/** @file System.cpp @maintainer Morgan McGuire, http://graphics.cs.williams.edu Note: every routine must call init() first. There are two kinds of detection used in this file. At compile time, the _MSC_VER #define is used to determine whether x86 assembly can be used at all. At runtime, processor detection is used to determine if we can safely call the routines that use that assembly. @created 2003-01-25 @edited 2010-01-03 */ #include "G3D/platform.h" #include "G3D/System.h" #include "G3D/debug.h" #include "G3D/fileutils.h" #include "G3D/TextOutput.h" #include "G3D/G3DGameUnits.h" #include "G3D/Crypto.h" #include "G3D/prompt.h" #include "G3D/stringutils.h" #include "G3D/Log.h" #include "G3D/Table.h" #include "G3D/GMutex.h" #include "G3D/units.h" #include #include #include // Uncomment the following line to turn off G3D::System memory // allocation and use the operating system's malloc. //#define NO_BUFFERPOOL #if defined(__i386__) || defined(__x86_64__) || defined(G3D_WIN32) # define G3D_NOT_OSX_PPC #endif #include #ifdef G3D_WIN32 # include # include # include "G3D/RegistryUtil.h" #elif defined(G3D_LINUX) # include # include # include # include # include # include # include # include # include # include #elif defined(G3D_OSX) #include #include #include #include #include #include #include #include #include #include #include #include #include #endif // SIMM include #ifdef __SSE__ #include #endif namespace G3D { /** Checks if the CPUID command is available on the processor (called from init) */ static bool checkForCPUID(); /** Called from init */ static void getG3DVersion(std::string& s); /** Called from init */ static G3DEndian checkEndian(); System& System::instance() { static System thesystem; return thesystem; } System::System() : m_initialized(false), m_cpuSpeed(0), m_hasCPUID(false), m_hasRDTSC(false), m_hasMMX(false), m_hasSSE(false), m_hasSSE2(false), m_hasSSE3(false), m_has3DNOW(false), m_has3DNOW2(false), m_hasAMDMMX(false), m_cpuVendor("Uninitialized"), m_numCores(1), m_machineEndian(G3D_LITTLE_ENDIAN), m_cpuArch("Uninitialized"), m_operatingSystem("Uninitialized"), m_version("Uninitialized"), m_outOfMemoryCallback(NULL), m_realWorldGetTickTime0(0), m_highestCPUIDFunction(0) { init(); } void System::init() { // NOTE: Cannot use most G3D data structures or utility functions // in here because they are not initialized. if (m_initialized) { return; } else { m_initialized = true; } getG3DVersion(m_version); m_machineEndian = checkEndian(); m_hasCPUID = checkForCPUID(); // Process the CPUID information if (m_hasCPUID) { // We read the standard CPUID level 0x00000000 which should // be available on every x86 processor. This fills out // a string with the processor vendor tag. unsigned int eaxreg = 0, ebxreg = 0, ecxreg = 0, edxreg = 0; cpuid(CPUID_VENDOR_ID, eaxreg, ebxreg, ecxreg, edxreg); { char c[100]; // Then we connect the single register values to the vendor string *((unsigned int*) c) = ebxreg; *((unsigned int*) (c + 4)) = edxreg; *((unsigned int*) (c + 8)) = ecxreg; c[12] = '\0'; m_cpuVendor = c; } switch (ebxreg) { case 0x756E6547: // GenuineIntel m_cpuArch = "Intel Processor"; break; case 0x68747541: // AuthenticAMD m_cpuArch = "AMD Processor"; break; case 0x69727943: // CyrixInstead m_cpuArch = "Cyrix Processor"; break; default: m_cpuArch = "Unknown Processor Vendor"; break; } unsigned int highestFunction = eaxreg; if (highestFunction >= CPUID_NUM_CORES) { cpuid(CPUID_NUM_CORES, eaxreg, ebxreg, ecxreg, edxreg); // Number of cores is in (eax>>26) + 1 m_numCores = (eaxreg >> 26) + 1; } cpuid(CPUID_GET_HIGHEST_FUNCTION, m_highestCPUIDFunction, ebxreg, ecxreg, edxreg); } // Get the operating system name (also happens to read some other information) # ifdef G3D_WIN32 // Note that this overrides some of the values computed above bool success = RegistryUtil::readInt32 ("HKEY_LOCAL_MACHINE\\HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0", "~MHz", m_cpuSpeed); SYSTEM_INFO systemInfo; GetSystemInfo(&systemInfo); const char* arch = NULL; switch (systemInfo.wProcessorArchitecture) { case PROCESSOR_ARCHITECTURE_INTEL: arch = "Intel"; break; case PROCESSOR_ARCHITECTURE_MIPS: arch = "MIPS"; break; case PROCESSOR_ARCHITECTURE_ALPHA: arch = "Alpha"; break; case PROCESSOR_ARCHITECTURE_PPC: arch = "Power PC"; break; default: arch = "Unknown"; } m_numCores = systemInfo.dwNumberOfProcessors; uint32 maxAddr = (uint32)systemInfo.lpMaximumApplicationAddress; { char c[1024]; sprintf(c, "%d x %d-bit %s processor", systemInfo.dwNumberOfProcessors, (int)(::log((double)maxAddr) / ::log(2.0) + 2.0), arch); m_cpuArch = c; } OSVERSIONINFO osVersionInfo; osVersionInfo.dwOSVersionInfoSize = sizeof(OSVERSIONINFO); success = GetVersionEx(&osVersionInfo) != 0; if (success) { char c[1000]; sprintf(c, "Windows %d.%d build %d Platform %d %s", osVersionInfo.dwMajorVersion, osVersionInfo.dwMinorVersion, osVersionInfo.dwBuildNumber, osVersionInfo.dwPlatformId, osVersionInfo.szCSDVersion); m_operatingSystem = c; } else { m_operatingSystem = "Windows"; } # elif defined(G3D_LINUX) || defined(G3D_FREEBSD) { // Find the operating system using the 'uname' command FILE* f = popen("uname -a", "r"); int len = 100; char* r = (char*)::malloc(len * sizeof(char)); fgets(r, len, f); // Remove trailing newline if (r[strlen(r) - 1] == '\n') { r[strlen(r) - 1] = '\0'; } fclose(f); m_operatingSystem = r; ::free(r); } # elif defined(G3D_OSX) // Operating System: SInt32 macVersion; Gestalt(gestaltSystemVersion, &macVersion); int major = (macVersion >> 8) & 0xFF; int minor = (macVersion >> 4) & 0xF; int revision = macVersion & 0xF; { char c[1000]; sprintf(c, "OS X %x.%x.%x", major, minor, revision); m_operatingSystem = c; } // Clock Cycle Timing Information: Gestalt('pclk', &m_OSXCPUSpeed); m_cpuSpeed = iRound((double)m_OSXCPUSpeed / (1024 * 1024)); m_secondsPerNS = 1.0 / 1.0e9; // System Architecture: const NXArchInfo* pInfo = NXGetLocalArchInfo(); if (pInfo) { m_cpuArch = pInfo->description; switch (pInfo->cputype) { case CPU_TYPE_POWERPC: switch(pInfo->cpusubtype){ case CPU_SUBTYPE_POWERPC_750: case CPU_SUBTYPE_POWERPC_7400: case CPU_SUBTYPE_POWERPC_7450: m_cpuVendor = "Motorola"; break; case CPU_SUBTYPE_POWERPC_970: m_cpuVendor = "IBM"; break; } break; case CPU_TYPE_I386: m_cpuVendor = "Intel"; break; } } # endif initTime(); getStandardProcessorExtensions(); } void getG3DVersion(std::string& s) { char cstr[100]; if ((G3D_VER % 100) != 0) { sprintf(cstr, "G3D %d.%02d beta %d", G3D_VER / 10000, (G3D_VER / 100) % 100, G3D_VER % 100); } else { sprintf(cstr, "G3D %d.%02d", G3D_VER / 10000, (G3D_VER / 100) % 100); } s = cstr; } #if 0 // TODO: delete struct Directory { std::string path; Array contents; }; static bool maybeAddDirectory(const std::string& newPath, Array& directoryArray, bool recurse = true) { if (fileExists(newPath)) { Directory& d = directoryArray.next(); d.path = newPath; getFiles(pathConcat(newPath, "*"), d.contents); Array dirs; getDirs(pathConcat(newPath, "*"), dirs); d.contents.append(dirs); if (recurse) { // Look for subdirectories static const std::string subdirs[] = {"font", "gui", "SuperShader", "cubemap", "icon", "material", "image", "md2", "md3", "ifs", "3ds", "sky", ""}; for (int j = 0; j < dirs.size(); ++j) { for (int i = 0; ! subdirs[i].empty(); ++i) { if (dirs[j] == subdirs[i]) { maybeAddDirectory(pathConcat(newPath, dirs[j]), directoryArray, false); } } } } return true; } else { return false; } } #endif std::string System::findDataFile (const std::string& full, bool errorIfNotFound) { // Places where specific files were most recently found. This is // used to cache seeking of common files. static Table lastFound; // First check if the file exists as requested. This will go // through the FileSystemCache, so most calls do not touch disk. if (fileExists(full)) { return full; } // Now check where we previously found this file. std::string* last = lastFound.getPointer(full); if (last != NULL) { if (fileExists(*last)) { // Even if cwd has changed the file is still present. // We won't notice if it has been deleted, however. return *last; } else { // Remove this from the cache it is invalid lastFound.remove(full); } } // Places to look static Array directoryArray; if (directoryArray.size() == 0) { // Initialize the directory array RealTime t0 = System::time(); Array baseDirArray; std::string initialAppDataDir(instance().m_appDataDir); baseDirArray.append(""); if (! initialAppDataDir.empty()) { baseDirArray.append(initialAppDataDir); } const char* g3dPath = getenv("G3DDATA"); if (g3dPath && (initialAppDataDir != g3dPath)) { baseDirArray.append(g3dPath); } static const std::string subdirs[] = {"font", "gui", "SuperShader", "cubemap", "icon", "material", "image", "md2", "md3", "ifs", "3ds", "sky", ""}; for (int j = 0; j < baseDirArray.size(); ++j) { std::string d = baseDirArray[j]; if (fileExists(d)) { directoryArray.append(d); for (int i = 0; ! subdirs[i].empty(); ++i) { const std::string& p = pathConcat(d, subdirs[i]); if (fileExists(p)) { directoryArray.append(p); } } } } logLazyPrintf("Initializing System::findDataFile took %fs\n", System::time() - t0); } for (int i = 0; i < directoryArray.size(); ++i) { const std::string& p = pathConcat(directoryArray[i], full); if (fileExists(p)) { lastFound.set(full, p); return p; } } if (errorIfNotFound) { // Generate an error message std::string locations; for (int i = 0; i < directoryArray.size(); ++i) { locations += pathConcat(directoryArray[i], full) + "\n"; } alwaysAssertM(false, "Could not find '" + full + "' in:\n" + locations); } // Not found return ""; } void System::setAppDataDir(const std::string& path) { instance().m_appDataDir = path; } std::string demoFindData(bool errorIfNotFound) { static const char* g3dPath = getenv("G3DDATA"); if (g3dPath) { return g3dPath; # ifdef G3D_WIN32 } else if (fileExists("../data")) { // G3D install on Windows return "../data"; } else if (fileExists("../data-files")) { // G3D source on Windows return "../data-files"; # else } else if (fileExists("../../../../data")) { // G3D install on Unix return "../../../../data"; } else if (fileExists("../../../../data-files")) { // G3D source on Unix return "../../../../data-files"; # endif } else { return ""; } } const std::string& System::build() { const static std::string b = # ifdef _DEBUG "Debug"; # else "Release"; # endif return b; } static G3DEndian checkEndian() { int32 a = 1; if (*(uint8*)&a == 1) { return G3D_LITTLE_ENDIAN; } else { return G3D_BIG_ENDIAN; } } static bool checkForCPUID() { // all known supported architectures have cpuid // add cases for incompatible architectures if they are added // e.g., if we ever support __powerpc__ being defined again return true; } void System::getStandardProcessorExtensions() { #if ! defined(G3D_OSX) || defined(G3D_OSX_INTEL) if (! m_hasCPUID) { return; } uint32 eaxreg = 0, ebxreg = 0, ecxreg = 0, features = 0; cpuid(CPUID_PROCESSOR_FEATURES, eaxreg, ebxreg, ecxreg, features); # define checkBit(var, bit) ((var & (1 << bit)) ? true : false) m_hasRDTSC = checkBit(features, 4); m_hasMMX = checkBit(features, 23); m_hasSSE = checkBit(features, 25); m_hasSSE2 = checkBit(features, 26); // Bit 28 is HTT; not checked by G3D m_hasSSE3 = checkBit(ecxreg, 0); if (m_highestCPUIDFunction >= CPUID_EXTENDED_FEATURES) { cpuid(CPUID_EXTENDED_FEATURES, eaxreg, ebxreg, ecxreg, features); m_hasAMDMMX = checkBit(features, 22); // Only on AMD m_has3DNOW = checkBit(features, 31); // Only on AMD m_has3DNOW2 = checkBit(features, 30); // Only on AMD } else { m_hasAMDMMX = false; m_has3DNOW = false; m_has3DNOW2 = false; } # undef checkBit #endif } #if defined(G3D_WIN32) && !defined(G3D_64BIT) #pragma message("Port System::memcpy SIMD to all platforms") /** Michael Herf's fast memcpy */ void memcpyMMX(void* dst, const void* src, int nbytes) { int remainingBytes = nbytes; if (nbytes > 64) { _asm { mov esi, src mov edi, dst mov ecx, nbytes shr ecx, 6 // 64 bytes per iteration loop1: movq mm1, 0[ESI] // Read in source data movq mm2, 8[ESI] movq mm3, 16[ESI] movq mm4, 24[ESI] movq mm5, 32[ESI] movq mm6, 40[ESI] movq mm7, 48[ESI] movq mm0, 56[ESI] movntq 0[EDI], mm1 // Non-temporal stores movntq 8[EDI], mm2 movntq 16[EDI], mm3 movntq 24[EDI], mm4 movntq 32[EDI], mm5 movntq 40[EDI], mm6 movntq 48[EDI], mm7 movntq 56[EDI], mm0 add esi, 64 add edi, 64 dec ecx jnz loop1 emms } remainingBytes -= ((nbytes >> 6) << 6); } if (remainingBytes > 0) { // Memcpy the rest memcpy((uint8*)dst + (nbytes - remainingBytes), (const uint8*)src + (nbytes - remainingBytes), remainingBytes); } } #endif void System::memcpy(void* dst, const void* src, size_t numBytes) { #if defined(G3D_WIN32) && !defined(G3D_64BIT) memcpyMMX(dst, src, numBytes); #else ::memcpy(dst, src, numBytes); #endif } /** Michael Herf's fastest memset. n32 must be filled with the same character repeated. */ #if defined(G3D_WIN32) && !defined(G3D_64BIT) #pragma message("Port System::memfill SIMD to all platforms") // On x86 processors, use MMX void memfill(void *dst, int n32, unsigned long i) { int originalSize = i; int bytesRemaining = i; if (i > 16) { bytesRemaining = i % 16; i -= bytesRemaining; __asm { movq mm0, n32 punpckldq mm0, mm0 mov edi, dst loopwrite: movntq 0[edi], mm0 movntq 8[edi], mm0 add edi, 16 sub i, 16 jg loopwrite emms } } if (bytesRemaining > 0) { ::memset((uint8*)dst + (originalSize - bytesRemaining), n32, bytesRemaining); } } #endif void System::memset(void* dst, uint8 value, size_t numBytes) { #if defined(G3D_WIN32) && !defined(G3D_64BIT) uint32 v = value; v = v + (v << 8) + (v << 16) + (v << 24); G3D::memfill(dst, v, numBytes); #else ::memset(dst, value, numBytes); #endif } /** Removes the 'd' that icompile / Morgan's VC convention appends. */ static std::string computeAppName(const std::string& start) { if (start.size() < 2) { return start; } if (start[start.size() - 1] == 'd') { // Maybe remove the 'd'; see if ../ or ../../ has the same name char tmp[1024]; getcwd(tmp, sizeof(tmp)); std::string drive, base, ext; Array path; parseFilename(tmp, drive, path, base, ext); std::string shortName = start.substr(0, start.size() - 1); if ((path.size() > 1) && (toLower(path.last()) == toLower(shortName))) { return shortName; } if ((path.size() > 2) && (toLower(path[path.size() - 2]) == toLower(shortName))) { return shortName; } } return start; } std::string& System::appName() { static std::string n = computeAppName(filenameBase(currentProgramFilename())); return n; } std::string System::currentProgramFilename() { char filename[2048]; # ifdef G3D_WIN32 { GetModuleFileNameA(NULL, filename, sizeof(filename)); } # elif defined(G3D_OSX) { // Run the 'ps' program to extract the program name // from the process ID. int pid; FILE* fd; char cmd[80]; pid = getpid(); sprintf(cmd, "ps -p %d -o comm=\"\"", pid); fd = popen(cmd, "r"); int s = fread(filename, 1, sizeof(filename), fd); // filename will contain a newline. Overwrite it: filename[s - 1] = '\0'; } # else { int ret = readlink("/proc/self/exe", filename, sizeof(filename)); // In case of an error, leave the handling up to the caller if (ret == -1) { return ""; } debugAssert((int)sizeof(filename) > ret); // Ensure proper NULL termination filename[ret] = 0; } #endif return filename; } void System::sleep(RealTime t) { // Overhead of calling this function, measured from a previous run. static const RealTime OVERHEAD = 0.00006f; RealTime now = time(); RealTime wakeupTime = now + t - OVERHEAD; RealTime remainingTime = wakeupTime - now; RealTime sleepTime = 0; // On Windows, a "time slice" is measured in quanta of 3-5 ms (http://support.microsoft.com/kb/259025) // Sleep(0) yields the remainder of the time slice, which could be a long time. // A 1 ms minimum time experimentally kept the "Empty GApp" at nearly no CPU load at 100 fps, // yet nailed the frame timing perfectly. static RealTime minRealSleepTime = 3 * units::milliseconds(); while (remainingTime > 0) { if (remainingTime > minRealSleepTime * 2.5) { // Safe to use Sleep with a time... sleep for half the remaining time sleepTime = max(remainingTime * 0.5, 0.0005); } else if (remainingTime > minRealSleepTime) { // Safe to use Sleep with a zero time; // causes the program to yield only // the current time slice, and then return. sleepTime = 0; } else { // Not safe to use Sleep; busy wait sleepTime = -1; } if (sleepTime >= 0) { #ifdef G3D_WIN32 // Translate to milliseconds Sleep((int)(sleepTime * 1e3)); #else // Translate to microseconds usleep((int)(sleepTime * 1e6)); #endif } now = time(); remainingTime = wakeupTime - now; } } void System::consoleClearScreen() { # ifdef G3D_WIN32 system("cls"); # else system("clear"); # endif } bool System::consoleKeyPressed() { #ifdef G3D_WIN32 return _kbhit() != 0; #else static const int STDIN = 0; static bool initialized = false; if (! initialized) { // Use termios to turn off line buffering termios term; tcgetattr(STDIN, &term); term.c_lflag &= ~ICANON; tcsetattr(STDIN, TCSANOW, &term); setbuf(stdin, NULL); initialized = true; } #ifdef G3D_LINUX int bytesWaiting; ioctl(STDIN, FIONREAD, &bytesWaiting); return bytesWaiting; #else timeval timeout; fd_set rdset; FD_ZERO(&rdset); FD_SET(STDIN, &rdset); timeout.tv_sec = 0; timeout.tv_usec = 0; return select(STDIN + 1, &rdset, NULL, NULL, &timeout); #endif #endif } int System::consoleReadKey() { # ifdef G3D_WIN32 return _getch(); # else char c; read(0, &c, 1); return c; # endif } void System::initTime() { #ifdef G3D_WIN32 if (QueryPerformanceFrequency(&m_counterFrequency)) { QueryPerformanceCounter(&m_start); } struct _timeb t; _ftime(&t); m_realWorldGetTickTime0 = (RealTime)t.time - t.timezone * G3D::MINUTE + (t.dstflag ? G3D::HOUR : 0); #else gettimeofday(&m_start, NULL); // "sse" = "seconds since epoch". The time // function returns the seconds since the epoch // GMT (perhaps more correctly called UTC). time_t gmt = ::time(NULL); // No call to free or delete is needed, but subsequent // calls to asctime, ctime, mktime, etc. might overwrite // local_time_vals. tm* localTimeVals = localtime(&gmt); time_t local = gmt; if (localTimeVals) { // tm_gmtoff is already corrected for daylight savings. local = local + localTimeVals->tm_gmtoff; } m_realWorldGetTickTime0 = local; #endif } RealTime System::time() { # ifdef G3D_WIN32 LARGE_INTEGER now; QueryPerformanceCounter(&now); return ((RealTime)(now.QuadPart - instance().m_start.QuadPart) / instance().m_counterFrequency.QuadPart) + instance().m_realWorldGetTickTime0; # else // Linux resolution defaults to 100Hz. // There is no need to do a separate RDTSC call as gettimeofday // actually uses RDTSC when on systems that support it, otherwise // it uses the system clock. struct timeval now; gettimeofday(&now, NULL); return (now.tv_sec - instance().m_start.tv_sec) + (now.tv_usec - instance().m_start.tv_usec) / 1e6 + instance().m_realWorldGetTickTime0; # endif } //////////////////////////////////////////////////////////////// #define REALPTR_TO_USERPTR(x) ((uint8*)(x) + sizeof (void *)) #define USERPTR_TO_REALPTR(x) ((uint8*)(x) - sizeof (void *)) #define REALBLOCK_SIZE(x) ((x) + sizeof (void *)) class BufferPool { public: /** Only store buffers up to these sizes (in bytes) in each pool-> Different pools have different management strategies. A large block is preallocated for tiny buffers; they are used with tremendous frequency. Other buffers are allocated as demanded. Tiny buffers are 128 bytes long because that seems to align well with cache sizes on many machines. */ enum {tinyBufferSize = 128, smallBufferSize = 1024, medBufferSize = 4096}; /** Most buffers we're allowed to store. 250000 * 128 = 32 MB (preallocated) 10000 * 1024 = 10 MB (allocated on demand) 1024 * 4096 = 4 MB (allocated on demand) */ enum {maxTinyBuffers = 250000, maxSmallBuffers = 10000, maxMedBuffers = 1024}; private: class MemBlock { public: void* ptr; size_t bytes; inline MemBlock() : ptr(NULL), bytes(0) {} inline MemBlock(void* p, size_t b) : ptr(p), bytes(b) {} }; MemBlock smallPool[maxSmallBuffers]; int smallPoolSize; MemBlock medPool[maxMedBuffers]; int medPoolSize; /** The tiny pool is a single block of storage into which all tiny objects are allocated. This provides better locality for small objects and avoids the search time, since all tiny blocks are exactly the same size. */ void* tinyPool[maxTinyBuffers]; int tinyPoolSize; /** Pointer to the data in the tiny pool */ void* tinyHeap; Spinlock m_lock; void lock() { m_lock.lock(); } void unlock() { m_lock.unlock(); } #if 0 //-----------------------------------------------old mutex # ifdef G3D_WIN32 CRITICAL_SECTION mutex; # else pthread_mutex_t mutex; # endif /** Provide synchronization between threads */ void lock() { # ifdef G3D_WIN32 EnterCriticalSection(&mutex); # else pthread_mutex_lock(&mutex); # endif } void unlock() { # ifdef G3D_WIN32 LeaveCriticalSection(&mutex); # else pthread_mutex_unlock(&mutex); # endif } #endif //-------------------------------------------old mutex /** Malloc out of the tiny heap. Returns NULL if allocation failed. */ inline void* tinyMalloc(size_t bytes) { // Note that we ignore the actual byte size // and create a constant size block. (void)bytes; assert(tinyBufferSize >= bytes); void* ptr = NULL; if (tinyPoolSize > 0) { --tinyPoolSize; // Return the old last pointer from the freelist ptr = tinyPool[tinyPoolSize]; # ifdef G3D_DEBUG if (tinyPoolSize > 0) { assert(tinyPool[tinyPoolSize - 1] != ptr); // "System::malloc heap corruption detected: " // "the last two pointers on the freelist are identical (during tinyMalloc)."); } # endif // NULL out the entry to help detect corruption tinyPool[tinyPoolSize] = NULL; } return ptr; } /** Returns true if this is a pointer into the tiny heap. */ bool inTinyHeap(void* ptr) { return (ptr >= tinyHeap) && (ptr < (uint8*)tinyHeap + maxTinyBuffers * tinyBufferSize); } void tinyFree(void* ptr) { assert(ptr); assert(tinyPoolSize < maxTinyBuffers); // "Tried to free a tiny pool buffer when the tiny pool freelist is full."); # ifdef G3D_DEBUG if (tinyPoolSize > 0) { void* prevOnHeap = tinyPool[tinyPoolSize - 1]; assert(prevOnHeap != ptr); // "System::malloc heap corruption detected: " // "the last two pointers on the freelist are identical (during tinyFree)."); } # endif assert(tinyPool[tinyPoolSize] == NULL); // Put the pointer back into the free list tinyPool[tinyPoolSize] = ptr; ++tinyPoolSize; } void flushPool(MemBlock* pool, int& poolSize) { for (int i = 0; i < poolSize; ++i) { ::free(pool[i].ptr); pool[i].ptr = NULL; pool[i].bytes = 0; } poolSize = 0; } /** Allocate out of a specific pool-> Return NULL if no suitable memory was found. */ void* malloc(MemBlock* pool, int& poolSize, size_t bytes) { // OPT: find the smallest block that satisfies the request. // See if there's something we can use in the buffer pool-> // Search backwards since usually we'll re-use the last one. for (int i = (int)poolSize - 1; i >= 0; --i) { if (pool[i].bytes >= bytes) { // We found a suitable entry in the pool-> // No need to offset the pointer; it is already offset void* ptr = pool[i].ptr; // Remove this element from the pool --poolSize; pool[i] = pool[poolSize]; return ptr; } } return NULL; } public: /** Count of memory allocations that have occurred. */ int totalMallocs; int mallocsFromTinyPool; int mallocsFromSmallPool; int mallocsFromMedPool; /** Amount of memory currently allocated (according to the application). This does not count the memory still remaining in the buffer pool, but does count extra memory required for rounding off to the size of a buffer. Primarily useful for detecting leaks.*/ // TODO: make me an atomic int! volatile int bytesAllocated; BufferPool() { totalMallocs = 0; mallocsFromTinyPool = 0; mallocsFromSmallPool = 0; mallocsFromMedPool = 0; bytesAllocated = true; tinyPoolSize = 0; tinyHeap = NULL; smallPoolSize = 0; medPoolSize = 0; // Initialize the tiny heap as a bunch of pointers into one // pre-allocated buffer. tinyHeap = ::malloc(maxTinyBuffers * tinyBufferSize); for (int i = 0; i < maxTinyBuffers; ++i) { tinyPool[i] = (uint8*)tinyHeap + (tinyBufferSize * i); } tinyPoolSize = maxTinyBuffers; #if 0 ///---------------------------------- old mutex # ifdef G3D_WIN32 InitializeCriticalSection(&mutex); # else pthread_mutex_init(&mutex, NULL); # endif #endif ///---------------------------------- old mutex } ~BufferPool() { ::free(tinyHeap); #if 0 //-------------------------------- old mutex # ifdef G3D_WIN32 DeleteCriticalSection(&mutex); # else // No destruction on pthreads # endif #endif //--------------------------------old mutex } void* realloc(void* ptr, size_t bytes) { if (ptr == NULL) { return malloc(bytes); } if (inTinyHeap(ptr)) { if (bytes <= tinyBufferSize) { // The old pointer actually had enough space. return ptr; } else { // Free the old pointer and malloc void* newPtr = malloc(bytes); System::memcpy(newPtr, ptr, tinyBufferSize); tinyFree(ptr); return newPtr; } } else { // In one of our heaps. // See how big the block really was size_t realSize = *(uint32*)USERPTR_TO_REALPTR(ptr); if (bytes <= realSize) { // The old block was big enough. return ptr; } // Need to reallocate void* newPtr = malloc(bytes); System::memcpy(newPtr, ptr, realSize); free(ptr); return newPtr; } } void* malloc(size_t bytes) { lock(); ++totalMallocs; if (bytes <= tinyBufferSize) { void* ptr = tinyMalloc(bytes); if (ptr) { ++mallocsFromTinyPool; unlock(); return ptr; } } // Failure to allocate a tiny buffer is allowed to flow // through to a small buffer if (bytes <= smallBufferSize) { void* ptr = malloc(smallPool, smallPoolSize, bytes); if (ptr) { ++mallocsFromSmallPool; unlock(); return ptr; } } else if (bytes <= medBufferSize) { // Note that a small allocation failure does *not* fall // through into a medium allocation because that would // waste the medium buffer's resources. void* ptr = malloc(medPool, medPoolSize, bytes); if (ptr) { ++mallocsFromMedPool; unlock(); debugAssertM(ptr != NULL, "BufferPool::malloc returned NULL"); return ptr; } } bytesAllocated += REALBLOCK_SIZE(bytes); unlock(); // Heap allocate // Allocate 4 extra bytes for our size header (unfortunate, // since malloc already added its own header). void* ptr = ::malloc(REALBLOCK_SIZE(bytes)); if (ptr == NULL) { // Flush memory pools to try and recover space flushPool(smallPool, smallPoolSize); flushPool(medPool, medPoolSize); ptr = ::malloc(REALBLOCK_SIZE(bytes)); } if (ptr == NULL) { if ((System::outOfMemoryCallback() != NULL) && (System::outOfMemoryCallback()(REALBLOCK_SIZE(bytes), true) == true)) { // Re-attempt the malloc ptr = ::malloc(REALBLOCK_SIZE(bytes)); } } if (ptr == NULL) { if (System::outOfMemoryCallback() != NULL) { // Notify the application System::outOfMemoryCallback()(REALBLOCK_SIZE(bytes), false); } # ifdef G3D_DEBUG debugPrintf("::malloc(%d) returned NULL\n", (int)REALBLOCK_SIZE(bytes)); # endif debugAssertM(ptr != NULL, "::malloc returned NULL. Either the " "operating system is out of memory or the " "heap is corrupt."); return NULL; } *(uint32*)ptr = bytes; return REALPTR_TO_USERPTR(ptr); } void free(void* ptr) { if (ptr == NULL) { // Free does nothing on null pointers return; } assert(isValidPointer(ptr)); if (inTinyHeap(ptr)) { lock(); tinyFree(ptr); unlock(); return; } uint32 bytes = *(uint32*)USERPTR_TO_REALPTR(ptr); lock(); if (bytes <= smallBufferSize) { if (smallPoolSize < maxSmallBuffers) { smallPool[smallPoolSize] = MemBlock(ptr, bytes); ++smallPoolSize; unlock(); return; } } else if (bytes <= medBufferSize) { if (medPoolSize < maxMedBuffers) { medPool[medPoolSize] = MemBlock(ptr, bytes); ++medPoolSize; unlock(); return; } } bytesAllocated -= REALBLOCK_SIZE(bytes); unlock(); // Free; the buffer pools are full or this is too big to store. ::free(USERPTR_TO_REALPTR(ptr)); } std::string performance() const { if (totalMallocs > 0) { int pooled = mallocsFromTinyPool + mallocsFromSmallPool + mallocsFromMedPool; int total = totalMallocs; return format("malloc performance: %5.1f%% <= %db, %5.1f%% <= %db, " "%5.1f%% <= %db, %5.1f%% > %db", 100.0 * mallocsFromTinyPool / total, BufferPool::tinyBufferSize, 100.0 * mallocsFromSmallPool / total, BufferPool::smallBufferSize, 100.0 * mallocsFromMedPool / total, BufferPool::medBufferSize, 100.0 * (1.0 - (double)pooled / total), BufferPool::medBufferSize); } else { return "No System::malloc calls made yet."; } } std::string status() const { return format("preallocated shared buffers: %5d/%d x %db", maxTinyBuffers - tinyPoolSize, maxTinyBuffers, tinyBufferSize); } }; // Dynamically allocated because we need to ensure that // the buffer pool is still around when the last global variable // is deallocated. static BufferPool* bufferpool = NULL; std::string System::mallocPerformance() { #ifndef NO_BUFFERPOOL return bufferpool->performance(); #else return "NO_BUFFERPOOL"; #endif } std::string System::mallocStatus() { #ifndef NO_BUFFERPOOL return bufferpool->status(); #else return "NO_BUFFERPOOL"; #endif } void System::resetMallocPerformanceCounters() { #ifndef NO_BUFFERPOOL bufferpool->totalMallocs = 0; bufferpool->mallocsFromMedPool = 0; bufferpool->mallocsFromSmallPool = 0; bufferpool->mallocsFromTinyPool = 0; #endif } #ifndef NO_BUFFERPOOL inline void initMem() { // Putting the test here ensures that the system is always // initialized, even when globals are being allocated. static bool initialized = false; if (! initialized) { bufferpool = new BufferPool(); initialized = true; } } #endif void* System::malloc(size_t bytes) { #ifndef NO_BUFFERPOOL initMem(); return bufferpool->malloc(bytes); #else return ::malloc(bytes); #endif } void* System::calloc(size_t n, size_t x) { #ifndef NO_BUFFERPOOL void* b = System::malloc(n * x); debugAssertM(b != NULL, "System::malloc returned NULL"); debugAssertM(isValidHeapPointer(b), "System::malloc returned an invalid pointer"); System::memset(b, 0, n * x); return b; #else return ::calloc(n, x); #endif } void* System::realloc(void* block, size_t bytes) { #ifndef NO_BUFFERPOOL initMem(); return bufferpool->realloc(block, bytes); #else return ::realloc(block, bytes); #endif } void System::free(void* p) { #ifndef NO_BUFFERPOOL bufferpool->free(p); #else return ::free(p); #endif } void* System::alignedMalloc(size_t bytes, size_t alignment) { alwaysAssertM(isPow2(alignment), "alignment must be a power of 2"); // We must align to at least a word boundary. alignment = iMax(alignment, sizeof(void *)); // Pad the allocation size with the alignment size and the // size of the redirect pointer. size_t totalBytes = bytes + alignment + sizeof(void*); size_t truePtr = (size_t)System::malloc(totalBytes); if (truePtr == 0) { // malloc returned NULL return NULL; } debugAssert(isValidHeapPointer((void*)truePtr)); #ifdef G3D_WIN32 // The blocks we return will not be valid Win32 debug heap // pointers because they are offset // debugAssert(_CrtIsValidPointer((void*)truePtr, totalBytes, TRUE) ); #endif // The return pointer will be the next aligned location (we must at least // leave space for the redirect pointer, however). size_t alignedPtr = truePtr + sizeof(void*); // 2^n - 1 has the form 1111... in binary. uint32 bitMask = (alignment - 1); // Advance forward until we reach an aligned location. while ((alignedPtr & bitMask) != 0) { alignedPtr += sizeof(void*); } debugAssert(alignedPtr - truePtr + bytes <= totalBytes); // Immediately before the aligned location, write the true array location // so that we can free it correctly. size_t* redirectPtr = (size_t *)(alignedPtr - sizeof(void *)); redirectPtr[0] = truePtr; debugAssert(isValidHeapPointer((void*)truePtr)); #ifdef G3D_WIN32 debugAssert( _CrtIsValidPointer((void*)alignedPtr, bytes, TRUE) ); #endif return (void *)alignedPtr; } void System::alignedFree(void* _ptr) { if (_ptr == NULL) { return; } size_t alignedPtr = (size_t)_ptr; // Back up one word from the pointer the user passed in. // We now have a pointer to a pointer to the true start // of the memory block. size_t* redirectPtr = (size_t*)(alignedPtr - sizeof(void *)); // Dereference that pointer so that ptr = true start void* truePtr = (void*)redirectPtr[0]; debugAssert(isValidHeapPointer((void*)truePtr)); System::free(truePtr); } void System::setEnv(const std::string& name, const std::string& value) { std::string cmd = name + "=" + value; # ifdef G3D_WIN32 _putenv(cmd.c_str()); # else // Many linux implementations of putenv expect char* putenv(const_cast(cmd.c_str())); # endif } const char* System::getEnv(const std::string& name) { return getenv(name.c_str()); } static void var(TextOutput& t, const std::string& name, const std::string& val) { t.writeSymbols(name,"="); t.writeString(val); t.writeNewline(); } static void var(TextOutput& t, const std::string& name, const bool val) { t.writeSymbols(name, "=", val ? "Yes" : "No"); t.writeNewline(); } static void var(TextOutput& t, const std::string& name, const int val) { t.writeSymbols(name,"="); t.writeNumber(val); t.writeNewline(); } void System::describeSystem( std::string& s) { TextOutput t; describeSystem(t); t.commitString(s); } void System::describeSystem( TextOutput& t) { t.writeSymbols("App", "{"); t.writeNewline(); t.pushIndent(); { var(t, "Name", System::currentProgramFilename()); char cwd[1024]; getcwd(cwd, 1024); var(t, "cwd", std::string(cwd)); } t.popIndent(); t.writeSymbols("}"); t.writeNewline(); t.writeNewline(); t.writeSymbols("OS", "{"); t.writeNewline(); t.pushIndent(); { var(t, "Name", System::operatingSystem()); } t.popIndent(); t.writeSymbols("}"); t.writeNewline(); t.writeNewline(); t.writeSymbols("CPU", "{"); t.writeNewline(); t.pushIndent(); { var(t, "Vendor", System::cpuVendor()); var(t, "Architecture", System::cpuArchitecture()); var(t, "hasCPUID", System::hasCPUID()); var(t, "hasMMX", System::hasMMX()); var(t, "hasSSE", System::hasSSE()); var(t, "hasSSE2", System::hasSSE2()); var(t, "hasSSE3", System::hasSSE3()); var(t, "has3DNow", System::has3DNow()); var(t, "hasRDTSC", System::hasRDTSC()); var(t, "numCores", System::numCores()); } t.popIndent(); t.writeSymbols("}"); t.writeNewline(); t.writeNewline(); t.writeSymbols("G3D", "{"); t.writeNewline(); t.pushIndent(); { var(t, "Link version", G3D_VER); var(t, "Compile version", System::version()); } t.popIndent(); t.writeSymbols("}"); t.writeNewline(); t.writeNewline(); } void System::setClipboardText(const std::string& s) { # ifdef G3D_WIN32 if (OpenClipboard(NULL)) { HGLOBAL hMem = GlobalAlloc(GHND | GMEM_DDESHARE, s.size() + 1); if (hMem) { char *pMem = (char*)GlobalLock(hMem); strcpy(pMem, s.c_str()); GlobalUnlock(hMem); EmptyClipboard(); SetClipboardData(CF_TEXT, hMem); } CloseClipboard(); GlobalFree(hMem); } # endif } std::string System::getClipboardText() { std::string s; # ifdef G3D_WIN32 if (OpenClipboard(NULL)) { HANDLE h = GetClipboardData(CF_TEXT); if (h) { char* temp = (char*)GlobalLock(h); if (temp) { s = temp; } temp = NULL; GlobalUnlock(h); } CloseClipboard(); } # endif return s; } std::string System::currentDateString() { time_t t1; ::time(&t1); tm* t = localtime(&t1); return format("%d-%02d-%02d", t->tm_year + 1900, t->tm_mon + 1, t->tm_mday); } #ifdef _MSC_VER // VC on Intel void System::cpuid(CPUIDFunction func, uint32& areg, uint32& breg, uint32& creg, uint32& dreg) { #if !defined(G3D_64BIT) // Can't copy from assembler direct to a function argument (which is on the stack) in VC. uint32 a,b,c,d; // Intel assembler syntax __asm { mov eax, func // eax <- func mov ecx, 0 cpuid mov a, eax mov b, ebx mov c, ecx mov d, edx } areg = a; breg = b; creg = c; dreg = d; #else int CPUInfo[4]; __cpuid(CPUInfo, func); memcpy(&areg, &CPUInfo[0], 4); memcpy(&breg, &CPUInfo[1], 4); memcpy(&creg, &CPUInfo[2], 4); memcpy(&dreg, &CPUInfo[3], 4); #endif } #elif defined(G3D_OSX) && ! defined(G3D_OSX_INTEL) // non-intel OS X; no CPUID void System::cpuid(CPUIDFunction func, uint32& eax, uint32& ebx, uint32& ecx, uint32& edx) { eax = 0; ebx = 0; ecx = 0; edx = 0; } #else // See http://sam.zoy.org/blog/2007-04-13-shlib-with-non-pic-code-have-inline-assembly-and-pic-mix-well // for a discussion of why the second version saves ebx; it allows 32-bit code to compile with the -fPIC option. // On 64-bit x86, PIC code has a dedicated rip register for PIC so there is no ebx conflict. void System::cpuid(CPUIDFunction func, uint32& eax, uint32& ebx, uint32& ecx, uint32& edx) { #if ! defined(__PIC__) || defined(__x86_64__) // AT&T assembler syntax asm volatile( "movl $0, %%ecx \n\n" /* Wipe ecx */ "cpuid \n\t" : "=a"(eax), "=b"(ebx), "=c"(ecx), "=d"(edx) : "a"(func)); #else // AT&T assembler syntax asm volatile( "pushl %%ebx \n\t" /* save ebx */ "movl $0, %%ecx \n\n" /* Wipe ecx */ "cpuid \n\t" "movl %%ebx, %1 \n\t" /* save what cpuid just put in %ebx */ "popl %%ebx \n\t" /* restore the old ebx */ : "=a"(eax), "=r"(ebx), "=c"(ecx), "=d"(edx) : "a"(func)); #endif } #endif } // namespace