
-
-/** generates a random number on [0,1]-real-interval */
-inline static double genrand_real1(void)
-{
- return to_real1(gen_rand32());
-}
-
-/** generates a random number on [0,1)-real-interval */
-inline static double to_real2(uint32_t v)
-{
- return v * (1.0/4294967296.0);
- /* divided by 2^32 */
-}
-
-/** generates a random number on [0,1)-real-interval */
-inline static double genrand_real2(void)
-{
- return to_real2(gen_rand32());
-}
-
-/** generates a random number on (0,1)-real-interval */
-inline static double to_real3(uint32_t v)
-{
- return (((double)v) + 0.5)*(1.0/4294967296.0);
- /* divided by 2^32 */
-}
-
-/** generates a random number on (0,1)-real-interval */
-inline static double genrand_real3(void)
-{
- return to_real3(gen_rand32());
-}
-/** These real versions are due to Isaku Wada */
-
-/** generates a random number on [0,1) with 53-bit resolution*/
-inline static double to_res53(uint64_t v)
-{
- return v * (1.0/18446744073709551616.0L);
-}
-
-/** generates a random number on [0,1) with 53-bit resolution from two
- * 32 bit integers */
-inline static double to_res53_mix(uint32_t x, uint32_t y)
-{
- return to_res53(x | ((uint64_t)y << 32));
-}
-
-/** generates a random number on [0,1) with 53-bit resolution
- */
-inline static double genrand_res53(void)
-{
- return to_res53(gen_rand64());
-}
-
-/** generates a random number on [0,1) with 53-bit resolution
- using 32bit integer.
- */
-inline static double genrand_res53_mix(void)
-{
- uint32_t x, y;
-
- x = gen_rand32();
- y = gen_rand32();
- return to_res53_mix(x, y);
-}
-#endif