/*
* Copyright (C) 2008-2014 TrinityCore
* Copyright (C) 2005-2009 MaNGOS
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see .
*/
#ifndef _UTIL_H
#define _UTIL_H
#include "Define.h"
#include "Errors.h"
#include
#include
#include
#include
#include
// Searcher for map of structs
template struct Finder
{
T val_;
T S::* idMember_;
Finder(T val, T S::* idMember) : val_(val), idMember_(idMember) {}
bool operator()(const std::pair &obj) { return obj.second.*idMember_ == val_; }
};
class Tokenizer
{
public:
typedef std::vector StorageType;
typedef StorageType::size_type size_type;
typedef StorageType::const_iterator const_iterator;
typedef StorageType::reference reference;
typedef StorageType::const_reference const_reference;
public:
Tokenizer(const std::string &src, char const sep, uint32 vectorReserve = 0);
~Tokenizer() { delete[] m_str; }
const_iterator begin() const { return m_storage.begin(); }
const_iterator end() const { return m_storage.end(); }
size_type size() const { return m_storage.size(); }
reference operator [] (size_type i) { return m_storage[i]; }
const_reference operator [] (size_type i) const { return m_storage[i]; }
private:
char* m_str;
StorageType m_storage;
};
void stripLineInvisibleChars(std::string &src);
int32 MoneyStringToMoney(const std::string& moneyString);
std::string secsToTimeString(uint64 timeInSecs, bool shortText = false, bool hoursOnly = false);
uint32 TimeStringToSecs(const std::string& timestring);
std::string TimeToTimestampStr(time_t t);
/* Return a random number in the range min..max; (max-min) must be smaller than 32768. */
int32 irand(int32 min, int32 max);
/* Return a random number in the range min..max (inclusive). For reliable results, the difference
* between max and min should be less than RAND32_MAX. */
uint32 urand(uint32 min, uint32 max);
/* Return a random number in the range 0 .. RAND32_MAX. */
int32 rand32();
/* Return a random number in the range min..max */
float frand(float min, float max);
/* Return a random double from 0.0 to 1.0 (exclusive). Floats support only 7 valid decimal digits.
* A double supports up to 15 valid decimal digits and is used internally (RAND32_MAX has 10 digits).
* With an FPU, there is usually no difference in performance between float and double.
*/
double rand_norm(void);
/* Return a random double from 0.0 to 99.9999999999999. Floats support only 7 valid decimal digits.
* A double supports up to 15 valid decimal digits and is used internally (RAND32_MAX has 10 digits).
* With an FPU, there is usually no difference in performance between float and double.
*/
double rand_chance(void);
/* Return true if a random roll fits in the specified chance (range 0-100). */
inline bool roll_chance_f(float chance)
{
return chance > rand_chance();
}
/* Return true if a random roll fits in the specified chance (range 0-100). */
inline bool roll_chance_i(int chance)
{
return chance > irand(0, 99);
}
inline void ApplyPercentModFloatVar(float& var, float val, bool apply)
{
if (val == -100.0f) // prevent set var to zero
val = -99.99f;
var *= (apply ? (100.0f + val) / 100.0f : 100.0f / (100.0f + val));
}
// Percentage calculation
template
inline T CalculatePct(T base, U pct)
{
return T(base * static_cast(pct) / 100.0f);
}
template
inline T AddPct(T &base, U pct)
{
return base += CalculatePct(base, pct);
}
template
inline T ApplyPct(T &base, U pct)
{
return base = CalculatePct(base, pct);
}
template
inline T RoundToInterval(T& num, T floor, T ceil)
{
return num = std::min(std::max(num, floor), ceil);
}
// UTF8 handling
bool Utf8toWStr(const std::string& utf8str, std::wstring& wstr);
// in wsize==max size of buffer, out wsize==real string size
bool Utf8toWStr(char const* utf8str, size_t csize, wchar_t* wstr, size_t& wsize);
inline bool Utf8toWStr(const std::string& utf8str, wchar_t* wstr, size_t& wsize)
{
return Utf8toWStr(utf8str.c_str(), utf8str.size(), wstr, wsize);
}
bool WStrToUtf8(std::wstring wstr, std::string& utf8str);
// size==real string size
bool WStrToUtf8(wchar_t* wstr, size_t size, std::string& utf8str);
size_t utf8length(std::string& utf8str); // set string to "" if invalid utf8 sequence
void utf8truncate(std::string& utf8str, size_t len);
inline bool isBasicLatinCharacter(wchar_t wchar)
{
if (wchar >= L'a' && wchar <= L'z') // LATIN SMALL LETTER A - LATIN SMALL LETTER Z
return true;
if (wchar >= L'A' && wchar <= L'Z') // LATIN CAPITAL LETTER A - LATIN CAPITAL LETTER Z
return true;
return false;
}
inline bool isExtendedLatinCharacter(wchar_t wchar)
{
if (isBasicLatinCharacter(wchar))
return true;
if (wchar >= 0x00C0 && wchar <= 0x00D6) // LATIN CAPITAL LETTER A WITH GRAVE - LATIN CAPITAL LETTER O WITH DIAERESIS
return true;
if (wchar >= 0x00D8 && wchar <= 0x00DE) // LATIN CAPITAL LETTER O WITH STROKE - LATIN CAPITAL LETTER THORN
return true;
if (wchar == 0x00DF) // LATIN SMALL LETTER SHARP S
return true;
if (wchar >= 0x00E0 && wchar <= 0x00F6) // LATIN SMALL LETTER A WITH GRAVE - LATIN SMALL LETTER O WITH DIAERESIS
return true;
if (wchar >= 0x00F8 && wchar <= 0x00FE) // LATIN SMALL LETTER O WITH STROKE - LATIN SMALL LETTER THORN
return true;
if (wchar >= 0x0100 && wchar <= 0x012F) // LATIN CAPITAL LETTER A WITH MACRON - LATIN SMALL LETTER I WITH OGONEK
return true;
if (wchar == 0x1E9E) // LATIN CAPITAL LETTER SHARP S
return true;
return false;
}
inline bool isCyrillicCharacter(wchar_t wchar)
{
if (wchar >= 0x0410 && wchar <= 0x044F) // CYRILLIC CAPITAL LETTER A - CYRILLIC SMALL LETTER YA
return true;
if (wchar == 0x0401 || wchar == 0x0451) // CYRILLIC CAPITAL LETTER IO, CYRILLIC SMALL LETTER IO
return true;
return false;
}
inline bool isEastAsianCharacter(wchar_t wchar)
{
if (wchar >= 0x1100 && wchar <= 0x11F9) // Hangul Jamo
return true;
if (wchar >= 0x3041 && wchar <= 0x30FF) // Hiragana + Katakana
return true;
if (wchar >= 0x3131 && wchar <= 0x318E) // Hangul Compatibility Jamo
return true;
if (wchar >= 0x31F0 && wchar <= 0x31FF) // Katakana Phonetic Ext.
return true;
if (wchar >= 0x3400 && wchar <= 0x4DB5) // CJK Ideographs Ext. A
return true;
if (wchar >= 0x4E00 && wchar <= 0x9FC3) // Unified CJK Ideographs
return true;
if (wchar >= 0xAC00 && wchar <= 0xD7A3) // Hangul Syllables
return true;
if (wchar >= 0xFF01 && wchar <= 0xFFEE) // Halfwidth forms
return true;
return false;
}
inline bool isNumeric(wchar_t wchar)
{
return (wchar >= L'0' && wchar <=L'9');
}
inline bool isNumeric(char c)
{
return (c >= '0' && c <='9');
}
inline bool isNumeric(char const* str)
{
for (char const* c = str; *c; ++c)
if (!isNumeric(*c))
return false;
return true;
}
inline bool isNumericOrSpace(wchar_t wchar)
{
return isNumeric(wchar) || wchar == L' ';
}
inline bool isBasicLatinString(const std::wstring &wstr, bool numericOrSpace)
{
for (size_t i = 0; i < wstr.size(); ++i)
if (!isBasicLatinCharacter(wstr[i]) && (!numericOrSpace || !isNumericOrSpace(wstr[i])))
return false;
return true;
}
inline bool isExtendedLatinString(const std::wstring &wstr, bool numericOrSpace)
{
for (size_t i = 0; i < wstr.size(); ++i)
if (!isExtendedLatinCharacter(wstr[i]) && (!numericOrSpace || !isNumericOrSpace(wstr[i])))
return false;
return true;
}
inline bool isCyrillicString(const std::wstring &wstr, bool numericOrSpace)
{
for (size_t i = 0; i < wstr.size(); ++i)
if (!isCyrillicCharacter(wstr[i]) && (!numericOrSpace || !isNumericOrSpace(wstr[i])))
return false;
return true;
}
inline bool isEastAsianString(const std::wstring &wstr, bool numericOrSpace)
{
for (size_t i = 0; i < wstr.size(); ++i)
if (!isEastAsianCharacter(wstr[i]) && (!numericOrSpace || !isNumericOrSpace(wstr[i])))
return false;
return true;
}
inline wchar_t wcharToUpper(wchar_t wchar)
{
if (wchar >= L'a' && wchar <= L'z') // LATIN SMALL LETTER A - LATIN SMALL LETTER Z
return wchar_t(uint16(wchar)-0x0020);
if (wchar == 0x00DF) // LATIN SMALL LETTER SHARP S
return wchar_t(0x1E9E);
if (wchar >= 0x00E0 && wchar <= 0x00F6) // LATIN SMALL LETTER A WITH GRAVE - LATIN SMALL LETTER O WITH DIAERESIS
return wchar_t(uint16(wchar)-0x0020);
if (wchar >= 0x00F8 && wchar <= 0x00FE) // LATIN SMALL LETTER O WITH STROKE - LATIN SMALL LETTER THORN
return wchar_t(uint16(wchar)-0x0020);
if (wchar >= 0x0101 && wchar <= 0x012F) // LATIN SMALL LETTER A WITH MACRON - LATIN SMALL LETTER I WITH OGONEK (only %2=1)
{
if (wchar % 2 == 1)
return wchar_t(uint16(wchar)-0x0001);
}
if (wchar >= 0x0430 && wchar <= 0x044F) // CYRILLIC SMALL LETTER A - CYRILLIC SMALL LETTER YA
return wchar_t(uint16(wchar)-0x0020);
if (wchar == 0x0451) // CYRILLIC SMALL LETTER IO
return wchar_t(0x0401);
return wchar;
}
inline wchar_t wcharToUpperOnlyLatin(wchar_t wchar)
{
return isBasicLatinCharacter(wchar) ? wcharToUpper(wchar) : wchar;
}
inline wchar_t wcharToLower(wchar_t wchar)
{
if (wchar >= L'A' && wchar <= L'Z') // LATIN CAPITAL LETTER A - LATIN CAPITAL LETTER Z
return wchar_t(uint16(wchar)+0x0020);
if (wchar >= 0x00C0 && wchar <= 0x00D6) // LATIN CAPITAL LETTER A WITH GRAVE - LATIN CAPITAL LETTER O WITH DIAERESIS
return wchar_t(uint16(wchar)+0x0020);
if (wchar >= 0x00D8 && wchar <= 0x00DE) // LATIN CAPITAL LETTER O WITH STROKE - LATIN CAPITAL LETTER THORN
return wchar_t(uint16(wchar)+0x0020);
if (wchar >= 0x0100 && wchar <= 0x012E) // LATIN CAPITAL LETTER A WITH MACRON - LATIN CAPITAL LETTER I WITH OGONEK (only %2=0)
{
if (wchar % 2 == 0)
return wchar_t(uint16(wchar)+0x0001);
}
if (wchar == 0x1E9E) // LATIN CAPITAL LETTER SHARP S
return wchar_t(0x00DF);
if (wchar == 0x0401) // CYRILLIC CAPITAL LETTER IO
return wchar_t(0x0451);
if (wchar >= 0x0410 && wchar <= 0x042F) // CYRILLIC CAPITAL LETTER A - CYRILLIC CAPITAL LETTER YA
return wchar_t(uint16(wchar)+0x0020);
return wchar;
}
inline void wstrToUpper(std::wstring& str)
{
std::transform( str.begin(), str.end(), str.begin(), wcharToUpper );
}
inline void wstrToLower(std::wstring& str)
{
std::transform( str.begin(), str.end(), str.begin(), wcharToLower );
}
std::wstring GetMainPartOfName(std::wstring wname, uint32 declension);
bool utf8ToConsole(const std::string& utf8str, std::string& conStr);
bool consoleToUtf8(const std::string& conStr, std::string& utf8str);
bool Utf8FitTo(const std::string& str, std::wstring search);
void utf8printf(FILE* out, const char *str, ...);
void vutf8printf(FILE* out, const char *str, va_list* ap);
bool IsIPAddress(char const* ipaddress);
/// Checks if address belongs to the a network with specified submask
bool IsIPAddrInNetwork(ACE_INET_Addr const& net, ACE_INET_Addr const& addr, ACE_INET_Addr const& subnetMask);
/// Transforms ACE_INET_Addr address into string format "dotted_ip:port"
std::string GetAddressString(ACE_INET_Addr const& addr);
uint32 CreatePIDFile(const std::string& filename);
std::string ByteArrayToHexStr(uint8 const* bytes, uint32 length, bool reverse = false);
#endif
//handler for operations on large flags
#ifndef _FLAG96
#define _FLAG96
// simple class for not-modifyable list
template
class HookList
{
typedef typename std::list::iterator ListIterator;
private:
typename std::list m_list;
public:
HookList & operator+=(T t)
{
m_list.push_back(t);
return *this;
}
HookList & operator-=(T t)
{
m_list.remove(t);
return *this;
}
size_t size()
{
return m_list.size();
}
ListIterator begin()
{
return m_list.begin();
}
ListIterator end()
{
return m_list.end();
}
};
class flag96
{
private:
uint32 part[3];
public:
flag96(uint32 p1 = 0, uint32 p2 = 0, uint32 p3 = 0)
{
part[0] = p1;
part[1] = p2;
part[2] = p3;
}
flag96(uint64 p1, uint32 p2)
{
part[0] = (uint32)(p1 & UI64LIT(0x00000000FFFFFFFF));
part[1] = (uint32)((p1 >> 32) & UI64LIT(0x00000000FFFFFFFF));
part[2] = p2;
}
inline bool IsEqual(uint32 p1 = 0, uint32 p2 = 0, uint32 p3 = 0) const
{
return (part[0] == p1 && part[1] == p2 && part[2] == p3);
}
inline bool HasFlag(uint32 p1 = 0, uint32 p2 = 0, uint32 p3 = 0) const
{
return (part[0] & p1 || part[1] & p2 || part[2] & p3);
}
inline void Set(uint32 p1 = 0, uint32 p2 = 0, uint32 p3 = 0)
{
part[0] = p1;
part[1] = p2;
part[2] = p3;
}
inline bool operator <(const flag96 &right) const
{
for (uint8 i = 3; i > 0; --i)
{
if (part[i - 1] < right.part[i - 1])
return true;
else if (part[i - 1] > right.part[i - 1])
return false;
}
return false;
}
inline bool operator ==(const flag96 &right) const
{
return
(
part[0] == right.part[0] &&
part[1] == right.part[1] &&
part[2] == right.part[2]
);
}
inline bool operator !=(const flag96 &right) const
{
return !this->operator ==(right);
}
inline flag96 & operator =(const flag96 &right)
{
part[0] = right.part[0];
part[1] = right.part[1];
part[2] = right.part[2];
return *this;
}
inline flag96 operator &(const flag96 &right) const
{
return flag96(part[0] & right.part[0], part[1] & right.part[1],
part[2] & right.part[2]);
}
inline flag96 & operator &=(const flag96 &right)
{
part[0] &= right.part[0];
part[1] &= right.part[1];
part[2] &= right.part[2];
return *this;
}
inline flag96 operator |(const flag96 &right) const
{
return flag96(part[0] | right.part[0], part[1] | right.part[1],
part[2] | right.part[2]);
}
inline flag96 & operator |=(const flag96 &right)
{
part[0] |= right.part[0];
part[1] |= right.part[1];
part[2] |= right.part[2];
return *this;
}
inline flag96 operator ~() const
{
return flag96(~part[0], ~part[1], ~part[2]);
}
inline flag96 operator ^(const flag96 &right) const
{
return flag96(part[0] ^ right.part[0], part[1] ^ right.part[1],
part[2] ^ right.part[2]);
}
inline flag96 & operator ^=(const flag96 &right)
{
part[0] ^= right.part[0];
part[1] ^= right.part[1];
part[2] ^= right.part[2];
return *this;
}
inline operator bool() const
{
return (part[0] != 0 || part[1] != 0 || part[2] != 0);
}
inline bool operator !() const
{
return !this->operator bool();
}
inline uint32 & operator [](uint8 el)
{
return part[el];
}
inline const uint32 & operator [](uint8 el) const
{
return part[el];
}
};
enum ComparisionType
{
COMP_TYPE_EQ = 0,
COMP_TYPE_HIGH,
COMP_TYPE_LOW,
COMP_TYPE_HIGH_EQ,
COMP_TYPE_LOW_EQ,
COMP_TYPE_MAX
};
template
bool CompareValues(ComparisionType type, T val1, T val2)
{
switch (type)
{
case COMP_TYPE_EQ:
return val1 == val2;
case COMP_TYPE_HIGH:
return val1 > val2;
case COMP_TYPE_LOW:
return val1 < val2;
case COMP_TYPE_HIGH_EQ:
return val1 >= val2;
case COMP_TYPE_LOW_EQ:
return val1 <= val2;
default:
// incorrect parameter
ASSERT(false);
return false;
}
}
class EventMap
{
/**
* Internal storage type.
* Key: Time as uint32 when the event should occur.
* Value: The event data as uint32.
*
* Structure of event data:
* - Bit 0 - 15: Event Id.
* - Bit 16 - 23: Group
* - Bit 24 - 31: Phase
* - Pattern: 0xPPGGEEEE
*/
typedef std::multimap EventStore;
public:
EventMap() : _time(0), _phase(0), _lastEvent(0) { }
/**
* @name Reset
* @brief Removes all scheduled events and resets time and phase.
*/
void Reset()
{
_eventMap.clear();
_time = 0;
_phase = 0;
}
/**
* @name Update
* @brief Updates the timer of the event map.
* @param time Value to be added to time.
*/
void Update(uint32 time)
{
_time += time;
}
/**
* @name GetTimer
* @return Current timer value.
*/
uint32 GetTimer() const
{
return _time;
}
/**
* @name GetPhaseMask
* @return Active phases as mask.
*/
uint8 GetPhaseMask() const
{
return _phase;
}
/**
* @name Empty
* @return True, if there are no events scheduled.
*/
bool Empty() const
{
return _eventMap.empty();
}
/**
* @name SetPhase
* @brief Sets the phase of the map (absolute).
* @param phase Phase which should be set. Values: 1 - 8. 0 resets phase.
*/
void SetPhase(uint8 phase)
{
if (!phase)
_phase = 0;
else if (phase <= 8)
_phase = (1 << (phase - 1));
}
/**
* @name AddPhase
* @brief Activates the given phase (bitwise).
* @param phase Phase which should be activated. Values: 1 - 8
*/
void AddPhase(uint8 phase)
{
if (phase && phase <= 8)
_phase |= (1 << (phase - 1));
}
/**
* @name RemovePhase
* @brief Deactivates the given phase (bitwise).
* @param phase Phase which should be deactivated. Values: 1 - 8.
*/
void RemovePhase(uint8 phase)
{
if (phase && phase <= 8)
_phase &= ~(1 << (phase - 1));
}
/**
* @name ScheduleEvent
* @brief Creates new event entry in map.
* @param eventId The id of the new event.
* @param time The time in milliseconds until the event occurs.
* @param group The group which the event is associated to. Has to be between 1 and 8. 0 means it has no group.
* @param phase The phase in which the event can occur. Has to be between 1 and 8. 0 means it can occur in all phases.
*/
void ScheduleEvent(uint32 eventId, uint32 time, uint32 group = 0, uint8 phase = 0)
{
if (group && group <= 8)
eventId |= (1 << (group + 15));
if (phase && phase <= 8)
eventId |= (1 << (phase + 23));
_eventMap.insert(EventStore::value_type(_time + time, eventId));
}
/**
* @name RescheduleEvent
* @brief Cancels the given event and reschedules it.
* @param eventId The id of the event.
* @param time The time in milliseconds until the event occurs.
* @param group The group which the event is associated to. Has to be between 1 and 8. 0 means it has no group.
* @param phase The phase in which the event can occur. Has to be between 1 and 8. 0 means it can occur in all phases.
*/
void RescheduleEvent(uint32 eventId, uint32 time, uint32 group = 0, uint8 phase = 0)
{
CancelEvent(eventId);
ScheduleEvent(eventId, time, group, phase);
}
/**
* @name RepeatEvent
* @brief Repeats the mostly recently executed event.
* @param time Time until the event occurs.
*/
void Repeat(uint32 time)
{
_eventMap.insert(EventStore::value_type(_time + time, _lastEvent));
}
/**
* @name RepeatEvent
* @brief Repeats the mostly recently executed event.
* @param time Time until the event occurs. Equivalent to Repeat(urand(minTime, maxTime).
*/
void Repeat(uint32 minTime, uint32 maxTime)
{
Repeat(urand(minTime, maxTime));
}
/**
* @name ExecuteEvent
* @brief Returns the next event to execute and removes it from map.
* @return Id of the event to execute.
*/
uint32 ExecuteEvent()
{
while (!Empty())
{
EventStore::iterator itr = _eventMap.begin();
if (itr->first > _time)
return 0;
else if (_phase && (itr->second & 0xFF000000) && !((itr->second >> 24) & _phase))
_eventMap.erase(itr);
else
{
uint32 eventId = (itr->second & 0x0000FFFF);
_lastEvent = itr->second; // include phase/group
_eventMap.erase(itr);
return eventId;
}
}
return 0;
}
/**
* @name DelayEvents
* @brief Delays all events in the map. If delay is greater than or equal internal timer, delay will be 0.
* @param delay Amount of delay.
*/
void DelayEvents(uint32 delay)
{
_time = delay < _time ? _time - delay : 0;
}
/**
* @name DelayEvents
* @brief Delay all events of the same group.
* @param delay Amount of delay.
* @param group Group of the events.
*/
void DelayEvents(uint32 delay, uint32 group)
{
if (!group || group > 8 || Empty())
return;
EventStore delayed;
for (EventStore::iterator itr = _eventMap.begin(); itr != _eventMap.end();)
{
if (itr->second & (1 << (group + 15)))
{
delayed.insert(EventStore::value_type(itr->first + delay, itr->second));
_eventMap.erase(itr++);
}
else
++itr;
}
_eventMap.insert(delayed.begin(), delayed.end());
}
/**
* @name CancelEvent
* @brief Cancels all events of the specified id.
* @param eventId Event id to cancel.
*/
void CancelEvent(uint32 eventId)
{
if (Empty())
return;
for (EventStore::iterator itr = _eventMap.begin(); itr != _eventMap.end();)
{
if (eventId == (itr->second & 0x0000FFFF))
_eventMap.erase(itr++);
else
++itr;
}
}
/**
* @name CancelEventGroup
* @brief Cancel events belonging to specified group.
* @param group Group to cancel.
*/
void CancelEventGroup(uint32 group)
{
if (!group || group > 8 || Empty())
return;
for (EventStore::iterator itr = _eventMap.begin(); itr != _eventMap.end();)
{
if (itr->second & (1 << (group + 15)))
_eventMap.erase(itr++);
else
++itr;
}
}
/**
* @name GetNextEventTime
* @brief Returns closest occurence of specified event.
* @param eventId Wanted event id.
* @return Time of found event.
*/
uint32 GetNextEventTime(uint32 eventId) const
{
if (Empty())
return 0;
for (EventStore::const_iterator itr = _eventMap.begin(); itr != _eventMap.end(); ++itr)
if (eventId == (itr->second & 0x0000FFFF))
return itr->first;
return 0;
}
/**
* @name GetNextEventTime
* @return Time of next event.
*/
uint32 GetNextEventTime() const
{
return Empty() ? 0 : _eventMap.begin()->first;
}
/**
* @name IsInPhase
* @brief Returns wether event map is in specified phase or not.
* @param phase Wanted phase.
* @return True, if phase of event map contains specified phase.
*/
bool IsInPhase(uint8 phase)
{
return phase <= 8 && (!phase || _phase & (1 << (phase - 1)));
}
/**
* @name GetTimeUntilEvent
* @brief Returns time in milliseconds until next event.
* @param Id of the event.
* @return Time of next event.
*/
uint32 GetTimeUntilEvent(uint32 eventId) const
{
for (EventStore::const_iterator itr = _eventMap.begin(); itr != _eventMap.end(); ++itr)
if (eventId == (itr->second & 0x0000FFFF))
return itr->first - _time;
return std::numeric_limits::max();
}
private:
/**
* @name _time
* @brief Internal timer.
*
* This does not represent the real date/time value.
* It's more like a stopwatch: It can run, it can be stopped,
* it can be resetted and so on. Events occur when this timer
* has reached their time value. Its value is changed in the
* Update method.
*/
uint32 _time;
/**
* @name _phase
* @brief Phase mask of the event map.
*
* Contains the phases the event map is in. Multiple
* phases from 1 to 8 can be set with SetPhase or
* AddPhase. RemovePhase deactives a phase.
*/
uint8 _phase;
/**
* @name _eventMap
* @brief Internal event storage map. Contains the scheduled events.
*
* See typedef at the beginning of the class for more
* details.
*/
EventStore _eventMap;
/**
* @name _lastEvent
* @brief Stores information on the most recently executed event
*/
uint32 _lastEvent;
};
#endif