/**
@file CoordinateFrame.cpp
Coordinate frame class
@maintainer Morgan McGuire, http://graphics.cs.williams.edu
@created 2001-06-02
@edited 2009-11-13
Copyright 2000-2010, Morgan McGuire.
All rights reserved.
*/
#include "G3D/platform.h"
#include "G3D/CoordinateFrame.h"
#include "G3D/Quat.h"
#include "G3D/Matrix4.h"
#include "G3D/Box.h"
#include "G3D/AABox.h"
#include "G3D/Sphere.h"
#include "G3D/Triangle.h"
#include "G3D/Ray.h"
#include "G3D/Capsule.h"
#include "G3D/Cylinder.h"
#include "G3D/UprightFrame.h"
#include "G3D/Any.h"
#include "G3D/stringutils.h"
namespace G3D {
CoordinateFrame::CoordinateFrame(const Any& any) {
any.verifyName("CFrame");
if (toUpper(any.name()) == "CFRAME") {
any.verifyType(Any::TABLE, Any::ARRAY);
if (any.type() == Any::TABLE) {
rotation = any["rotation"];
translation = any["translation"];
} else {
any.verifySize(2);
rotation = any[0];
translation = any[1];
}
} else {
any.verifyName("CFrame::fromXYZYPRDegrees");
any.verifyType(Any::ARRAY);
any.verifySize(3, 6);
int s = any.size();
*this = fromXYZYPRDegrees(any[0], any[1], any[2],
(s > 3) ? any[3].number() : 0.0f,
(s > 4) ? any[4].number() : 0.0f,
(s > 5) ? any[5].number() : 0.0f);
}
}
CoordinateFrame::operator Any() const {
float x, y, z, yaw, pitch, roll;
getXYZYPRDegrees(x, y, z, yaw, pitch, roll);
Any a(Any::ARRAY, "CFrame::fromXYZYPRDegrees");
a.append(x, y, z, yaw);
if ( ! G3D::fuzzyEq(yaw, 0.0f) || ! G3D::fuzzyEq(pitch, 0.0f) || ! G3D::fuzzyEq(roll, 0.0f)) {
a.append(yaw);
if (! G3D::fuzzyEq(pitch, 0.0f) || ! G3D::fuzzyEq(roll, 0.0f)) {
a.append(pitch);
if (! G3D::fuzzyEq(roll, 0.0f)) {
a.append(roll);
}
}
}
return a;
}
CoordinateFrame::CoordinateFrame(const class UprightFrame& f) {
*this = f.toCoordinateFrame();
}
CoordinateFrame::CoordinateFrame() :
rotation(Matrix3::identity()), translation(Vector3::zero()) {
}
CoordinateFrame CoordinateFrame::fromXYZYPRRadians(float x, float y, float z, float yaw,
float pitch, float roll) {
Matrix3 rotation = Matrix3::fromAxisAngle(Vector3::unitY(), yaw);
rotation = Matrix3::fromAxisAngle(rotation.column(0), pitch) * rotation;
rotation = Matrix3::fromAxisAngle(rotation.column(2), roll) * rotation;
const Vector3 translation(x, y, z);
return CoordinateFrame(rotation, translation);
}
void CoordinateFrame::getXYZYPRRadians(float& x, float& y, float& z,
float& yaw, float& pitch, float& roll) const {
x = translation.x;
y = translation.y;
z = translation.z;
const Vector3& look = lookVector();
if (abs(look.y) > 0.99f) {
// Looking nearly straight up or down
yaw = G3D::pi() + atan2(look.x, look.z);
pitch = asin(look.y);
roll = 0.0f;
} else {
// Yaw cannot be affected by others, so pull it first
yaw = G3D::pi() + atan2(look.x, look.z);
// Pitch is the elevation of the yaw vector
pitch = asin(look.y);
Vector3 actualRight = rightVector();
Vector3 expectedRight = look.cross(Vector3::unitY());
roll = 0;//acos(actualRight.dot(expectedRight)); TODO
}
}
void CoordinateFrame::getXYZYPRDegrees(float& x, float& y, float& z,
float& yaw, float& pitch, float& roll) const {
getXYZYPRRadians(x, y, z, yaw, pitch, roll);
yaw = toDegrees(yaw);
pitch = toDegrees(pitch);
roll = toDegrees(roll);
}
CoordinateFrame CoordinateFrame::fromXYZYPRDegrees(float x, float y, float z,
float yaw, float pitch, float roll) {
return fromXYZYPRRadians(x, y, z, toRadians(yaw), toRadians(pitch), toRadians(roll));
}
Ray CoordinateFrame::lookRay() const {
return Ray::fromOriginAndDirection(translation, lookVector());
}
bool CoordinateFrame::fuzzyEq(const CoordinateFrame& other) const {
for (int c = 0; c < 3; ++c) {
for (int r = 0; r < 3; ++r) {
if (! G3D::fuzzyEq(other.rotation[r][c], rotation[r][c])) {
return false;
}
}
if (! G3D::fuzzyEq(translation[c], other.translation[c])) {
return false;
}
}
return true;
}
bool CoordinateFrame::fuzzyIsIdentity() const {
const Matrix3& I = Matrix3::identity();
for (int c = 0; c < 3; ++c) {
for (int r = 0; r < 3; ++r) {
if (fuzzyNe(I[r][c], rotation[r][c])) {
return false;
}
}
if (fuzzyNe(translation[c], 0)) {
return false;
}
}
return true;
}
bool CoordinateFrame::isIdentity() const {
return
(translation == Vector3::zero()) &&
(rotation == Matrix3::identity());
}
Matrix4 CoordinateFrame::toMatrix4() const {
return Matrix4(*this);
}
std::string CoordinateFrame::toXML() const {
return G3D::format(
"\n %lf,%lf,%lf,%lf,\n %lf,%lf,%lf,%lf,\n %lf,%lf,%lf,%lf,\n %lf,%lf,%lf,%lf\n\n",
rotation[0][0], rotation[0][1], rotation[0][2], translation.x,
rotation[1][0], rotation[1][1], rotation[1][2], translation.y,
rotation[2][0], rotation[2][1], rotation[2][2], translation.z,
0.0, 0.0, 0.0, 1.0);
}
Plane CoordinateFrame::toObjectSpace(const Plane& p) const {
Vector3 N, P;
double d;
p.getEquation(N, d);
P = N * (float)d;
P = pointToObjectSpace(P);
N = normalToObjectSpace(N);
return Plane(N, P);
}
Plane CoordinateFrame::toWorldSpace(const Plane& p) const {
Vector3 N, P;
double d;
p.getEquation(N, d);
P = N * (float)d;
P = pointToWorldSpace(P);
N = normalToWorldSpace(N);
return Plane(N, P);
}
Triangle CoordinateFrame::toObjectSpace(const Triangle& t) const {
return Triangle(pointToObjectSpace(t.vertex(0)),
pointToObjectSpace(t.vertex(1)),
pointToObjectSpace(t.vertex(2)));
}
Triangle CoordinateFrame::toWorldSpace(const Triangle& t) const {
return Triangle(pointToWorldSpace(t.vertex(0)),
pointToWorldSpace(t.vertex(1)),
pointToWorldSpace(t.vertex(2)));
}
Cylinder CoordinateFrame::toWorldSpace(const Cylinder& c) const {
return Cylinder(
pointToWorldSpace(c.point(0)),
pointToWorldSpace(c.point(1)),
c.radius());
}
Capsule CoordinateFrame::toWorldSpace(const Capsule& c) const {
return Capsule(
pointToWorldSpace(c.point(0)),
pointToWorldSpace(c.point(1)),
c.radius());
}
Box CoordinateFrame::toWorldSpace(const AABox& b) const {
Box b2(b);
return toWorldSpace(b2);
}
Box CoordinateFrame::toWorldSpace(const Box& b) const {
Box out(b);
for (int i = 0; i < 8; ++i) {
out._corner[i] = pointToWorldSpace(b._corner[i]);
debugAssert(! isNaN(out._corner[i].x));
}
for (int i = 0; i < 3; ++i) {
out._axis[i] = vectorToWorldSpace(b._axis[i]);
}
out._center = pointToWorldSpace(b._center);
return out;
}
Box CoordinateFrame::toObjectSpace(const Box &b) const {
return inverse().toWorldSpace(b);
}
Box CoordinateFrame::toObjectSpace(const AABox& b) const {
return toObjectSpace(Box(b));
}
CoordinateFrame::CoordinateFrame(class BinaryInput& b) : rotation(Matrix3::zero()) {
deserialize(b);
}
void CoordinateFrame::deserialize(class BinaryInput& b) {
rotation.deserialize(b);
translation.deserialize(b);
}
void CoordinateFrame::serialize(class BinaryOutput& b) const {
rotation.serialize(b);
translation.serialize(b);
}
Sphere CoordinateFrame::toWorldSpace(const Sphere &b) const {
return Sphere(pointToWorldSpace(b.center), b.radius);
}
Sphere CoordinateFrame::toObjectSpace(const Sphere &b) const {
return Sphere(pointToObjectSpace(b.center), b.radius);
}
Ray CoordinateFrame::toWorldSpace(const Ray& r) const {
return Ray::fromOriginAndDirection(pointToWorldSpace(r.origin()), vectorToWorldSpace(r.direction()));
}
Ray CoordinateFrame::toObjectSpace(const Ray& r) const {
return Ray::fromOriginAndDirection(pointToObjectSpace(r.origin()), vectorToObjectSpace(r.direction()));
}
void CoordinateFrame::lookAt(const Vector3 &target) {
lookAt(target, Vector3::unitY());
}
void CoordinateFrame::lookAt(
const Vector3& target,
Vector3 up) {
up = up.direction();
Vector3 look = (target - translation).direction();
if (fabs(look.dot(up)) > .99f) {
up = Vector3::unitX();
if (fabs(look.dot(up)) > .99f) {
up = Vector3::unitY();
}
}
up -= look * look.dot(up);
up.unitize();
Vector3 z = -look;
Vector3 x = -z.cross(up);
x.unitize();
Vector3 y = z.cross(x);
rotation.setColumn(0, x);
rotation.setColumn(1, y);
rotation.setColumn(2, z);
}
CoordinateFrame CoordinateFrame::lerp(
const CoordinateFrame& other,
float alpha) const {
if (alpha == 1.0f) {
return other;
} else if (alpha == 0.0f) {
return *this;
} else {
Quat q1 = Quat(this->rotation);
Quat q2 = Quat(other.rotation);
return CoordinateFrame(
q1.slerp(q2, alpha).toRotationMatrix(),
this->translation * (1 - alpha) + other.translation * alpha);
}
}
void CoordinateFrame::pointToWorldSpace(const Array& v, Array& vout) const {
vout.resize(v.size());
for (int i = v.size() - 1; i >= 0; --i) {
vout[i] = pointToWorldSpace(v[i]);
}
}
void CoordinateFrame::normalToWorldSpace(const Array& v, Array& vout) const {
vout.resize(v.size());
for (int i = v.size() - 1; i >= 0; --i) {
vout[i] = normalToWorldSpace(v[i]);
}
}
void CoordinateFrame::vectorToWorldSpace(const Array& v, Array& vout) const {
vout.resize(v.size());
for (int i = v.size() - 1; i >= 0; --i) {
vout[i] = vectorToWorldSpace(v[i]);
}
}
void CoordinateFrame::pointToObjectSpace(const Array& v, Array& vout) const {
vout.resize(v.size());
for (int i = v.size() - 1; i >= 0; --i) {
vout[i] = pointToObjectSpace(v[i]);
}
}
void CoordinateFrame::normalToObjectSpace(const Array& v, Array& vout) const {
vout.resize(v.size());
for (int i = v.size() - 1; i >= 0; --i) {
vout[i] = normalToObjectSpace(v[i]);
}
}
void CoordinateFrame::vectorToObjectSpace(const Array& v, Array& vout) const {
vout.resize(v.size());
for (int i = v.size() - 1; i >= 0; --i) {
vout[i] = vectorToObjectSpace(v[i]);
}
}
} // namespace