/* * Copyright (C) 2005-2009 MaNGOS * * Copyright (C) 2008-2009 Trinity * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #ifndef TRINITY_CELLIMPL_H #define TRINITY_CELLIMPL_H #include #include "Cell.h" #include "Map.h" #include "Object.h" inline Cell::Cell(CellPair const& p) { data.Part.grid_x = p.x_coord / MAX_NUMBER_OF_CELLS; data.Part.grid_y = p.y_coord / MAX_NUMBER_OF_CELLS; data.Part.cell_x = p.x_coord % MAX_NUMBER_OF_CELLS; data.Part.cell_y = p.y_coord % MAX_NUMBER_OF_CELLS; data.Part.nocreate = 0; data.Part.reserved = 0; } template inline void Cell::Visit(const CellLock &l, TypeContainerVisitor &visitor, Map &m) const { const CellPair &standing_cell = l.i_cellPair; if (standing_cell.x_coord >= TOTAL_NUMBER_OF_CELLS_PER_MAP || standing_cell.y_coord >= TOTAL_NUMBER_OF_CELLS_PER_MAP) return; uint16 district = (District)this->data.Part.reserved; if(district == CENTER_DISTRICT) { m.Visit(l, visitor); return; } // set up the cell range based on the district // the overloaded operators handle range checking CellPair begin_cell = standing_cell; CellPair end_cell = standing_cell; switch( district ) { case ALL_DISTRICT: { begin_cell << 1; begin_cell -= 1; // upper left end_cell >> 1; end_cell += 1; // lower right break; } case UPPER_LEFT_DISTRICT: { begin_cell << 1; begin_cell -= 1; // upper left break; } case UPPER_RIGHT_DISTRICT: { begin_cell -= 1; // up end_cell >> 1; // right break; } case LOWER_LEFT_DISTRICT: { begin_cell << 1; // left end_cell += 1; // down break; } case LOWER_RIGHT_DISTRICT: { end_cell >> 1; end_cell += 1; // lower right break; } case LEFT_DISTRICT: { begin_cell -= 1; // up end_cell >> 1; end_cell += 1; // lower right break; } case RIGHT_DISTRICT: { begin_cell << 1; begin_cell -= 1; // upper left end_cell += 1; // down break; } case UPPER_DISTRICT: { begin_cell << 1; begin_cell -= 1; // upper left end_cell >> 1; // right break; } case LOWER_DISTRICT: { begin_cell << 1; // left end_cell >> 1; end_cell += 1; // lower right break; } default: { assert( false ); break; } } // loop the cell range for (uint32 x = begin_cell.x_coord; x <= end_cell.x_coord; x++) { for (uint32 y = begin_cell.y_coord; y <= end_cell.y_coord; y++) { CellPair cell_pair(x,y); Cell r_zone(cell_pair); r_zone.data.Part.nocreate = l->data.Part.nocreate; CellLock lock(r_zone, cell_pair); m.Visit(lock, visitor); } } } inline int CellHelper(const float radius) { if(radius < 1.0f) return 0; return (int)ceilf(radius/SIZE_OF_GRID_CELL); } inline CellArea Cell::CalculateCellArea(const WorldObject &obj, float radius) { return Cell::CalculateCellArea(obj.GetPositionX(), obj.GetPositionY(), radius); } inline CellArea Cell::CalculateCellArea(float x, float y, float radius) { if(radius <= 0.0f) return CellArea(); //lets calculate object coord offsets from cell borders. //TODO: add more correct/generic method for this task const float x_offset = (x - CENTER_GRID_CELL_OFFSET)/SIZE_OF_GRID_CELL; const float y_offset = (y - CENTER_GRID_CELL_OFFSET)/SIZE_OF_GRID_CELL; const float x_val = floor(x_offset + CENTER_GRID_CELL_ID + 0.5f); const float y_val = floor(y_offset + CENTER_GRID_CELL_ID + 0.5f); const float x_off = (x_offset - x_val + CENTER_GRID_CELL_ID) * SIZE_OF_GRID_CELL; const float y_off = (y_offset - y_val + CENTER_GRID_CELL_ID) * SIZE_OF_GRID_CELL; const float tmp_diff = radius - CENTER_GRID_CELL_OFFSET; //lets calculate upper/lower/right/left corners for cell search int right = CellHelper(tmp_diff + x_off); int left = CellHelper(tmp_diff - x_off); int upper = CellHelper(tmp_diff + y_off); int lower = CellHelper(tmp_diff - y_off); return CellArea(right, left, upper, lower); } template inline void Cell::Visit(const CellLock &l, TypeContainerVisitor &visitor, Map &m, float radius, float x_off, float y_off) const { const CellPair &standing_cell = l.i_cellPair; if (standing_cell.x_coord >= TOTAL_NUMBER_OF_CELLS_PER_MAP || standing_cell.y_coord >= TOTAL_NUMBER_OF_CELLS_PER_MAP) return; //no jokes here... Actually placing ASSERT() here was good idea, but //we had some problems with DynamicObjects, which pass radius = 0.0f (DB issue?) //maybe it is better to just return when radius <= 0.0f? if (radius <= 0.0f) { m.Visit(l, visitor); return; } //lets limit the upper value for search radius if (radius > 333.0f) radius = 333.0f; //lets calculate object coord offsets from cell borders. CellArea area = Cell::CalculateCellArea(x_off, y_off, radius); //if radius fits inside standing cell if (!area) { m.Visit(l, visitor); return; } CellPair begin_cell = standing_cell; CellPair end_cell = standing_cell; area.ResizeBorders(begin_cell, end_cell); //visit all cells, found in CalculateCellArea() //if radius is known to reach cell area more than 4x4 then we should call optimized VisitCircle //currently this technique works with MAX_NUMBER_OF_CELLS 16 and higher, with lower values //there are nothing to optimize because SIZE_OF_GRID_CELL is too big... if (((end_cell.x_coord - begin_cell.x_coord) > 4) && ((end_cell.y_coord - begin_cell.y_coord) > 4)) { VisitCircle(l, visitor, m, begin_cell, end_cell); return; } //ALWAYS visit standing cell first!!! Since we deal with small radiuses //it is very essential to call visitor for standing cell firstly... m.Visit(l, visitor); // loop the cell range for (uint32 x = begin_cell.x_coord; x <= end_cell.x_coord; ++x) { for (uint32 y = begin_cell.y_coord; y <= end_cell.y_coord; ++y) { CellPair cell_pair(x,y); //lets skip standing cell since we already visited it if(cell_pair != standing_cell) { Cell r_zone(cell_pair); r_zone.data.Part.nocreate = l->data.Part.nocreate; CellLock lock(r_zone, cell_pair); m.Visit(lock, visitor); } } } } template inline void Cell::Visit(const CellLock &l, TypeContainerVisitor &visitor, Map &m, const WorldObject &obj, float radius) const { //we should increase search radius by object's radius, otherwise //we could have problems with huge creatures, which won't attack nearest players etc Cell::Visit(l, visitor, m, radius + obj.GetObjectSize(), obj.GetPositionX(), obj.GetPositionY()); } template inline void Cell::VisitCircle(const CellLock &l, TypeContainerVisitor &visitor, Map &m, const CellPair& begin_cell, const CellPair& end_cell) const { //here is an algorithm for 'filling' circum-squared octagon uint32 x_shift = (uint32)ceilf((end_cell.x_coord - begin_cell.x_coord) * 0.3f - 0.5f); //lets calculate x_start/x_end coords for central strip... const uint32 x_start = begin_cell.x_coord + x_shift; const uint32 x_end = end_cell.x_coord - x_shift; //visit central strip with constant width... for (uint32 x = x_start; x <= x_end; ++x) { for (uint32 y = begin_cell.y_coord; y <= end_cell.y_coord; ++y) { CellPair cell_pair(x,y); Cell r_zone(cell_pair); r_zone.data.Part.nocreate = l->data.Part.nocreate; CellLock lock(r_zone, cell_pair); m.Visit(lock, visitor); } } //if x_shift == 0 then we have too small cell area, which were already //visited at previous step, so just return from procedure... if(x_shift == 0) return; uint32 y_start = end_cell.y_coord; uint32 y_end = begin_cell.y_coord; //now we are visiting borders of an octagon... for (uint32 step = 1; step <= (x_start - begin_cell.x_coord); ++step) { //each step reduces strip height by 2 cells... y_end += 1; y_start -= 1; for (uint32 y = y_start; y >= y_end; --y) { //we visit cells symmetrically from both sides, heading from center to sides and from up to bottom //e.g. filling 2 trapezoids after filling central cell strip... CellPair cell_pair_left(x_start - step, y); Cell r_zone_left(cell_pair_left); r_zone_left.data.Part.nocreate = l->data.Part.nocreate; CellLock lock_left(r_zone_left, cell_pair_left); m.Visit(lock_left, visitor); //right trapezoid cell visit CellPair cell_pair_right(x_end + step, y); Cell r_zone_right(cell_pair_right); r_zone_right.data.Part.nocreate = l->data.Part.nocreate; CellLock lock_right(r_zone_right, cell_pair_right); m.Visit(lock_right, visitor); } } } #endif