aboutsummaryrefslogtreecommitdiff
path: root/externals/g3dlite/Matrix4.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'externals/g3dlite/Matrix4.cpp')
-rw-r--r--externals/g3dlite/Matrix4.cpp523
1 files changed, 523 insertions, 0 deletions
diff --git a/externals/g3dlite/Matrix4.cpp b/externals/g3dlite/Matrix4.cpp
new file mode 100644
index 00000000000..cd38a1a3602
--- /dev/null
+++ b/externals/g3dlite/Matrix4.cpp
@@ -0,0 +1,523 @@
+/**
+ @file Matrix4.cpp
+
+
+ @maintainer Morgan McGuire, http://graphics.cs.williams.edu
+
+ @created 2003-10-02
+ @edited 2010-01-29
+ */
+
+#include "G3D/platform.h"
+#include "G3D/Matrix4.h"
+#include "G3D/Matrix3.h"
+#include "G3D/Vector4.h"
+#include "G3D/Vector3.h"
+#include "G3D/BinaryInput.h"
+#include "G3D/BinaryOutput.h"
+#include "G3D/CoordinateFrame.h"
+#include "G3D/Rect2D.h"
+#include "G3D/Any.h"
+#include "G3D/stringutils.h"
+
+namespace G3D {
+
+
+Matrix4::Matrix4(const Any& any) {
+ any.verifyName("Matrix4");
+ any.verifyType(Any::ARRAY);
+
+ const std::string& name = toLower(any.name());
+ if (name == "matrix4") {
+ any.verifySize(16);
+
+ for (int r = 0; r < 4; ++r) {
+ for (int c = 0; c < 4; ++c) {
+ elt[r][c] = any[r * 4 + c];
+ }
+ }
+ } else if (name == "matrix4::scale") {
+ if (any.size() == 1) {
+ *this = scale(any[0].number());
+ } else if (any.size() == 3) {
+ *this = scale(any[0], any[1], any[2]);
+ } else {
+ any.verify(false, "Matrix4::scale() takes either 1 or 3 arguments");
+ }
+ } else {
+ any.verify(false, "Expected Matrix4 constructor");
+ }
+}
+
+
+Matrix4::operator Any() const {
+ Any any(Any::ARRAY, "Matrix4");
+ any.resize(16);
+ for (int r = 0; r < 4; ++r) {
+ for (int c = 0; c < 4; ++c) {
+ any[r * 4 + c] = elt[r][c];
+ }
+ }
+
+ return any;
+}
+
+const Matrix4& Matrix4::identity() {
+ static Matrix4 m(
+ 1, 0, 0, 0,
+ 0, 1, 0, 0,
+ 0, 0, 1, 0,
+ 0, 0, 0, 1);
+ return m;
+}
+
+
+const Matrix4& Matrix4::zero() {
+ static Matrix4 m(
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0);
+ return m;
+}
+
+
+Matrix4::Matrix4(const class CoordinateFrame& cframe) {
+ for (int r = 0; r < 3; ++r) {
+ for (int c = 0; c < 3; ++c) {
+ elt[r][c] = cframe.rotation[r][c];
+ }
+ elt[r][3] = cframe.translation[r];
+ }
+ elt[3][0] = 0.0f;
+ elt[3][1] = 0.0f;
+ elt[3][2] = 0.0f;
+ elt[3][3] = 1.0f;
+}
+
+Matrix4::Matrix4(const Matrix3& upper3x3, const Vector3& lastCol) {
+ for (int r = 0; r < 3; ++r) {
+ for (int c = 0; c < 3; ++c) {
+ elt[r][c] = upper3x3[r][c];
+ }
+ elt[r][3] = lastCol[r];
+ }
+ elt[3][0] = 0.0f;
+ elt[3][1] = 0.0f;
+ elt[3][2] = 0.0f;
+ elt[3][3] = 1.0f;
+}
+
+
+Matrix3 Matrix4::upper3x3() const {
+ return Matrix3(elt[0][0], elt[0][1], elt[0][2],
+ elt[1][0], elt[1][1], elt[1][2],
+ elt[2][0], elt[2][1], elt[2][2]);
+}
+
+
+Matrix4 Matrix4::orthogonalProjection(
+ const class Rect2D& rect,
+ float nearval,
+ float farval,
+ float upDirection) {
+ return Matrix4::orthogonalProjection(rect.x0(), rect.x1(), rect.y1(), rect.y0(), nearval, farval, upDirection);
+}
+
+
+Matrix4 Matrix4::orthogonalProjection(
+ float left,
+ float right,
+ float bottom,
+ float top,
+ float nearval,
+ float farval,
+ float upDirection) {
+
+ // Adapted from Mesa. Note that Microsoft (http://msdn.microsoft.com/library/default.asp?url=/library/en-us/opengl/glfunc03_8qnj.asp)
+ // and Linux (http://www.xfree86.org/current/glOrtho.3.html) have different matrices shown in their documentation.
+
+ float x, y, z;
+ float tx, ty, tz;
+
+ x = 2.0f / (right-left);
+ y = 2.0f / (top-bottom);
+ z = -2.0f / (farval-nearval);
+ tx = -(right+left) / (right-left);
+ ty = -(top+bottom) / (top-bottom);
+ tz = -(farval+nearval) / (farval-nearval);
+
+ y *= upDirection;
+ ty *= upDirection;
+
+ return
+ Matrix4( x , 0.0f, 0.0f, tx,
+ 0.0f, y , 0.0f, ty,
+ 0.0f, 0.0f, z , tz,
+ 0.0f, 0.0f, 0.0f, 1.0f);
+}
+
+
+Matrix4 Matrix4::perspectiveProjection(
+ float left,
+ float right,
+ float bottom,
+ float top,
+ float nearval,
+ float farval,
+ float upDirection) {
+
+ float x, y, a, b, c, d;
+
+ x = (2.0f*nearval) / (right-left);
+ y = (2.0f*nearval) / (top-bottom);
+ a = (right+left) / (right-left);
+ b = (top+bottom) / (top-bottom);
+
+ if (farval >= finf()) {
+ // Infinite view frustum
+ c = -1.0f;
+ d = -2.0f * nearval;
+ } else {
+ c = -(farval+nearval) / (farval-nearval);
+ d = -(2.0f*farval*nearval) / (farval-nearval);
+ }
+
+ debugAssertM(abs(upDirection) == 1.0f, "upDirection must be -1 or +1");
+ y *= upDirection;
+ b *= upDirection;
+
+ return Matrix4(
+ x, 0, a, 0,
+ 0, y, b, 0,
+ 0, 0, c, d,
+ 0, 0, -1, 0);
+}
+
+
+void Matrix4::getPerspectiveProjectionParameters(
+ float& left,
+ float& right,
+ float& bottom,
+ float& top,
+ float& nearval,
+ float& farval,
+ float upDirection) const {
+
+ debugAssertM(abs(upDirection) == 1.0f, "upDirection must be -1 or +1");
+
+ float x = elt[0][0];
+ float y = elt[1][1] * upDirection;
+ float a = elt[0][2];
+ float b = elt[1][2] * upDirection;
+ float c = elt[2][2];
+ float d = elt[2][3];
+
+ // Verify that this really is a projection matrix
+ debugAssertM(elt[3][2] == -1, "Not a projection matrix");
+ debugAssertM(elt[0][1] == 0, "Not a projection matrix");
+ debugAssertM(elt[0][3] == 0, "Not a projection matrix");
+ debugAssertM(elt[1][3] == 0, "Not a projection matrix");
+ debugAssertM(elt[3][3] == 0, "Not a projection matrix");
+ debugAssertM(elt[1][0] == 0, "Not a projection matrix");
+ debugAssertM(elt[2][0] == 0, "Not a projection matrix");
+ debugAssertM(elt[2][1] == 0, "Not a projection matrix");
+ debugAssertM(elt[3][0] == 0, "Not a projection matrix");
+ debugAssertM(elt[3][1] == 0, "Not a projection matrix");
+
+ if (c == -1) {
+ farval = finf();
+ nearval = -d / 2.0f;
+ } else {
+ nearval = d * ((c - 1.0f) / (c + 1.0f) - 1.0f) / (-2.0f * (c - 1.0f) / (c + 1.0f));
+ farval = nearval * ((c - 1.0f) / (c + 1.0f));
+ }
+
+
+ left = (a - 1.0f) * nearval / x;
+ right = 2.0f * nearval / x + left;
+
+ bottom = (b - 1.0f) * nearval / y;
+ top = 2.0f * nearval / y + bottom;
+}
+
+
+Matrix4::Matrix4(
+ float r1c1, float r1c2, float r1c3, float r1c4,
+ float r2c1, float r2c2, float r2c3, float r2c4,
+ float r3c1, float r3c2, float r3c3, float r3c4,
+ float r4c1, float r4c2, float r4c3, float r4c4) {
+ elt[0][0] = r1c1; elt[0][1] = r1c2; elt[0][2] = r1c3; elt[0][3] = r1c4;
+ elt[1][0] = r2c1; elt[1][1] = r2c2; elt[1][2] = r2c3; elt[1][3] = r2c4;
+ elt[2][0] = r3c1; elt[2][1] = r3c2; elt[2][2] = r3c3; elt[2][3] = r3c4;
+ elt[3][0] = r4c1; elt[3][1] = r4c2; elt[3][2] = r4c3; elt[3][3] = r4c4;
+}
+
+/**
+ init should be <B>row major</B>.
+ */
+Matrix4::Matrix4(const float* init) {
+ for (int r = 0; r < 4; ++r) {
+ for (int c = 0; c < 4; ++c) {
+ elt[r][c] = init[r * 4 + c];
+ }
+ }
+}
+
+
+Matrix4::Matrix4(const double* init) {
+ for (int r = 0; r < 4; ++r) {
+ for (int c = 0; c < 4; ++c) {
+ elt[r][c] = (float)init[r * 4 + c];
+ }
+ }
+}
+
+
+Matrix4::Matrix4() {
+ for (int r = 0; r < 4; ++r) {
+ for (int c = 0; c < 4; ++c) {
+ elt[r][c] = 0;
+ }
+ }
+}
+
+
+void Matrix4::setRow(int r, const Vector4& v) {
+ for (int c = 0; c < 4; ++c) {
+ elt[r][c] = v[c];
+ }
+}
+
+
+void Matrix4::setColumn(int c, const Vector4& v) {
+ for (int r = 0; r < 4; ++r) {
+ elt[r][c] = v[r];
+ }
+}
+
+
+const Vector4& Matrix4::row(int r) const {
+ return reinterpret_cast<const Vector4*>(elt[r])[0];
+}
+
+
+Vector4 Matrix4::column(int c) const {
+ Vector4 v;
+ for (int r = 0; r < 4; ++r) {
+ v[r] = elt[r][c];
+ }
+ return v;
+}
+
+
+Matrix4 Matrix4::operator*(const Matrix4& other) const {
+ Matrix4 result;
+ for (int r = 0; r < 4; ++r) {
+ for (int c = 0; c < 4; ++c) {
+ for (int i = 0; i < 4; ++i) {
+ result.elt[r][c] += elt[r][i] * other.elt[i][c];
+ }
+ }
+ }
+
+ return result;
+}
+
+
+Matrix4 Matrix4::operator*(const float s) const {
+ Matrix4 result;
+ for (int r = 0; r < 4; ++r) {
+ for (int c = 0; c < 4; ++c) {
+ result.elt[r][c] = elt[r][c] * s;
+ }
+ }
+
+ return result;
+}
+
+
+Vector3 Matrix4::homoMul(const class Vector3& v, float w) const {
+ Vector4 r = (*this) * Vector4(v, w);
+ return r.xyz() * (1.0f / r.w);
+}
+
+
+Vector4 Matrix4::operator*(const Vector4& vector) const {
+ Vector4 result(0,0,0,0);
+ for (int r = 0; r < 4; ++r) {
+ for (int c = 0; c < 4; ++c) {
+ result[r] += elt[r][c] * vector[c];
+ }
+ }
+
+ return result;
+}
+
+
+Matrix4 Matrix4::transpose() const {
+ Matrix4 result;
+ for (int r = 0; r < 4; ++r) {
+ for (int c = 0; c < 4; ++c) {
+ result.elt[c][r] = elt[r][c];
+ }
+ }
+
+ return result;
+}
+
+
+bool Matrix4::operator!=(const Matrix4& other) const {
+ return ! (*this == other);
+}
+
+
+bool Matrix4::operator==(const Matrix4& other) const {
+
+ // If the bit patterns are identical, they must be
+ // the same matrix. If not, they *might* still have
+ // equal elements due to floating point weirdness.
+ if (memcmp(this, &other, sizeof(Matrix4) == 0)) {
+ return true;
+ }
+
+ for (int r = 0; r < 4; ++r) {
+ for (int c = 0; c < 4; ++c) {
+ if (elt[r][c] != other.elt[r][c]) {
+ return false;
+ }
+ }
+ }
+
+ return true;
+}
+
+
+float Matrix4::determinant() const {
+ // Determinant is the dot product of the first row and the first row
+ // of cofactors (i.e. the first col of the adjoint matrix)
+ return cofactor().row(0).dot(row(0));
+}
+
+
+Matrix4 Matrix4::adjoint() const {
+ return cofactor().transpose();
+}
+
+
+Matrix4 Matrix4::inverse() const {
+ // Inverse = adjoint / determinant
+
+ Matrix4 A = adjoint();
+
+ // Determinant is the dot product of the first row and the first row
+ // of cofactors (i.e. the first col of the adjoint matrix)
+ float det = A.column(0).dot(row(0));
+
+ return A * (1.0f / det);
+}
+
+
+Matrix4 Matrix4::cofactor() const {
+ Matrix4 out;
+
+ // We'll use i to incrementally compute -1 ^ (r+c)
+ int i = 1;
+
+ for (int r = 0; r < 4; ++r) {
+ for (int c = 0; c < 4; ++c) {
+ // Compute the determinant of the 3x3 submatrix
+ float det = subDeterminant(r, c);
+ out.elt[r][c] = i * det;
+ i = -i;
+ }
+ i = -i;
+ }
+
+ return out;
+}
+
+
+float Matrix4::subDeterminant(int excludeRow, int excludeCol) const {
+ // Compute non-excluded row and column indices
+ int row[3];
+ int col[3];
+
+ for (int i = 0; i < 3; ++i) {
+ row[i] = i;
+ col[i] = i;
+
+ if (i >= excludeRow) {
+ ++row[i];
+ }
+ if (i >= excludeCol) {
+ ++col[i];
+ }
+ }
+
+ // Compute the first row of cofactors
+ float cofactor00 =
+ elt[row[1]][col[1]] * elt[row[2]][col[2]] -
+ elt[row[1]][col[2]] * elt[row[2]][col[1]];
+
+ float cofactor10 =
+ elt[row[1]][col[2]] * elt[row[2]][col[0]] -
+ elt[row[1]][col[0]] * elt[row[2]][col[2]];
+
+ float cofactor20 =
+ elt[row[1]][col[0]] * elt[row[2]][col[1]] -
+ elt[row[1]][col[1]] * elt[row[2]][col[0]];
+
+ // Product of the first row and the cofactors along the first row
+ return
+ elt[row[0]][col[0]] * cofactor00 +
+ elt[row[0]][col[1]] * cofactor10 +
+ elt[row[0]][col[2]] * cofactor20;
+}
+
+
+CoordinateFrame Matrix4::approxCoordinateFrame() const {
+ CoordinateFrame cframe;
+
+ for (int r = 0; r < 3; ++r) {
+ for (int c = 0; c < 3; ++c) {
+ cframe.rotation[r][c] = elt[r][c];
+ }
+ cframe.translation[r] = elt[r][3];
+ }
+
+ // Ensure that the rotation matrix is orthonormal
+ cframe.rotation.orthonormalize();
+
+ return cframe;
+}
+
+
+void Matrix4::serialize(class BinaryOutput& b) const {
+ for (int r = 0; r < 4; ++r) {
+ for (int c = 0; c < 4; ++c) {
+ b.writeFloat32(elt[r][c]);
+ }
+ }
+}
+
+
+void Matrix4::deserialize(class BinaryInput& b) {
+ for (int r = 0; r < 4; ++r) {
+ for (int c = 0; c < 4; ++c) {
+ elt[r][c] = b.readFloat32();
+ }
+ }
+}
+
+std::string Matrix4::toString() const {
+ return G3D::format("[%g, %g, %g, %g; %g, %g, %g, %g; %g, %g, %g, %g; %g, %g, %g, %g]",
+ elt[0][0], elt[0][1], elt[0][2], elt[0][3],
+ elt[1][0], elt[1][1], elt[1][2], elt[1][3],
+ elt[2][0], elt[2][1], elt[2][2], elt[2][3],
+ elt[3][0], elt[3][1], elt[3][2], elt[3][3]);
+}
+
+} // namespace
+
+