/*
* Copyright (C) 2008-2013 TrinityCore
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see .
*/
#ifndef CREATUREAIIMPL_H
#define CREATUREAIIMPL_H
#include "Common.h"
#include "Define.h"
#include "TemporarySummon.h"
#include "CreatureAI.h"
#include "SpellMgr.h"
template
inline
const T& RAND(const T& v1, const T& v2)
{
return (urand(0, 1)) ? v1 : v2;
}
template
inline
const T& RAND(const T& v1, const T& v2, const T& v3)
{
switch (urand(0, 2))
{
default:
case 0: return v1;
case 1: return v2;
case 2: return v3;
}
}
template
inline
const T& RAND(const T& v1, const T& v2, const T& v3, const T& v4)
{
switch (urand(0, 3))
{
default:
case 0: return v1;
case 1: return v2;
case 2: return v3;
case 3: return v4;
}
}
template
inline
const T& RAND(const T& v1, const T& v2, const T& v3, const T& v4, const T& v5)
{
switch (urand(0, 4))
{
default:
case 0: return v1;
case 1: return v2;
case 2: return v3;
case 3: return v4;
case 4: return v5;
}
}
template
inline
const T& RAND(const T& v1, const T& v2, const T& v3, const T& v4, const T& v5, const T& v6)
{
switch (urand(0, 5))
{
default:
case 0: return v1;
case 1: return v2;
case 2: return v3;
case 3: return v4;
case 4: return v5;
case 5: return v6;
}
}
template
inline
const T& RAND(const T& v1, const T& v2, const T& v3, const T& v4, const T& v5, const T& v6, const T& v7)
{
switch (urand(0, 6))
{
default:
case 0: return v1;
case 1: return v2;
case 2: return v3;
case 3: return v4;
case 4: return v5;
case 5: return v6;
case 6: return v7;
}
}
template
inline
const T& RAND(const T& v1, const T& v2, const T& v3, const T& v4, const T& v5, const T& v6, const T& v7, const T& v8)
{
switch (urand(0, 7))
{
default:
case 0: return v1;
case 1: return v2;
case 2: return v3;
case 3: return v4;
case 4: return v5;
case 5: return v6;
case 6: return v7;
case 7: return v8;
}
}
template
inline
const T& RAND(const T& v1, const T& v2, const T& v3, const T& v4, const T& v5, const T& v6, const T& v7, const T& v8,
const T& v9)
{
switch (urand(0, 8))
{
default:
case 0: return v1;
case 1: return v2;
case 2: return v3;
case 3: return v4;
case 4: return v5;
case 5: return v6;
case 6: return v7;
case 7: return v8;
case 8: return v9;
}
}
template
inline
const T& RAND(const T& v1, const T& v2, const T& v3, const T& v4, const T& v5, const T& v6, const T& v7, const T& v8,
const T& v9, const T& v10)
{
switch (urand(0, 9))
{
default:
case 0: return v1;
case 1: return v2;
case 2: return v3;
case 3: return v4;
case 4: return v5;
case 5: return v6;
case 6: return v7;
case 7: return v8;
case 8: return v9;
case 9: return v10;
}
}
template
inline
const T& RAND(const T& v1, const T& v2, const T& v3, const T& v4, const T& v5, const T& v6, const T& v7, const T& v8,
const T& v9, const T& v10, const T& v11)
{
switch (urand(0, 10))
{
default:
case 0: return v1;
case 1: return v2;
case 2: return v3;
case 3: return v4;
case 4: return v5;
case 5: return v6;
case 6: return v7;
case 7: return v8;
case 8: return v9;
case 9: return v10;
case 10: return v11;
}
}
template
inline
const T& RAND(const T& v1, const T& v2, const T& v3, const T& v4, const T& v5, const T& v6, const T& v7, const T& v8,
const T& v9, const T& v10, const T& v11, const T& v12)
{
switch (urand(0, 11))
{
default:
case 0: return v1;
case 1: return v2;
case 2: return v3;
case 3: return v4;
case 4: return v5;
case 5: return v6;
case 6: return v7;
case 7: return v8;
case 8: return v9;
case 9: return v10;
case 10: return v11;
case 11: return v12;
}
}
template
inline
const T& RAND(const T& v1, const T& v2, const T& v3, const T& v4, const T& v5, const T& v6, const T& v7, const T& v8,
const T& v9, const T& v10, const T& v11, const T& v12, const T& v13)
{
switch (urand(0, 12))
{
default:
case 0: return v1;
case 1: return v2;
case 2: return v3;
case 3: return v4;
case 4: return v5;
case 5: return v6;
case 6: return v7;
case 7: return v8;
case 8: return v9;
case 9: return v10;
case 10: return v11;
case 11: return v12;
case 12: return v13;
}
}
template
inline
const T& RAND(const T& v1, const T& v2, const T& v3, const T& v4, const T& v5, const T& v6, const T& v7, const T& v8,
const T& v9, const T& v10, const T& v11, const T& v12, const T& v13, const T& v14)
{
switch (urand(0, 13))
{
default:
case 0: return v1;
case 1: return v2;
case 2: return v3;
case 3: return v4;
case 4: return v5;
case 5: return v6;
case 6: return v7;
case 7: return v8;
case 8: return v9;
case 9: return v10;
case 10: return v11;
case 11: return v12;
case 12: return v13;
case 13: return v14;
}
}
template
inline
const T& RAND(const T& v1, const T& v2, const T& v3, const T& v4, const T& v5, const T& v6, const T& v7, const T& v8,
const T& v9, const T& v10, const T& v11, const T& v12, const T& v13, const T& v14, const T& v15)
{
switch (urand(0, 14))
{
default:
case 0: return v1;
case 1: return v2;
case 2: return v3;
case 3: return v4;
case 4: return v5;
case 5: return v6;
case 6: return v7;
case 7: return v8;
case 8: return v9;
case 9: return v10;
case 10: return v11;
case 11: return v12;
case 12: return v13;
case 13: return v14;
case 14: return v15;
}
}
template
inline
const T& RAND(const T& v1, const T& v2, const T& v3, const T& v4, const T& v5, const T& v6, const T& v7, const T& v8,
const T& v9, const T& v10, const T& v11, const T& v12, const T& v13, const T& v14, const T& v15, const T& v16)
{
switch (urand(0, 15))
{
default:
case 0: return v1;
case 1: return v2;
case 2: return v3;
case 3: return v4;
case 4: return v5;
case 5: return v6;
case 6: return v7;
case 7: return v8;
case 8: return v9;
case 9: return v10;
case 10: return v11;
case 11: return v12;
case 12: return v13;
case 13: return v14;
case 14: return v15;
case 15: return v16;
}
}
class EventMap
{
/**
* Internal storage type.
* Key: Time as uint32 when the event should occur.
* Value: The event data as uint32.
*
* Structure of event data:
* - Bit 0 - 15: Event Id.
* - Bit 16 - 23: Group
* - Bit 24 - 31: Phase
* - Pattern: 0xPPGGEEEE
*/
typedef std::multimap EventStore;
public:
EventMap() : _time(0), _phase(0) { }
/**
* @name Reset
* @brief Removes all scheduled events and resets time and phase.
*/
void Reset()
{
_eventMap.clear();
_time = 0;
_phase = 0;
}
/**
* @name Update
* @brief Updates the timer of the event map.
* @param time Value to be added to time.
*/
void Update(uint32 time)
{
_time += time;
}
/**
* @name GetTimer
* @return Current timer value.
*/
uint32 GetTimer() const
{
return _time;
}
/**
* @name GetPhaseMask
* @return Active phases as mask.
*/
uint8 GetPhaseMask() const
{
return _phase;
}
/**
* @name Empty
* @return True, if there are no events scheduled.
*/
bool Empty() const
{
return _eventMap.empty();
}
/**
* @name SetPhase
* @brief Sets the phase of the map (absolute).
* @param phase Phase which should be set. Values: 1 - 8. 0 resets phase.
*/
void SetPhase(uint8 phase)
{
if (!phase)
_phase = 0;
else if (phase <= 8)
_phase = (1 << (phase - 1));
}
/**
* @name AddPhase
* @brief Activates the given phase (bitwise).
* @param phase Phase which should be activated. Values: 1 - 8
*/
void AddPhase(uint8 phase)
{
if (phase && phase <= 8)
_phase |= (1 << (phase - 1));
}
/**
* @name RemovePhase
* @brief Deactivates the given phase (bitwise).
* @param phase Phase which should be deactivated. Values: 1 - 8.
*/
void RemovePhase(uint8 phase)
{
if (phase && phase <= 8)
_phase &= ~(1 << (phase - 1));
}
/**
* @name ScheduleEvent
* @brief Creates new event entry in map.
* @param eventId The id of the new event.
* @param time The time in milliseconds until the event occurs.
* @param group The group which the event is associated to. Has to be between 1 and 8. 0 means it has no group.
* @param phase The phase in which the event can occur. Has to be between 1 and 8. 0 means it can occur in all phases.
*/
void ScheduleEvent(uint32 eventId, uint32 time, uint32 group = 0, uint8 phase = 0)
{
if (group && group <= 8)
eventId |= (1 << (group + 15));
if (phase && phase <= 8)
eventId |= (1 << (phase + 23));
_eventMap.insert(EventStore::value_type(_time + time, eventId));
}
/**
* @name RescheduleEvent
* @brief Cancels the given event and reschedules it.
* @param eventId The id of the event.
* @param time The time in milliseconds until the event occurs.
* @param group The group which the event is associated to. Has to be between 1 and 8. 0 means it has no group.
* @param phase The phase in which the event can occur. Has to be between 1 and 8. 0 means it can occur in all phases.
*/
void RescheduleEvent(uint32 eventId, uint32 time, uint32 group = 0, uint8 phase = 0)
{
CancelEvent(eventId);
ScheduleEvent(eventId, time, group, phase);
}
/**
* @name RepeatEvent
* @brief Cancels the closest event and reschedules it.
* @param time Time until the event occurs.
*/
void RepeatEvent(uint32 time)
{
if (Empty())
return;
uint32 eventId = _eventMap.begin()->second;
_eventMap.erase(_eventMap.begin());
ScheduleEvent(eventId, time);
}
/**
* @name PopEvent
* @brief Remove the first event in the map.
*/
void PopEvent()
{
if (!Empty())
_eventMap.erase(_eventMap.begin());
}
/**
* @name ExecuteEvent
* @brief Returns the next event to execute and removes it from map.
* @return Id of the event to execute.
*/
uint32 ExecuteEvent()
{
while (!Empty())
{
EventStore::iterator itr = _eventMap.begin();
if (itr->first > _time)
return 0;
else if (_phase && (itr->second & 0xFF000000) && !((itr->second >> 24) & _phase))
_eventMap.erase(itr);
else
{
uint32 eventId = (itr->second & 0x0000FFFF);
_eventMap.erase(itr);
return eventId;
}
}
return 0;
}
/**
* @name GetEvent
* @brief Returns the next event to execute.
* @return Id of the event to execute.
*/
uint32 GetEvent()
{
while (!Empty())
{
EventStore::iterator itr = _eventMap.begin();
if (itr->first > _time)
return 0;
else if (_phase && (itr->second & 0xFF000000) && !(itr->second & (_phase << 24)))
_eventMap.erase(itr);
else
return (itr->second & 0x0000FFFF);
}
return 0;
}
/**
* @name DelayEvents
* @brief Delays all events in the map. If delay is greater than or equal internal timer, delay will be 0.
* @param delay Amount of delay.
*/
void DelayEvents(uint32 delay)
{
_time = delay < _time ? _time - delay : 0;
}
/**
* @name DelayEvents
* @brief Delay all events of the same group.
* @param delay Amount of delay.
* @param group Group of the events.
*/
void DelayEvents(uint32 delay, uint32 group)
{
if (!group || group > 8 || Empty())
return;
EventStore delayed;
for (EventStore::iterator itr = _eventMap.begin(); itr != _eventMap.end();)
{
if (itr->second & (1 << (group + 15)))
{
delayed.insert(EventStore::value_type(itr->first + delay, itr->second));
_eventMap.erase(itr++);
}
else
++itr;
}
_eventMap.insert(delayed.begin(), delayed.end());
}
/**
* @name CancelEvent
* @brief Cancels all events of the specified id.
* @param eventId Event id to cancel.
*/
void CancelEvent(uint32 eventId)
{
if (Empty())
return;
for (EventStore::iterator itr = _eventMap.begin(); itr != _eventMap.end();)
{
if (eventId == (itr->second & 0x0000FFFF))
_eventMap.erase(itr++);
else
++itr;
}
}
/**
* @name CancelEventGroup
* @brief Cancel events belonging to specified group.
* @param group Group to cancel.
*/
void CancelEventGroup(uint32 group)
{
if (!group || group > 8 || Empty())
return;
for (EventStore::iterator itr = _eventMap.begin(); itr != _eventMap.end();)
{
if (itr->second & (1 << (group + 15)))
_eventMap.erase(itr++);
else
++itr;
}
}
/**
* @name GetNextEventTime
* @brief Returns closest occurence of specified event.
* @param eventId Wanted event id.
* @return Time of found event.
*/
uint32 GetNextEventTime(uint32 eventId) const
{
if (Empty())
return 0;
for (EventStore::const_iterator itr = _eventMap.begin(); itr != _eventMap.end(); ++itr)
if (eventId == (itr->second & 0x0000FFFF))
return itr->first;
return 0;
}
/**
* @name GetNextEventTime
* @return Time of next event.
*/
uint32 GetNextEventTime() const
{
return Empty() ? 0 : _eventMap.begin()->first;
}
/**
* @name IsInPhase
* @brief Returns wether event map is in specified phase or not.
* @param phase Wanted phase.
* @return True, if phase of event map contains specified phase.
*/
bool IsInPhase(uint8 phase)
{
return phase <= 8 && (!phase || _phase & (1 << (phase - 1)));
}
private:
/**
* @name _time
* @brief Internal timer.
*
* This does not represent the real date/time value.
* It's more like a stopwatch: It can run, it can be stopped,
* it can be resetted and so on. Events occur when this timer
* has reached their time value. Its value is changed in the
* Update method.
*/
uint32 _time;
/**
* @name _phase
* @brief Phase mask of the event map.
*
* Contains the phases the event map is in. Multiple
* phases from 1 to 8 can be set with SetPhase or
* AddPhase. RemovePhase deactives a phase.
*/
uint8 _phase;
/**
* @name _eventMap
* @brief Internal event storage map. Contains the scheduled events.
*
* See typedef at the beginning of the class for more
* details.
*/
EventStore _eventMap;
};
enum AITarget
{
AITARGET_SELF,
AITARGET_VICTIM,
AITARGET_ENEMY,
AITARGET_ALLY,
AITARGET_BUFF,
AITARGET_DEBUFF
};
enum AICondition
{
AICOND_AGGRO,
AICOND_COMBAT,
AICOND_DIE
};
#define AI_DEFAULT_COOLDOWN 5000
struct AISpellInfoType
{
AISpellInfoType() : target(AITARGET_SELF), condition(AICOND_COMBAT)
, cooldown(AI_DEFAULT_COOLDOWN), realCooldown(0), maxRange(0.0f){ }
AITarget target;
AICondition condition;
uint32 cooldown;
uint32 realCooldown;
float maxRange;
};
AISpellInfoType* GetAISpellInfo(uint32 i);
#endif