/*
* Copyright (C) 2008-2014 TrinityCore
* Copyright (C) 2005-2010 MaNGOS
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see .
*/
#ifndef _BIH_H
#define _BIH_H
#include "G3D/Vector3.h"
#include "G3D/Ray.h"
#include "G3D/AABox.h"
#include "Define.h"
#include
#include
#include
#include
#include
#define MAX_STACK_SIZE 64
static inline uint32 floatToRawIntBits(float f)
{
union
{
uint32 ival;
float fval;
} temp;
temp.fval=f;
return temp.ival;
}
static inline float intBitsToFloat(uint32 i)
{
union
{
uint32 ival;
float fval;
} temp;
temp.ival=i;
return temp.fval;
}
struct AABound
{
G3D::Vector3 lo, hi;
};
/** Bounding Interval Hierarchy Class.
Building and Ray-Intersection functions based on BIH from
Sunflow, a Java Raytracer, released under MIT/X11 License
http://sunflow.sourceforge.net/
Copyright (c) 2003-2007 Christopher Kulla
*/
class BIH
{
private:
void init_empty()
{
tree.clear();
objects.clear();
// create space for the first node
tree.push_back(3u << 30u); // dummy leaf
tree.insert(tree.end(), 2, 0);
}
public:
BIH() { init_empty(); }
template< class BoundsFunc, class PrimArray >
void build(const PrimArray &primitives, BoundsFunc &getBounds, uint32 leafSize = 3, bool printStats=false)
{
if (primitives.size() == 0)
{
init_empty();
return;
}
buildData dat;
dat.maxPrims = leafSize;
dat.numPrims = primitives.size();
dat.indices = new uint32[dat.numPrims];
dat.primBound = new G3D::AABox[dat.numPrims];
getBounds(primitives[0], bounds);
for (uint32 i=0; i tempTree;
BuildStats stats;
buildHierarchy(tempTree, dat, stats);
if (printStats)
stats.printStats();
objects.resize(dat.numPrims);
for (uint32 i=0; i
void intersectRay(const G3D::Ray &r, RayCallback& intersectCallback, float &maxDist, bool stopAtFirst=false) const
{
float intervalMin = -1.f;
float intervalMax = -1.f;
G3D::Vector3 org = r.origin();
G3D::Vector3 dir = r.direction();
G3D::Vector3 invDir;
for (int i=0; i<3; ++i)
{
invDir[i] = 1.f / dir[i];
if (G3D::fuzzyNe(dir[i], 0.0f))
{
float t1 = (bounds.low()[i] - org[i]) * invDir[i];
float t2 = (bounds.high()[i] - org[i]) * invDir[i];
if (t1 > t2)
std::swap(t1, t2);
if (t1 > intervalMin)
intervalMin = t1;
if (t2 < intervalMax || intervalMax < 0.f)
intervalMax = t2;
// intervalMax can only become smaller for other axis,
// and intervalMin only larger respectively, so stop early
if (intervalMax <= 0 || intervalMin >= maxDist)
return;
}
}
if (intervalMin > intervalMax)
return;
intervalMin = std::max(intervalMin, 0.f);
intervalMax = std::min(intervalMax, maxDist);
uint32 offsetFront[3];
uint32 offsetBack[3];
uint32 offsetFront3[3];
uint32 offsetBack3[3];
// compute custom offsets from direction sign bit
for (int i=0; i<3; ++i)
{
offsetFront[i] = floatToRawIntBits(dir[i]) >> 31;
offsetBack[i] = offsetFront[i] ^ 1;
offsetFront3[i] = offsetFront[i] * 3;
offsetBack3[i] = offsetBack[i] * 3;
// avoid always adding 1 during the inner loop
++offsetFront[i];
++offsetBack[i];
}
StackNode stack[MAX_STACK_SIZE];
int stackPos = 0;
int node = 0;
while (true) {
while (true)
{
uint32 tn = tree[node];
uint32 axis = (tn & (3 << 30)) >> 30;
bool BVH2 = tn & (1 << 29);
int offset = tn & ~(7 << 29);
if (!BVH2)
{
if (axis < 3)
{
// "normal" interior node
float tf = (intBitsToFloat(tree[node + offsetFront[axis]]) - org[axis]) * invDir[axis];
float tb = (intBitsToFloat(tree[node + offsetBack[axis]]) - org[axis]) * invDir[axis];
// ray passes between clip zones
if (tf < intervalMin && tb > intervalMax)
break;
int back = offset + offsetBack3[axis];
node = back;
// ray passes through far node only
if (tf < intervalMin) {
intervalMin = (tb >= intervalMin) ? tb : intervalMin;
continue;
}
node = offset + offsetFront3[axis]; // front
// ray passes through near node only
if (tb > intervalMax) {
intervalMax = (tf <= intervalMax) ? tf : intervalMax;
continue;
}
// ray passes through both nodes
// push back node
stack[stackPos].node = back;
stack[stackPos].tnear = (tb >= intervalMin) ? tb : intervalMin;
stack[stackPos].tfar = intervalMax;
stackPos++;
// update ray interval for front node
intervalMax = (tf <= intervalMax) ? tf : intervalMax;
continue;
}
else
{
// leaf - test some objects
int n = tree[node + 1];
while (n > 0) {
bool hit = intersectCallback(r, objects[offset], maxDist, stopAtFirst);
if (stopAtFirst && hit) return;
--n;
++offset;
}
break;
}
}
else
{
if (axis>2)
return; // should not happen
float tf = (intBitsToFloat(tree[node + offsetFront[axis]]) - org[axis]) * invDir[axis];
float tb = (intBitsToFloat(tree[node + offsetBack[axis]]) - org[axis]) * invDir[axis];
node = offset;
intervalMin = (tf >= intervalMin) ? tf : intervalMin;
intervalMax = (tb <= intervalMax) ? tb : intervalMax;
if (intervalMin > intervalMax)
break;
continue;
}
} // traversal loop
do
{
// stack is empty?
if (stackPos == 0)
return;
// move back up the stack
stackPos--;
intervalMin = stack[stackPos].tnear;
if (maxDist < intervalMin)
continue;
node = stack[stackPos].node;
intervalMax = stack[stackPos].tfar;
break;
} while (true);
}
}
template
void intersectPoint(const G3D::Vector3 &p, IsectCallback& intersectCallback) const
{
if (!bounds.contains(p))
return;
StackNode stack[MAX_STACK_SIZE];
int stackPos = 0;
int node = 0;
while (true) {
while (true)
{
uint32 tn = tree[node];
uint32 axis = (tn & (3 << 30)) >> 30;
bool BVH2 = tn & (1 << 29);
int offset = tn & ~(7 << 29);
if (!BVH2)
{
if (axis < 3)
{
// "normal" interior node
float tl = intBitsToFloat(tree[node + 1]);
float tr = intBitsToFloat(tree[node + 2]);
// point is between clip zones
if (tl < p[axis] && tr > p[axis])
break;
int right = offset + 3;
node = right;
// point is in right node only
if (tl < p[axis]) {
continue;
}
node = offset; // left
// point is in left node only
if (tr > p[axis]) {
continue;
}
// point is in both nodes
// push back right node
stack[stackPos].node = right;
stackPos++;
continue;
}
else
{
// leaf - test some objects
int n = tree[node + 1];
while (n > 0) {
intersectCallback(p, objects[offset]); // !!!
--n;
++offset;
}
break;
}
}
else // BVH2 node (empty space cut off left and right)
{
if (axis>2)
return; // should not happen
float tl = intBitsToFloat(tree[node + 1]);
float tr = intBitsToFloat(tree[node + 2]);
node = offset;
if (tl > p[axis] || tr < p[axis])
break;
continue;
}
} // traversal loop
// stack is empty?
if (stackPos == 0)
return;
// move back up the stack
stackPos--;
node = stack[stackPos].node;
}
}
bool writeToFile(FILE* wf) const;
bool readFromFile(FILE* rf);
protected:
std::vector tree;
std::vector objects;
G3D::AABox bounds;
struct buildData
{
uint32 *indices;
G3D::AABox *primBound;
uint32 numPrims;
int maxPrims;
};
struct StackNode
{
uint32 node;
float tnear;
float tfar;
};
class BuildStats
{
private:
int numNodes;
int numLeaves;
int sumObjects;
int minObjects;
int maxObjects;
int sumDepth;
int minDepth;
int maxDepth;
int numLeavesN[6];
int numBVH2;
public:
BuildStats():
numNodes(0), numLeaves(0), sumObjects(0), minObjects(0x0FFFFFFF),
maxObjects(0xFFFFFFFF), sumDepth(0), minDepth(0x0FFFFFFF),
maxDepth(0xFFFFFFFF), numBVH2(0)
{
for (int i=0; i<6; ++i) numLeavesN[i] = 0;
}
void updateInner() { numNodes++; }
void updateBVH2() { numBVH2++; }
void updateLeaf(int depth, int n);
void printStats();
};
void buildHierarchy(std::vector &tempTree, buildData &dat, BuildStats &stats);
void createNode(std::vector &tempTree, int nodeIndex, uint32 left, uint32 right) const
{
// write leaf node
tempTree[nodeIndex + 0] = (3 << 30) | left;
tempTree[nodeIndex + 1] = right - left + 1;
}
void subdivide(int left, int right, std::vector &tempTree, buildData &dat, AABound &gridBox, AABound &nodeBox, int nodeIndex, int depth, BuildStats &stats);
};
#endif // _BIH_H