/** @file CoordinateFrame.cpp Coordinate frame class @maintainer Morgan McGuire, http://graphics.cs.williams.edu @created 2001-06-02 @edited 2010-03-13 Copyright 2000-2010, Morgan McGuire. All rights reserved. */ #include "G3D/platform.h" #include "G3D/CoordinateFrame.h" #include "G3D/Quat.h" #include "G3D/Matrix4.h" #include "G3D/Box.h" #include "G3D/AABox.h" #include "G3D/Sphere.h" #include "G3D/Triangle.h" #include "G3D/Ray.h" #include "G3D/Capsule.h" #include "G3D/Cylinder.h" #include "G3D/UprightFrame.h" #include "G3D/Any.h" #include "G3D/stringutils.h" #include "G3D/PhysicsFrame.h" #include "G3D/UprightFrame.h" namespace G3D { std::string CoordinateFrame::toXYZYPRDegreesString() const { UprightFrame uframe(*this); return format("CFrame::fromXYZYPRDegrees(% 5.1ff, % 5.1ff, % 5.1ff, % 5.1ff, % 5.1ff, % 5.1ff)", uframe.translation.x, uframe.translation.y, uframe.translation.z, toDegrees(uframe.yaw), toDegrees(uframe.pitch), 0.0f); } CoordinateFrame::CoordinateFrame(const Any& any) { *this = CFrame(); const std::string& n = toUpper(any.name()); if (beginsWith(n, "VECTOR3")) { translation = any; } else if (beginsWith(n, "MATRIX3")) { rotation = any; } else if ((n == "CFRAME") || (n == "COORDINATEFRAME")) { any.verifyType(Any::TABLE, Any::ARRAY); if (any.type() == Any::ARRAY) { any.verifySize(2); rotation = any[0]; translation = any[1]; } else { for (Any::AnyTable::Iterator it = any.table().begin(); it.hasMore(); ++it) { const std::string& n = toLower(it->key); if (n == "translation") { translation = Vector3(it->value); } else if (n == "rotation") { rotation = Matrix3(it->value); } else { any.verify(false, "Illegal table key: " + it->key); } } } } else if (beginsWith(n, "PHYSICSFRAME") || beginsWith(n, "PFRAME")) { *this = PhysicsFrame(any); } else { any.verifyName("CFrame::fromXYZYPRDegrees", "CoordinateFrame::fromXYZYPRDegrees"); any.verifyType(Any::ARRAY); any.verifySize(3, 6); int s = any.size(); *this = fromXYZYPRDegrees(any[0], any[1], any[2], (s > 3) ? any[3].number() : 0.0f, (s > 4) ? any[4].number() : 0.0f, (s > 5) ? any[5].number() : 0.0f); } } CoordinateFrame::operator Any() const { float x, y, z, yaw, pitch, roll; getXYZYPRDegrees(x, y, z, yaw, pitch, roll); Any a(Any::ARRAY, "CFrame::fromXYZYPRDegrees"); a.append(x, y, z, yaw); if ( ! G3D::fuzzyEq(yaw, 0.0f) || ! G3D::fuzzyEq(pitch, 0.0f) || ! G3D::fuzzyEq(roll, 0.0f)) { a.append(yaw); if (! G3D::fuzzyEq(pitch, 0.0f) || ! G3D::fuzzyEq(roll, 0.0f)) { a.append(pitch); if (! G3D::fuzzyEq(roll, 0.0f)) { a.append(roll); } } } return a; } CoordinateFrame::CoordinateFrame(const class UprightFrame& f) { *this = f.toCoordinateFrame(); } CoordinateFrame::CoordinateFrame() : rotation(Matrix3::identity()), translation(Vector3::zero()) { } CoordinateFrame CoordinateFrame::fromXYZYPRRadians(float x, float y, float z, float yaw, float pitch, float roll) { Matrix3 rotation = Matrix3::fromAxisAngle(Vector3::unitY(), yaw); rotation = Matrix3::fromAxisAngle(rotation.column(0), pitch) * rotation; rotation = Matrix3::fromAxisAngle(rotation.column(2), roll) * rotation; const Vector3 translation(x, y, z); return CoordinateFrame(rotation, translation); } void CoordinateFrame::getXYZYPRRadians(float& x, float& y, float& z, float& yaw, float& pitch, float& roll) const { x = translation.x; y = translation.y; z = translation.z; const Vector3& look = lookVector(); if (abs(look.y) > 0.99f) { // Looking nearly straight up or down yaw = G3D::pi() + atan2(look.x, look.z); pitch = asin(look.y); roll = 0.0f; } else { // Yaw cannot be affected by others, so pull it first yaw = G3D::pi() + atan2(look.x, look.z); // Pitch is the elevation of the yaw vector pitch = asin(look.y); Vector3 actualRight = rightVector(); Vector3 expectedRight = look.cross(Vector3::unitY()); roll = 0;//acos(actualRight.dot(expectedRight)); TODO } } void CoordinateFrame::getXYZYPRDegrees(float& x, float& y, float& z, float& yaw, float& pitch, float& roll) const { getXYZYPRRadians(x, y, z, yaw, pitch, roll); yaw = toDegrees(yaw); pitch = toDegrees(pitch); roll = toDegrees(roll); } CoordinateFrame CoordinateFrame::fromXYZYPRDegrees(float x, float y, float z, float yaw, float pitch, float roll) { return fromXYZYPRRadians(x, y, z, toRadians(yaw), toRadians(pitch), toRadians(roll)); } Ray CoordinateFrame::lookRay() const { return Ray::fromOriginAndDirection(translation, lookVector()); } bool CoordinateFrame::fuzzyEq(const CoordinateFrame& other) const { for (int c = 0; c < 3; ++c) { for (int r = 0; r < 3; ++r) { if (! G3D::fuzzyEq(other.rotation[r][c], rotation[r][c])) { return false; } } if (! G3D::fuzzyEq(translation[c], other.translation[c])) { return false; } } return true; } bool CoordinateFrame::fuzzyIsIdentity() const { const Matrix3& I = Matrix3::identity(); for (int c = 0; c < 3; ++c) { for (int r = 0; r < 3; ++r) { if (fuzzyNe(I[r][c], rotation[r][c])) { return false; } } if (fuzzyNe(translation[c], 0)) { return false; } } return true; } bool CoordinateFrame::isIdentity() const { return (translation == Vector3::zero()) && (rotation == Matrix3::identity()); } Matrix4 CoordinateFrame::toMatrix4() const { return Matrix4(*this); } std::string CoordinateFrame::toXML() const { return G3D::format( "\n %lf,%lf,%lf,%lf,\n %lf,%lf,%lf,%lf,\n %lf,%lf,%lf,%lf,\n %lf,%lf,%lf,%lf\n\n", rotation[0][0], rotation[0][1], rotation[0][2], translation.x, rotation[1][0], rotation[1][1], rotation[1][2], translation.y, rotation[2][0], rotation[2][1], rotation[2][2], translation.z, 0.0, 0.0, 0.0, 1.0); } Plane CoordinateFrame::toObjectSpace(const Plane& p) const { Vector3 N, P; double d; p.getEquation(N, d); P = N * (float)d; P = pointToObjectSpace(P); N = normalToObjectSpace(N); return Plane(N, P); } Plane CoordinateFrame::toWorldSpace(const Plane& p) const { Vector3 N, P; double d; p.getEquation(N, d); P = N * (float)d; P = pointToWorldSpace(P); N = normalToWorldSpace(N); return Plane(N, P); } Triangle CoordinateFrame::toObjectSpace(const Triangle& t) const { return Triangle(pointToObjectSpace(t.vertex(0)), pointToObjectSpace(t.vertex(1)), pointToObjectSpace(t.vertex(2))); } Triangle CoordinateFrame::toWorldSpace(const Triangle& t) const { return Triangle(pointToWorldSpace(t.vertex(0)), pointToWorldSpace(t.vertex(1)), pointToWorldSpace(t.vertex(2))); } Cylinder CoordinateFrame::toWorldSpace(const Cylinder& c) const { return Cylinder( pointToWorldSpace(c.point(0)), pointToWorldSpace(c.point(1)), c.radius()); } Capsule CoordinateFrame::toWorldSpace(const Capsule& c) const { return Capsule( pointToWorldSpace(c.point(0)), pointToWorldSpace(c.point(1)), c.radius()); } Box CoordinateFrame::toWorldSpace(const AABox& b) const { Box b2(b); return toWorldSpace(b2); } Box CoordinateFrame::toWorldSpace(const Box& b) const { Box out(b); for (int i = 0; i < 8; ++i) { out._corner[i] = pointToWorldSpace(b._corner[i]); debugAssert(! isNaN(out._corner[i].x)); } for (int i = 0; i < 3; ++i) { out._axis[i] = vectorToWorldSpace(b._axis[i]); } out._center = pointToWorldSpace(b._center); return out; } Box CoordinateFrame::toObjectSpace(const Box &b) const { return inverse().toWorldSpace(b); } Box CoordinateFrame::toObjectSpace(const AABox& b) const { return toObjectSpace(Box(b)); } CoordinateFrame::CoordinateFrame(class BinaryInput& b) : rotation(Matrix3::zero()) { deserialize(b); } void CoordinateFrame::deserialize(class BinaryInput& b) { rotation.deserialize(b); translation.deserialize(b); } void CoordinateFrame::serialize(class BinaryOutput& b) const { rotation.serialize(b); translation.serialize(b); } Sphere CoordinateFrame::toWorldSpace(const Sphere &b) const { return Sphere(pointToWorldSpace(b.center), b.radius); } Sphere CoordinateFrame::toObjectSpace(const Sphere &b) const { return Sphere(pointToObjectSpace(b.center), b.radius); } Ray CoordinateFrame::toWorldSpace(const Ray& r) const { return Ray::fromOriginAndDirection(pointToWorldSpace(r.origin()), vectorToWorldSpace(r.direction())); } Ray CoordinateFrame::toObjectSpace(const Ray& r) const { return Ray::fromOriginAndDirection(pointToObjectSpace(r.origin()), vectorToObjectSpace(r.direction())); } void CoordinateFrame::lookAt(const Vector3 &target) { lookAt(target, Vector3::unitY()); } void CoordinateFrame::lookAt( const Vector3& target, Vector3 up) { up = up.direction(); Vector3 look = (target - translation).direction(); if (fabs(look.dot(up)) > .99f) { up = Vector3::unitX(); if (fabs(look.dot(up)) > .99f) { up = Vector3::unitY(); } } up -= look * look.dot(up); up.unitize(); Vector3 z = -look; Vector3 x = -z.cross(up); x.unitize(); Vector3 y = z.cross(x); rotation.setColumn(0, x); rotation.setColumn(1, y); rotation.setColumn(2, z); } CoordinateFrame CoordinateFrame::lerp( const CoordinateFrame& other, float alpha) const { if (alpha == 1.0f) { return other; } else if (alpha == 0.0f) { return *this; } else { const Quat q1(this->rotation); const Quat q2(other.rotation); return CoordinateFrame( q1.slerp(q2, alpha).toRotationMatrix(), translation * (1 - alpha) + other.translation * alpha); } } void CoordinateFrame::pointToWorldSpace(const Array& v, Array& vout) const { vout.resize(v.size()); for (int i = 0; i < v.size(); ++i) { vout[i] = pointToWorldSpace(v[i]); } } void CoordinateFrame::normalToWorldSpace(const Array& v, Array& vout) const { vout.resize(v.size()); for (int i = 0; i < v.size(); ++i) { vout[i] = normalToWorldSpace(v[i]); } } void CoordinateFrame::vectorToWorldSpace(const Array& v, Array& vout) const { vout.resize(v.size()); for (int i = v.size() - 1; i >= 0; --i) { vout[i] = vectorToWorldSpace(v[i]); } } void CoordinateFrame::pointToObjectSpace(const Array& v, Array& vout) const { vout.resize(v.size()); for (int i = v.size() - 1; i >= 0; --i) { vout[i] = pointToObjectSpace(v[i]); } } void CoordinateFrame::normalToObjectSpace(const Array& v, Array& vout) const { vout.resize(v.size()); for (int i = v.size() - 1; i >= 0; --i) { vout[i] = normalToObjectSpace(v[i]); } } void CoordinateFrame::vectorToObjectSpace(const Array& v, Array& vout) const { vout.resize(v.size()); for (int i = v.size() - 1; i >= 0; --i) { vout[i] = vectorToObjectSpace(v[i]); } } } // namespace