/*
 * Copyright (C) 2008-2010 TrinityCore 
 * Copyright (C) 2005-2009 MaNGOS 
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the
 * Free Software Foundation; either version 2 of the License, or (at your
 * option) any later version.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along
 * with this program. If not, see .
 */
#ifndef _UTIL_H
#define _UTIL_H
#include "Common.h"
#include 
#include 
struct Tokens: public std::vector
{
    Tokens(const std::string &src, const char sep, uint32 vectorReserve = 0);
    ~Tokens() { delete m_str; }
    char* m_str;
};
void stripLineInvisibleChars(std::string &src);
std::string secsToTimeString(uint64 timeInSecs, bool shortText = false, bool hoursOnly = false);
uint32 TimeStringToSecs(const std::string& timestring);
std::string TimeToTimestampStr(time_t t);
inline uint32 secsToTimeBitFields(time_t secs)
{
    tm* lt = localtime(&secs);
    return (lt->tm_year - 100) << 24 | lt->tm_mon  << 20 | (lt->tm_mday - 1) << 14 | lt->tm_wday << 11 | lt->tm_hour << 6 | lt->tm_min;
}
/* Return a random number in the range min..max; (max-min) must be smaller than 32768. */
 int32 irand(int32 min, int32 max);
/* Return a random number in the range min..max (inclusive). For reliable results, the difference
* between max and min should be less than RAND32_MAX. */
 uint32 urand(uint32 min, uint32 max);
/* Return a random number in the range 0 .. RAND32_MAX. */
 int32 rand32();
/* Return a random double from 0.0 to 1.0 (exclusive). Floats support only 7 valid decimal digits.
 * A double supports up to 15 valid decimal digits and is used internally (RAND32_MAX has 10 digits).
 * With an FPU, there is usually no difference in performance between float and double. */
 double rand_norm(void);
/* Return a random double from 0.0 to 99.9999999999999. Floats support only 7 valid decimal digits.
 * A double supports up to 15 valid decimal digits and is used internaly (RAND32_MAX has 10 digits).
 * With an FPU, there is usually no difference in performance between float and double. */
 double rand_chance(void);
/* Return true if a random roll fits in the specified chance (range 0-100). */
inline bool roll_chance_f(float chance)
{
    return chance > rand_chance();
}
/* Return true if a random roll fits in the specified chance (range 0-100). */
inline bool roll_chance_i(int chance)
{
    return chance > irand(0, 99);
}
inline void ApplyModUInt32Var(uint32& var, int32 val, bool apply)
{
    int32 cur = var;
    cur += (apply ? val : -val);
    if(cur < 0)
        cur = 0;
    var = cur;
}
inline void ApplyModFloatVar(float& var, float  val, bool apply)
{
    var += (apply ? val : -val);
    if(var < 0)
        var = 0;
}
inline void ApplyPercentModFloatVar(float& var, float val, bool apply)
{
    if (val == -100.0f)     // prevent set var to zero
        val = -99.99f;
    var *= (apply?(100.0f+val)/100.0f : 100.0f / (100.0f+val));
}
bool Utf8toWStr(const std::string& utf8str, std::wstring& wstr);
// in wsize==max size of buffer, out wsize==real string size
bool Utf8toWStr(char const* utf8str, size_t csize, wchar_t* wstr, size_t& wsize);
inline bool Utf8toWStr(const std::string& utf8str, wchar_t* wstr, size_t& wsize)
{
    return Utf8toWStr(utf8str.c_str(), utf8str.size(), wstr, wsize);
}
bool WStrToUtf8(std::wstring wstr, std::string& utf8str);
// size==real string size
bool WStrToUtf8(wchar_t* wstr, size_t size, std::string& utf8str);
size_t utf8length(std::string& utf8str);                    // set string to "" if invalid utf8 sequence
void utf8truncate(std::string& utf8str,size_t len);
inline bool isBasicLatinCharacter(wchar_t wchar)
{
    if(wchar >= L'a' && wchar <= L'z')                      // LATIN SMALL LETTER A - LATIN SMALL LETTER Z
        return true;
    if(wchar >= L'A' && wchar <= L'Z')                      // LATIN CAPITAL LETTER A - LATIN CAPITAL LETTER Z
        return true;
    return false;
}
inline bool isExtendedLatinCharacter(wchar_t wchar)
{
    if(isBasicLatinCharacter(wchar))
        return true;
    if(wchar >= 0x00C0 && wchar <= 0x00D6)                  // LATIN CAPITAL LETTER A WITH GRAVE - LATIN CAPITAL LETTER O WITH DIAERESIS
        return true;
    if(wchar >= 0x00D8 && wchar <= 0x00DF)                  // LATIN CAPITAL LETTER O WITH STROKE - LATIN CAPITAL LETTER THORN
        return true;
    if(wchar == 0x00DF)                                     // LATIN SMALL LETTER SHARP S
        return true;
    if(wchar >= 0x00E0 && wchar <= 0x00F6)                  // LATIN SMALL LETTER A WITH GRAVE - LATIN SMALL LETTER O WITH DIAERESIS
        return true;
    if(wchar >= 0x00F8 && wchar <= 0x00FE)                  // LATIN SMALL LETTER O WITH STROKE - LATIN SMALL LETTER THORN
        return true;
    if(wchar >= 0x0100 && wchar <= 0x012F)                  // LATIN CAPITAL LETTER A WITH MACRON - LATIN SMALL LETTER I WITH OGONEK
        return true;
    if(wchar == 0x1E9E)                                     // LATIN CAPITAL LETTER SHARP S
        return true;
    return false;
}
inline bool isCyrillicCharacter(wchar_t wchar)
{
    if(wchar >= 0x0410 && wchar <= 0x044F)                  // CYRILLIC CAPITAL LETTER A - CYRILLIC SMALL LETTER YA
        return true;
    if(wchar == 0x0401 || wchar == 0x0451)                  // CYRILLIC CAPITAL LETTER IO, CYRILLIC SMALL LETTER IO
        return true;
    return false;
}
inline bool isEastAsianCharacter(wchar_t wchar)
{
    if(wchar >= 0x1100 && wchar <= 0x11F9)                  // Hangul Jamo
        return true;
    if(wchar >= 0x3041 && wchar <= 0x30FF)                  // Hiragana + Katakana
        return true;
    if(wchar >= 0x3131 && wchar <= 0x318E)                  // Hangul Compatibility Jamo
        return true;
    if(wchar >= 0x31F0 && wchar <= 0x31FF)                  // Katakana Phonetic Ext.
        return true;
    if(wchar >= 0x3400 && wchar <= 0x4DB5)                  // CJK Ideographs Ext. A
        return true;
    if(wchar >= 0x4E00 && wchar <= 0x9FC3)                  // Unified CJK Ideographs
        return true;
    if(wchar >= 0xAC00 && wchar <= 0xD7A3)                  // Hangul Syllables
        return true;
    if(wchar >= 0xFF01 && wchar <= 0xFFEE)                  // Halfwidth forms
        return true;
    return false;
}
inline bool isNumeric(wchar_t wchar)
{
    return (wchar >= L'0' && wchar <=L'9');
}
inline bool isNumeric(char c)
{
    return (c >= '0' && c <='9');
}
inline bool isNumeric(char const* str)
{
    for (char const* c = str; *c; ++c)
        if (!isNumeric(*c))
            return false;
    return true;
}
inline bool isNumericOrSpace(wchar_t wchar)
{
    return isNumeric(wchar) || wchar == L' ';
}
inline bool isBasicLatinString(std::wstring wstr, bool numericOrSpace)
{
    for (size_t i = 0; i < wstr.size(); ++i)
        if(!isBasicLatinCharacter(wstr[i]) && (!numericOrSpace || !isNumericOrSpace(wstr[i])))
            return false;
    return true;
}
inline bool isExtendedLatinString(std::wstring wstr, bool numericOrSpace)
{
    for (size_t i = 0; i < wstr.size(); ++i)
        if(!isExtendedLatinCharacter(wstr[i]) && (!numericOrSpace || !isNumericOrSpace(wstr[i])))
            return false;
    return true;
}
inline bool isCyrillicString(std::wstring wstr, bool numericOrSpace)
{
    for (size_t i = 0; i < wstr.size(); ++i)
        if(!isCyrillicCharacter(wstr[i]) && (!numericOrSpace || !isNumericOrSpace(wstr[i])))
            return false;
    return true;
}
inline bool isEastAsianString(std::wstring wstr, bool numericOrSpace)
{
    for (size_t i = 0; i < wstr.size(); ++i)
        if(!isEastAsianCharacter(wstr[i]) && (!numericOrSpace || !isNumericOrSpace(wstr[i])))
            return false;
    return true;
}
inline wchar_t wcharToUpper(wchar_t wchar)
{
    if(wchar >= L'a' && wchar <= L'z')                      // LATIN SMALL LETTER A - LATIN SMALL LETTER Z
        return wchar_t(uint16(wchar)-0x0020);
    if(wchar == 0x00DF)                                     // LATIN SMALL LETTER SHARP S
        return wchar_t(0x1E9E);
    if(wchar >= 0x00E0 && wchar <= 0x00F6)                  // LATIN SMALL LETTER A WITH GRAVE - LATIN SMALL LETTER O WITH DIAERESIS
        return wchar_t(uint16(wchar)-0x0020);
    if(wchar >= 0x00F8 && wchar <= 0x00FE)                  // LATIN SMALL LETTER O WITH STROKE - LATIN SMALL LETTER THORN
        return wchar_t(uint16(wchar)-0x0020);
    if(wchar >= 0x0101 && wchar <= 0x012F)                  // LATIN SMALL LETTER A WITH MACRON - LATIN SMALL LETTER I WITH OGONEK (only %2=1)
    {
        if(wchar % 2 == 1)
            return wchar_t(uint16(wchar)-0x0001);
    }
    if(wchar >= 0x0430 && wchar <= 0x044F)                  // CYRILLIC SMALL LETTER A - CYRILLIC SMALL LETTER YA
        return wchar_t(uint16(wchar)-0x0020);
    if(wchar == 0x0451)                                     // CYRILLIC SMALL LETTER IO
        return wchar_t(0x0401);
    return wchar;
}
inline wchar_t wcharToUpperOnlyLatin(wchar_t wchar)
{
    return isBasicLatinCharacter(wchar) ? wcharToUpper(wchar) : wchar;
}
inline wchar_t wcharToLower(wchar_t wchar)
{
    if(wchar >= L'A' && wchar <= L'Z')                      // LATIN CAPITAL LETTER A - LATIN CAPITAL LETTER Z
        return wchar_t(uint16(wchar)+0x0020);
    if(wchar >= 0x00C0 && wchar <= 0x00D6)                  // LATIN CAPITAL LETTER A WITH GRAVE - LATIN CAPITAL LETTER O WITH DIAERESIS
        return wchar_t(uint16(wchar)+0x0020);
    if(wchar >= 0x00D8 && wchar <= 0x00DE)                  // LATIN CAPITAL LETTER O WITH STROKE - LATIN CAPITAL LETTER THORN
        return wchar_t(uint16(wchar)+0x0020);
    if(wchar >= 0x0100 && wchar <= 0x012E)                  // LATIN CAPITAL LETTER A WITH MACRON - LATIN CAPITAL LETTER I WITH OGONEK (only %2=0)
    {
        if(wchar % 2 == 0)
            return wchar_t(uint16(wchar)+0x0001);
    }
    if(wchar == 0x1E9E)                                     // LATIN CAPITAL LETTER SHARP S
        return wchar_t(0x00DF);
    if(wchar == 0x0401)                                     // CYRILLIC CAPITAL LETTER IO
        return wchar_t(0x0451);
    if(wchar >= 0x0410 && wchar <= 0x042F)                  // CYRILLIC CAPITAL LETTER A - CYRILLIC CAPITAL LETTER YA
        return wchar_t(uint16(wchar)+0x0020);
    return wchar;
}
inline void wstrToUpper(std::wstring& str)
{
    std::transform( str.begin(), str.end(), str.begin(), wcharToUpper );
}
inline void wstrToLower(std::wstring& str)
{
    std::transform( str.begin(), str.end(), str.begin(), wcharToLower );
}
std::wstring GetMainPartOfName(std::wstring wname, uint32 declension);
bool utf8ToConsole(const std::string& utf8str, std::string& conStr);
bool consoleToUtf8(const std::string& conStr,std::string& utf8str);
bool Utf8FitTo(const std::string& str, std::wstring search);
void utf8printf(FILE *out, const char *str, ...);
void vutf8printf(FILE *out, const char *str, va_list* ap);
bool IsIPAddress(char const* ipaddress);
uint32 CreatePIDFile(const std::string& filename);
void hexEncodeByteArray(uint8* bytes, uint32 arrayLen, std::string& result);
#endif
//handler for operations on large flags
#ifndef _FLAG96
#define _FLAG96
#ifndef PAIR64_HIPART
#define PAIR64_HIPART(x)   (uint32)((uint64(x) >> 32) & UI64LIT(0x00000000FFFFFFFF))
#define PAIR64_LOPART(x)   (uint32)(uint64(x)         & UI64LIT(0x00000000FFFFFFFF))
#endif
// simple class for not-modifyable list
template 
class HookList
{
    typedef typename std::list::iterator ListIterator;
    private:
        typename std::list m_list;
    public:
        HookList & operator+=(T t)
        {
            m_list.push_back(t);
            return *this;
        }
        HookList & operator-=(T t)
        {
            m_list.remove(t);
            return *this;
        }
        size_t size()
        {
            return m_list.size();
        }
        ListIterator begin()
        {
            return m_list.begin();
        }
        ListIterator end()
        {
            return m_list.end();
        }
};
class flag96
{
private:
    uint32 part[3];
public:
    flag96(uint32 p1=0,uint32 p2=0,uint32 p3=0)
    {
        part[0]=p1;
        part[1]=p2;
        part[2]=p3;
    }
    flag96(uint64 p1, uint32 p2)
    {
        part[0]=PAIR64_LOPART(p1);
        part[1]=PAIR64_HIPART(p1);
        part[2]=p2;
    }
    inline bool IsEqual(uint32 p1=0, uint32 p2=0, uint32 p3=0) const
    {
        return (
            part[0]==p1 &&
            part[1]==p2 &&
            part[2]==p3);
    };
    inline bool HasFlag(uint32 p1=0, uint32 p2=0, uint32 p3=0) const
    {
        return (
            part[0]&p1 ||
            part[1]&p2 ||
            part[2]&p3);
    };
    inline void Set(uint32 p1=0, uint32 p2=0, uint32 p3=0)
    {
        part[0]=p1;
        part[1]=p2;
        part[2]=p3;
    };
    template
    inline bool operator < (type & right)
    {
        for (uint8 i=3; i > 0; --i)
        {
            if (part[i-1]right.part[i-1])
                return 0;
        }
        return 0;
    };
    template
    inline bool operator < (type & right) const
    {
        for (uint8 i = 3; i > 0; --i)
        {
            if (part[i-1]right.part[i-1])
                return 0;
        }
        return 0;
    };
    template
    inline bool operator != (type & right)
    {
        if (part[0]!=right.part[0]
            || part[1]!=right.part[1]
            || part[2]!=right.part[2])
                return true;
        return false;
    }
    template
    inline bool operator != (type & right) const
    {
        if (part[0]!=right.part[0]
            || part[1]!=right.part[1]
            || part[2]!=right.part[2])
                return true;
        return false;
    };
    template
    inline bool operator == (type & right)
    {
        if (part[0]!=right.part[0]
            || part[1]!=right.part[1]
            || part[2]!=right.part[2])
                return false;
        return true;
    };
    template
    inline bool operator == (type & right) const
    {
        if (part[0]!=right.part[0]
            || part[1]!=right.part[1]
            || part[2]!=right.part[2])
                return false;
        return true;
    };
    template
    inline void operator = (type & right)
    {
        part[0]=right.part[0];
        part[1]=right.part[1];
        part[2]=right.part[2];
    };
    template
    inline flag96 operator & (type & right)
    {
        flag96 ret(part[0] & right.part[0],part[1] & right.part[1],part[2] & right.part[2]);
        return
            ret;
    };
    template
    inline flag96 operator & (type & right) const
    {
        flag96 ret(part[0] & right.part[0],part[1] & right.part[1],part[2] & right.part[2]);
        return
            ret;
    };
    template
    inline void operator &= (type & right)
    {
        *this=*this & right;
    };
    template
    inline flag96 operator | (type & right)
    {
        flag96 ret(part[0] | right.part[0],part[1] | right.part[1],part[2] | right.part[2]);
        return
            ret;
    };
    template
    inline flag96 operator | (type & right) const
    {
        flag96 ret(part[0] | right.part[0],part[1] | right.part[1],part[2] | right.part[2]);
        return
            ret;
    };
    template
    inline void operator |= (type & right)
    {
        *this=*this | right;
    };
    inline void operator ~ ()
    {
        part[2]=~part[2];
        part[1]=~part[1];
        part[0]=~part[0];
    };
    template
    inline flag96 operator ^ (type & right)
    {
        flag96 ret(part[0] ^ right.part[0],part[1] ^ right.part[1],part[2] ^ right.part[2]);
        return
            ret;
    };
    template
    inline flag96 operator ^ (type & right) const
    {
        flag96 ret(part[0] ^ right.part[0],part[1] ^ right.part[1],part[2] ^ right.part[2]);
        return
            ret;
    };
    template
    inline void operator ^= (type & right)
    {
        *this=*this^right;
    };
    inline operator bool() const
    {
        return(
            part[0] != 0 ||
            part[1] != 0 ||
            part[2] != 0);
    };
    inline operator bool()
    {
        return(
            part[0] != 0 ||
            part[1] != 0 ||
            part[2] != 0);
    };
    inline bool operator ! () const
    {
        return(
            part[0] == 0 &&
            part[1] == 0 &&
            part[2] == 0);
    };
    inline bool operator ! ()
    {
        return(
            part[0] == 0 &&
            part[1] == 0 &&
            part[2] == 0);
    };
    inline uint32 & operator[](uint8 el)
    {
        return (part[el]);
    };
    inline const uint32 & operator[](uint8 el) const
    {
        return (part[el]);
    };
};
#endif