/* * This file is part of the TrinityCore Project. See AUTHORS file for Copyright information * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see . */ #include "AreaBoundary.h" #include "Unit.h" // ---== RECTANGLE ==--- RectangleBoundary::RectangleBoundary(float southX, float northX, float eastY, float westY, bool isInverted) : AreaBoundary(isInverted), _minX(southX), _maxX(northX), _minY(eastY), _maxY(westY) { } bool RectangleBoundary::IsWithinBoundaryArea(Position const* pos) const { return !( pos->GetPositionX() < _minX || pos->GetPositionX() > _maxX || pos->GetPositionY() < _minY || pos->GetPositionY() > _maxY ); } // ---== CIRCLE ==--- CircleBoundary::CircleBoundary(Position const& center, double radius, bool isInverted) : AreaBoundary(isInverted), _center(center), _radiusSq(radius*radius) { } CircleBoundary::CircleBoundary(Position const& center, Position const& pointOnCircle, bool isInverted) : AreaBoundary(isInverted), _center(center), _radiusSq(_center.GetDoubleExactDist2dSq(pointOnCircle)) { } bool CircleBoundary::IsWithinBoundaryArea(Position const* pos) const { double offX = _center.GetDoublePositionX() - pos->GetPositionX(); double offY = _center.GetDoublePositionY() - pos->GetPositionY(); return offX*offX+offY*offY <= _radiusSq; } // ---== ELLIPSE ==--- EllipseBoundary::EllipseBoundary(Position const& center, double radiusX, double radiusY, bool isInverted) : AreaBoundary(isInverted), _center(center), _radiusYSq(radiusY*radiusY), _scaleXSq(_radiusYSq / (radiusX*radiusX)) { } bool EllipseBoundary::IsWithinBoundaryArea(Position const* pos) const { double offX = _center.GetDoublePositionX() - pos->GetPositionX(); double offY = _center.GetDoublePositionY() - pos->GetPositionY(); return (offX*offX)*_scaleXSq + (offY*offY) <= _radiusYSq; } // ---== TRIANGLE ==--- TriangleBoundary::TriangleBoundary(Position const& pointA, Position const& pointB, Position const& pointC, bool isInverted) : AreaBoundary(isInverted), _a(pointA), _b(pointB), _c(pointC), _abx(_b.GetDoublePositionX()-_a.GetDoublePositionX()), _bcx(_c.GetDoublePositionX()-_b.GetDoublePositionX()), _cax(_a.GetDoublePositionX() - _c.GetDoublePositionX()), _aby(_b.GetDoublePositionY()-_a.GetDoublePositionY()), _bcy(_c.GetDoublePositionY()-_b.GetDoublePositionY()), _cay(_a.GetDoublePositionY() - _c.GetDoublePositionY()) { } bool TriangleBoundary::IsWithinBoundaryArea(Position const* pos) const { // half-plane signs bool sign1 = ((-_b.GetDoublePositionX() + pos->GetPositionX()) * _aby - (-_b.GetDoublePositionY() + pos->GetPositionY()) * _abx) < 0; bool sign2 = ((-_c.GetDoublePositionX() + pos->GetPositionX()) * _bcy - (-_c.GetDoublePositionY() + pos->GetPositionY()) * _bcx) < 0; bool sign3 = ((-_a.GetDoublePositionX() + pos->GetPositionX()) * _cay - (-_a.GetDoublePositionY() + pos->GetPositionY()) * _cax) < 0; // if all signs are the same, the point is inside the triangle return ((sign1 == sign2) && (sign2 == sign3)); } // ---== PARALLELOGRAM ==--- ParallelogramBoundary::ParallelogramBoundary(Position const& cornerA, Position const& cornerB, Position const& cornerD, bool isInverted) : AreaBoundary(isInverted), _a(cornerA), _b(cornerB), _d(cornerD), _c(DoublePosition(_d.GetDoublePositionX() + (_b.GetDoublePositionX() - _a.GetDoublePositionX()), _d.GetDoublePositionY() + (_b.GetDoublePositionY() - _a.GetDoublePositionY()))), _abx(_b.GetDoublePositionX() - _a.GetDoublePositionX()), _dax(_a.GetDoublePositionX() - _d.GetDoublePositionX()), _aby(_b.GetDoublePositionY() - _a.GetDoublePositionY()), _day(_a.GetDoublePositionY() - _d.GetDoublePositionY()) { } bool ParallelogramBoundary::IsWithinBoundaryArea(Position const* pos) const { // half-plane signs bool sign1 = ((-_b.GetDoublePositionX() + pos->GetPositionX()) * _aby - (-_b.GetDoublePositionY() + pos->GetPositionY()) * _abx) < 0; bool sign2 = ((-_a.GetDoublePositionX() + pos->GetPositionX()) * _day - (-_a.GetDoublePositionY() + pos->GetPositionY()) * _dax) < 0; bool sign3 = ((-_d.GetDoublePositionY() + pos->GetPositionY()) * _abx - (-_d.GetDoublePositionX() + pos->GetPositionX()) * _aby) < 0; // AB = -CD bool sign4 = ((-_c.GetDoublePositionY() + pos->GetPositionY()) * _dax - (-_c.GetDoublePositionX() + pos->GetPositionX()) * _day) < 0; // DA = -BC // if all signs are equal, the point is inside return ((sign1 == sign2) && (sign2 == sign3) && (sign3 == sign4)); } // ---== Z RANGE ==--- ZRangeBoundary::ZRangeBoundary(float minZ, float maxZ, bool isInverted) : AreaBoundary(isInverted), _minZ(minZ), _maxZ(maxZ) { } bool ZRangeBoundary::IsWithinBoundaryArea(Position const* pos) const { return (_minZ <= pos->GetPositionZ() && pos->GetPositionZ() <= _maxZ); } // ---== POLYGON ==--- PolygonBoundary::PolygonBoundary(Position origin, std::vector&& vertices, bool isInverted /* = false*/) : AreaBoundary(isInverted), _origin(origin), _vertices(std::move(vertices)) { } bool PolygonBoundary::IsWithinBoundaryArea(Position const* pos) const { return pos->IsInPolygon2D(_origin, _vertices); } // ---== UNION OF 2 BOUNDARIES ==--- BoundaryUnionBoundary::BoundaryUnionBoundary(AreaBoundary const* b1, AreaBoundary const* b2, bool isInverted) : AreaBoundary(isInverted), _b1(b1), _b2(b2) { ASSERT(b1 && b2); } BoundaryUnionBoundary::~BoundaryUnionBoundary() { delete _b1; delete _b2; } bool BoundaryUnionBoundary::IsWithinBoundaryArea(Position const* pos) const { return (_b1->IsWithinBoundary(pos) || _b2->IsWithinBoundary(pos)); } // ---== INTERSECTION OF 2 BOUNDARIES ==--- BoundaryIntersectionBoundary::BoundaryIntersectionBoundary(AreaBoundary const* b1, AreaBoundary const* b2, bool isInverted) : AreaBoundary(isInverted), _b1(b1), _b2(b2) { ASSERT(b1 && b2); } BoundaryIntersectionBoundary::~BoundaryIntersectionBoundary() { delete _b1; delete _b2; } bool BoundaryIntersectionBoundary::IsWithinBoundaryArea(Position const* pos) const { return (_b1->IsWithinBoundary(pos) && _b2->IsWithinBoundary(pos)); }