/* * Copyright (C) 2005-2010 MaNGOS * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #ifndef _BIH_H #define _BIH_H #include "G3D/Vector3.h" #include "G3D/Ray.h" #include "G3D/AABox.h" #include "Define.h" #include #include #include #include #include #define MAX_STACK_SIZE 64 #ifdef _MSC_VER #define isnan(x) _isnan(x) #endif using G3D::Vector3; using G3D::AABox; using G3D::Ray; static inline uint32 floatToRawIntBits(float f) { union { uint32 ival; float fval; } temp; temp.fval=f; return temp.ival; } static inline float intBitsToFloat(uint32 i) { union { uint32 ival; float fval; } temp; temp.ival=i; return temp.fval; } struct AABound { Vector3 lo, hi; }; /** Bounding Interval Hierarchy Class. Building and Ray-Intersection functions based on BIH from Sunflow, a Java Raytracer, released under MIT/X11 License http://sunflow.sourceforge.net/ Copyright (c) 2003-2007 Christopher Kulla */ class BIH { public: BIH() {}; template< class T, class BoundsFunc > void build(const std::vector &primitives, BoundsFunc &getBounds, uint32 leafSize = 3, bool printStats=false) { if(primitives.size() == 0) return; buildData dat; dat.maxPrims = leafSize; dat.numPrims = primitives.size(); dat.indices = new uint32[dat.numPrims]; dat.primBound = new AABox[dat.numPrims]; getBounds(primitives[0], bounds); for (uint32 i=0; i tempTree; BuildStats stats; buildHierarchy(tempTree, dat, stats); if (printStats) stats.printStats(); objects.resize(dat.numPrims); for (uint32 i=0; i void intersectRay(const Ray &r, RayCallback& intersectCallback, float &maxDist, bool stopAtFirst=false) const { float intervalMin = 0.f; float intervalMax = maxDist; Vector3 org = r.origin(); Vector3 dir = r.direction(); Vector3 invDir; float t1, t2; for(int i=0; i<3; ++i) { invDir[i] = 1.f / dir[i]; t1 = (bounds.low()[i] - org[i]) * invDir[i]; t2 = (bounds.high()[i] - org[i]) * invDir[i]; if (invDir[i] > 0) { if (t1 > intervalMin) intervalMin = t1; if (t2 < intervalMax) intervalMax = t2; } else { if (t2 > intervalMin) intervalMin = t2; if (t1 < intervalMax) intervalMax = t1; } if (intervalMin > intervalMax) return; } uint32 offsetFront[3]; uint32 offsetBack[3]; uint32 offsetFront3[3]; uint32 offsetBack3[3]; // compute custom offsets from direction sign bit for(int i=0; i<3; ++i) { offsetFront[i] = floatToRawIntBits(dir[i]) >> 31; offsetBack[i] = offsetFront[i] ^ 1; offsetFront3[i] = offsetFront[i] * 3; offsetBack3[i] = offsetBack[i] * 3; // avoid always adding 1 during the inner loop ++offsetFront[i]; ++offsetBack[i]; } StackNode stack[MAX_STACK_SIZE]; int stackPos = 0; int node = 0; while (true) { while (true) { uint32 tn = tree[node]; uint32 axis = (tn & (3 << 30)) >> 30; bool BVH2 = tn & (1 << 29); int offset = tn & ~(7 << 29); if (!BVH2) { if (axis < 3) { // "normal" interior node float tf = (intBitsToFloat(tree[node + offsetFront[axis]]) - org[axis]) * invDir[axis]; float tb = (intBitsToFloat(tree[node + offsetBack[axis]]) - org[axis]) * invDir[axis]; // ray passes between clip zones if (tf < intervalMin && tb > intervalMax) break; int back = offset + offsetBack3[axis]; node = back; // ray passes through far node only if (tf < intervalMin) { intervalMin = (tb >= intervalMin) ? tb : intervalMin; continue; } node = offset + offsetFront3[axis]; // front // ray passes through near node only if (tb > intervalMax) { intervalMax = (tf <= intervalMax) ? tf : intervalMax; continue; } // ray passes through both nodes // push back node stack[stackPos].node = back; stack[stackPos].tnear = (tb >= intervalMin) ? tb : intervalMin; stack[stackPos].tfar = intervalMax; stackPos++; // update ray interval for front node intervalMax = (tf <= intervalMax) ? tf : intervalMax; continue; } else { // leaf - test some objects int n = tree[node + 1]; while (n > 0) { bool hit = intersectCallback(r, objects[offset], maxDist, stopAtFirst); if(stopAtFirst && hit) return; --n; ++offset; } break; } } else { if (axis>2) return; // should not happen float tf = (intBitsToFloat(tree[node + offsetFront[axis]]) - org[axis]) * invDir[axis]; float tb = (intBitsToFloat(tree[node + offsetBack[axis]]) - org[axis]) * invDir[axis]; node = offset; intervalMin = (tf >= intervalMin) ? tf : intervalMin; intervalMax = (tb <= intervalMax) ? tb : intervalMax; if (intervalMin > intervalMax) break; continue; } } // traversal loop do { // stack is empty? if (stackPos == 0) return; // move back up the stack stackPos--; intervalMin = stack[stackPos].tnear; if (maxDist < intervalMin) continue; node = stack[stackPos].node; intervalMax = stack[stackPos].tfar; break; } while (true); } } template void intersectPoint(const Vector3 &p, IsectCallback& intersectCallback) const { if (!bounds.contains(p)) return; StackNode stack[MAX_STACK_SIZE]; int stackPos = 0; int node = 0; while (true) { while (true) { uint32 tn = tree[node]; uint32 axis = (tn & (3 << 30)) >> 30; bool BVH2 = tn & (1 << 29); int offset = tn & ~(7 << 29); if (!BVH2) { if (axis < 3) { // "normal" interior node float tl = intBitsToFloat(tree[node + 1]); float tr = intBitsToFloat(tree[node + 2]); // point is between clip zones if (tl < p[axis] && tr > p[axis]) break; int right = offset + 3; node = right; // point is in right node only if (tl < p[axis]) { continue; } node = offset; // left // point is in left node only if (tr > p[axis]) { continue; } // point is in both nodes // push back right node stack[stackPos].node = right; stackPos++; continue; } else { // leaf - test some objects int n = tree[node + 1]; while (n > 0) { intersectCallback(p, objects[offset]); // !!! --n; ++offset; } break; } } else // BVH2 node (empty space cut off left and right) { if (axis>2) return; // should not happen float tl = intBitsToFloat(tree[node + 1]); float tr = intBitsToFloat(tree[node + 2]); node = offset; if (tl > p[axis] || tr < p[axis]) break; continue; } } // traversal loop // stack is empty? if (stackPos == 0) return; // move back up the stack stackPos--; node = stack[stackPos].node; } } bool writeToFile(FILE *wf) const; bool readFromFile(FILE *rf); protected: std::vector tree; std::vector objects; AABox bounds; struct buildData { uint32 *indices; AABox *primBound; uint32 numPrims; int maxPrims; }; struct StackNode { uint32 node; float tnear; float tfar; }; class BuildStats { private: int numNodes; int numLeaves; int sumObjects; int minObjects; int maxObjects; int sumDepth; int minDepth; int maxDepth; int numLeavesN[6]; int numBVH2; public: BuildStats(): numNodes(0), numLeaves(0), sumObjects(0), minObjects(0x0FFFFFFF), maxObjects(0xFFFFFFFF), sumDepth(0), minDepth(0x0FFFFFFF), maxDepth(0xFFFFFFFF), numBVH2(0) { for(int i=0; i<6; ++i) numLeavesN[i] = 0; } void updateInner() { numNodes++; } void updateBVH2() { numBVH2++; } void updateLeaf(int depth, int n); void printStats(); }; void buildHierarchy(std::vector &tempTree, buildData &dat, BuildStats &stats); void createNode(std::vector &tempTree, int nodeIndex, uint32 left, uint32 right) { // write leaf node tempTree[nodeIndex + 0] = (3 << 30) | left; tempTree[nodeIndex + 1] = right - left + 1; } void subdivide(int left, int right, std::vector &tempTree, buildData &dat, AABound &gridBox, AABound &nodeBox, int nodeIndex, int depth, BuildStats &stats); }; #endif // _BIH_H