/* * Copyright (C) 2008-2015 TrinityCore * Copyright (C) 2005-2009 MaNGOS * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see . */ #ifndef _UTIL_H #define _UTIL_H #include "Define.h" #include "Errors.h" #include #include #include #include #include // Searcher for map of structs template struct Finder { T val_; T S::* idMember_; Finder(T val, T S::* idMember) : val_(val), idMember_(idMember) {} bool operator()(const std::pair &obj) { return obj.second.*idMember_ == val_; } }; class Tokenizer { public: typedef std::vector StorageType; typedef StorageType::size_type size_type; typedef StorageType::const_iterator const_iterator; typedef StorageType::reference reference; typedef StorageType::const_reference const_reference; public: Tokenizer(const std::string &src, char const sep, uint32 vectorReserve = 0); ~Tokenizer() { delete[] m_str; } const_iterator begin() const { return m_storage.begin(); } const_iterator end() const { return m_storage.end(); } size_type size() const { return m_storage.size(); } reference operator [] (size_type i) { return m_storage[i]; } const_reference operator [] (size_type i) const { return m_storage[i]; } private: char* m_str; StorageType m_storage; }; void stripLineInvisibleChars(std::string &src); int32 MoneyStringToMoney(const std::string& moneyString); struct tm* localtime_r(const time_t* time, struct tm *result); std::string secsToTimeString(uint64 timeInSecs, bool shortText = false, bool hoursOnly = false); uint32 TimeStringToSecs(const std::string& timestring); std::string TimeToTimestampStr(time_t t); /* Return a random number in the range min..max. */ int32 irand(int32 min, int32 max); /* Return a random number in the range min..max (inclusive). */ uint32 urand(uint32 min, uint32 max); /* Return a random number in the range 0 .. UINT32_MAX. */ uint32 rand32(); /* Return a random number in the range min..max */ float frand(float min, float max); /* Return a random double from 0.0 to 1.0 (exclusive). */ double rand_norm(); /* Return a random double from 0.0 to 100.0 (exclusive). */ double rand_chance(); /* Return true if a random roll fits in the specified chance (range 0-100). */ inline bool roll_chance_f(float chance) { return chance > rand_chance(); } /* Return true if a random roll fits in the specified chance (range 0-100). */ inline bool roll_chance_i(int chance) { return chance > irand(0, 99); } inline void ApplyPercentModFloatVar(float& var, float val, bool apply) { if (val == -100.0f) // prevent set var to zero val = -99.99f; var *= (apply ? (100.0f + val) / 100.0f : 100.0f / (100.0f + val)); } // Percentage calculation template inline T CalculatePct(T base, U pct) { return T(base * static_cast(pct) / 100.0f); } template inline T AddPct(T &base, U pct) { return base += CalculatePct(base, pct); } template inline T ApplyPct(T &base, U pct) { return base = CalculatePct(base, pct); } template inline T RoundToInterval(T& num, T floor, T ceil) { return num = std::min(std::max(num, floor), ceil); } // UTF8 handling bool Utf8toWStr(const std::string& utf8str, std::wstring& wstr); // in wsize==max size of buffer, out wsize==real string size bool Utf8toWStr(char const* utf8str, size_t csize, wchar_t* wstr, size_t& wsize); inline bool Utf8toWStr(const std::string& utf8str, wchar_t* wstr, size_t& wsize) { return Utf8toWStr(utf8str.c_str(), utf8str.size(), wstr, wsize); } bool WStrToUtf8(std::wstring const& wstr, std::string& utf8str); // size==real string size bool WStrToUtf8(wchar_t* wstr, size_t size, std::string& utf8str); size_t utf8length(std::string& utf8str); // set string to "" if invalid utf8 sequence void utf8truncate(std::string& utf8str, size_t len); inline bool isBasicLatinCharacter(wchar_t wchar) { if (wchar >= L'a' && wchar <= L'z') // LATIN SMALL LETTER A - LATIN SMALL LETTER Z return true; if (wchar >= L'A' && wchar <= L'Z') // LATIN CAPITAL LETTER A - LATIN CAPITAL LETTER Z return true; return false; } inline bool isExtendedLatinCharacter(wchar_t wchar) { if (isBasicLatinCharacter(wchar)) return true; if (wchar >= 0x00C0 && wchar <= 0x00D6) // LATIN CAPITAL LETTER A WITH GRAVE - LATIN CAPITAL LETTER O WITH DIAERESIS return true; if (wchar >= 0x00D8 && wchar <= 0x00DE) // LATIN CAPITAL LETTER O WITH STROKE - LATIN CAPITAL LETTER THORN return true; if (wchar == 0x00DF) // LATIN SMALL LETTER SHARP S return true; if (wchar >= 0x00E0 && wchar <= 0x00F6) // LATIN SMALL LETTER A WITH GRAVE - LATIN SMALL LETTER O WITH DIAERESIS return true; if (wchar >= 0x00F8 && wchar <= 0x00FE) // LATIN SMALL LETTER O WITH STROKE - LATIN SMALL LETTER THORN return true; if (wchar >= 0x0100 && wchar <= 0x012F) // LATIN CAPITAL LETTER A WITH MACRON - LATIN SMALL LETTER I WITH OGONEK return true; if (wchar == 0x1E9E) // LATIN CAPITAL LETTER SHARP S return true; return false; } inline bool isCyrillicCharacter(wchar_t wchar) { if (wchar >= 0x0410 && wchar <= 0x044F) // CYRILLIC CAPITAL LETTER A - CYRILLIC SMALL LETTER YA return true; if (wchar == 0x0401 || wchar == 0x0451) // CYRILLIC CAPITAL LETTER IO, CYRILLIC SMALL LETTER IO return true; return false; } inline bool isEastAsianCharacter(wchar_t wchar) { if (wchar >= 0x1100 && wchar <= 0x11F9) // Hangul Jamo return true; if (wchar >= 0x3041 && wchar <= 0x30FF) // Hiragana + Katakana return true; if (wchar >= 0x3131 && wchar <= 0x318E) // Hangul Compatibility Jamo return true; if (wchar >= 0x31F0 && wchar <= 0x31FF) // Katakana Phonetic Ext. return true; if (wchar >= 0x3400 && wchar <= 0x4DB5) // CJK Ideographs Ext. A return true; if (wchar >= 0x4E00 && wchar <= 0x9FC3) // Unified CJK Ideographs return true; if (wchar >= 0xAC00 && wchar <= 0xD7A3) // Hangul Syllables return true; if (wchar >= 0xFF01 && wchar <= 0xFFEE) // Halfwidth forms return true; return false; } inline bool isNumeric(wchar_t wchar) { return (wchar >= L'0' && wchar <=L'9'); } inline bool isNumeric(char c) { return (c >= '0' && c <='9'); } inline bool isNumeric(char const* str) { for (char const* c = str; *c; ++c) if (!isNumeric(*c)) return false; return true; } inline bool isNumericOrSpace(wchar_t wchar) { return isNumeric(wchar) || wchar == L' '; } inline bool isBasicLatinString(const std::wstring &wstr, bool numericOrSpace) { for (size_t i = 0; i < wstr.size(); ++i) if (!isBasicLatinCharacter(wstr[i]) && (!numericOrSpace || !isNumericOrSpace(wstr[i]))) return false; return true; } inline bool isExtendedLatinString(const std::wstring &wstr, bool numericOrSpace) { for (size_t i = 0; i < wstr.size(); ++i) if (!isExtendedLatinCharacter(wstr[i]) && (!numericOrSpace || !isNumericOrSpace(wstr[i]))) return false; return true; } inline bool isCyrillicString(const std::wstring &wstr, bool numericOrSpace) { for (size_t i = 0; i < wstr.size(); ++i) if (!isCyrillicCharacter(wstr[i]) && (!numericOrSpace || !isNumericOrSpace(wstr[i]))) return false; return true; } inline bool isEastAsianString(const std::wstring &wstr, bool numericOrSpace) { for (size_t i = 0; i < wstr.size(); ++i) if (!isEastAsianCharacter(wstr[i]) && (!numericOrSpace || !isNumericOrSpace(wstr[i]))) return false; return true; } inline wchar_t wcharToUpper(wchar_t wchar) { if (wchar >= L'a' && wchar <= L'z') // LATIN SMALL LETTER A - LATIN SMALL LETTER Z return wchar_t(uint16(wchar)-0x0020); if (wchar == 0x00DF) // LATIN SMALL LETTER SHARP S return wchar_t(0x1E9E); if (wchar >= 0x00E0 && wchar <= 0x00F6) // LATIN SMALL LETTER A WITH GRAVE - LATIN SMALL LETTER O WITH DIAERESIS return wchar_t(uint16(wchar)-0x0020); if (wchar >= 0x00F8 && wchar <= 0x00FE) // LATIN SMALL LETTER O WITH STROKE - LATIN SMALL LETTER THORN return wchar_t(uint16(wchar)-0x0020); if (wchar >= 0x0101 && wchar <= 0x012F) // LATIN SMALL LETTER A WITH MACRON - LATIN SMALL LETTER I WITH OGONEK (only %2=1) { if (wchar % 2 == 1) return wchar_t(uint16(wchar)-0x0001); } if (wchar >= 0x0430 && wchar <= 0x044F) // CYRILLIC SMALL LETTER A - CYRILLIC SMALL LETTER YA return wchar_t(uint16(wchar)-0x0020); if (wchar == 0x0451) // CYRILLIC SMALL LETTER IO return wchar_t(0x0401); return wchar; } inline wchar_t wcharToUpperOnlyLatin(wchar_t wchar) { return isBasicLatinCharacter(wchar) ? wcharToUpper(wchar) : wchar; } inline wchar_t wcharToLower(wchar_t wchar) { if (wchar >= L'A' && wchar <= L'Z') // LATIN CAPITAL LETTER A - LATIN CAPITAL LETTER Z return wchar_t(uint16(wchar)+0x0020); if (wchar >= 0x00C0 && wchar <= 0x00D6) // LATIN CAPITAL LETTER A WITH GRAVE - LATIN CAPITAL LETTER O WITH DIAERESIS return wchar_t(uint16(wchar)+0x0020); if (wchar >= 0x00D8 && wchar <= 0x00DE) // LATIN CAPITAL LETTER O WITH STROKE - LATIN CAPITAL LETTER THORN return wchar_t(uint16(wchar)+0x0020); if (wchar >= 0x0100 && wchar <= 0x012E) // LATIN CAPITAL LETTER A WITH MACRON - LATIN CAPITAL LETTER I WITH OGONEK (only %2=0) { if (wchar % 2 == 0) return wchar_t(uint16(wchar)+0x0001); } if (wchar == 0x1E9E) // LATIN CAPITAL LETTER SHARP S return wchar_t(0x00DF); if (wchar == 0x0401) // CYRILLIC CAPITAL LETTER IO return wchar_t(0x0451); if (wchar >= 0x0410 && wchar <= 0x042F) // CYRILLIC CAPITAL LETTER A - CYRILLIC CAPITAL LETTER YA return wchar_t(uint16(wchar)+0x0020); return wchar; } inline void wstrToUpper(std::wstring& str) { std::transform( str.begin(), str.end(), str.begin(), wcharToUpper ); } inline void wstrToLower(std::wstring& str) { std::transform( str.begin(), str.end(), str.begin(), wcharToLower ); } std::wstring GetMainPartOfName(std::wstring const& wname, uint32 declension); bool utf8ToConsole(const std::string& utf8str, std::string& conStr); bool consoleToUtf8(const std::string& conStr, std::string& utf8str); bool Utf8FitTo(const std::string& str, std::wstring const& search); void utf8printf(FILE* out, const char *str, ...); void vutf8printf(FILE* out, const char *str, va_list* ap); bool IsIPAddress(char const* ipaddress); uint32 CreatePIDFile(const std::string& filename); std::string ByteArrayToHexStr(uint8 const* bytes, uint32 length, bool reverse = false); // simple class for not-modifyable list template class HookList { typedef typename std::list::iterator ListIterator; private: typename std::list m_list; public: HookList & operator+=(T t) { m_list.push_back(t); return *this; } HookList & operator-=(T t) { m_list.remove(t); return *this; } size_t size() { return m_list.size(); } ListIterator begin() { return m_list.begin(); } ListIterator end() { return m_list.end(); } }; class flag96 { private: uint32 part[3]; public: flag96(uint32 p1 = 0, uint32 p2 = 0, uint32 p3 = 0) { part[0] = p1; part[1] = p2; part[2] = p3; } inline bool IsEqual(uint32 p1 = 0, uint32 p2 = 0, uint32 p3 = 0) const { return (part[0] == p1 && part[1] == p2 && part[2] == p3); } inline bool HasFlag(uint32 p1 = 0, uint32 p2 = 0, uint32 p3 = 0) const { return (part[0] & p1 || part[1] & p2 || part[2] & p3); } inline void Set(uint32 p1 = 0, uint32 p2 = 0, uint32 p3 = 0) { part[0] = p1; part[1] = p2; part[2] = p3; } inline bool operator <(const flag96 &right) const { for (uint8 i = 3; i > 0; --i) { if (part[i - 1] < right.part[i - 1]) return true; else if (part[i - 1] > right.part[i - 1]) return false; } return false; } inline bool operator ==(const flag96 &right) const { return ( part[0] == right.part[0] && part[1] == right.part[1] && part[2] == right.part[2] ); } inline bool operator !=(const flag96 &right) const { return !this->operator ==(right); } inline flag96 & operator =(const flag96 &right) { part[0] = right.part[0]; part[1] = right.part[1]; part[2] = right.part[2]; return *this; } inline flag96 operator &(const flag96 &right) const { return flag96(part[0] & right.part[0], part[1] & right.part[1], part[2] & right.part[2]); } inline flag96 & operator &=(const flag96 &right) { part[0] &= right.part[0]; part[1] &= right.part[1]; part[2] &= right.part[2]; return *this; } inline flag96 operator |(const flag96 &right) const { return flag96(part[0] | right.part[0], part[1] | right.part[1], part[2] | right.part[2]); } inline flag96 & operator |=(const flag96 &right) { part[0] |= right.part[0]; part[1] |= right.part[1]; part[2] |= right.part[2]; return *this; } inline flag96 operator ~() const { return flag96(~part[0], ~part[1], ~part[2]); } inline flag96 operator ^(const flag96 &right) const { return flag96(part[0] ^ right.part[0], part[1] ^ right.part[1], part[2] ^ right.part[2]); } inline flag96 & operator ^=(const flag96 &right) { part[0] ^= right.part[0]; part[1] ^= right.part[1]; part[2] ^= right.part[2]; return *this; } inline operator bool() const { return (part[0] != 0 || part[1] != 0 || part[2] != 0); } inline bool operator !() const { return !this->operator bool(); } inline uint32 & operator [](uint8 el) { return part[el]; } inline const uint32 & operator [](uint8 el) const { return part[el]; } }; enum ComparisionType { COMP_TYPE_EQ = 0, COMP_TYPE_HIGH, COMP_TYPE_LOW, COMP_TYPE_HIGH_EQ, COMP_TYPE_LOW_EQ, COMP_TYPE_MAX }; template bool CompareValues(ComparisionType type, T val1, T val2) { switch (type) { case COMP_TYPE_EQ: return val1 == val2; case COMP_TYPE_HIGH: return val1 > val2; case COMP_TYPE_LOW: return val1 < val2; case COMP_TYPE_HIGH_EQ: return val1 >= val2; case COMP_TYPE_LOW_EQ: return val1 <= val2; default: // incorrect parameter ASSERT(false); return false; } } class EventMap { /** * Internal storage type. * Key: Time as uint32 when the event should occur. * Value: The event data as uint32. * * Structure of event data: * - Bit 0 - 15: Event Id. * - Bit 16 - 23: Group * - Bit 24 - 31: Phase * - Pattern: 0xPPGGEEEE */ typedef std::multimap EventStore; public: EventMap() : _time(0), _phase(0), _lastEvent(0) { } /** * @name Reset * @brief Removes all scheduled events and resets time and phase. */ void Reset() { _eventMap.clear(); _time = 0; _phase = 0; } /** * @name Update * @brief Updates the timer of the event map. * @param time Value to be added to time. */ void Update(uint32 time) { _time += time; } /** * @name GetTimer * @return Current timer value. */ uint32 GetTimer() const { return _time; } /** * @name GetPhaseMask * @return Active phases as mask. */ uint8 GetPhaseMask() const { return _phase; } /** * @name Empty * @return True, if there are no events scheduled. */ bool Empty() const { return _eventMap.empty(); } /** * @name SetPhase * @brief Sets the phase of the map (absolute). * @param phase Phase which should be set. Values: 1 - 8. 0 resets phase. */ void SetPhase(uint8 phase) { if (!phase) _phase = 0; else if (phase <= 8) _phase = uint8(1 << (phase - 1)); } /** * @name AddPhase * @brief Activates the given phase (bitwise). * @param phase Phase which should be activated. Values: 1 - 8 */ void AddPhase(uint8 phase) { if (phase && phase <= 8) _phase |= uint8(1 << (phase - 1)); } /** * @name RemovePhase * @brief Deactivates the given phase (bitwise). * @param phase Phase which should be deactivated. Values: 1 - 8. */ void RemovePhase(uint8 phase) { if (phase && phase <= 8) _phase &= uint8(~(1 << (phase - 1))); } /** * @name ScheduleEvent * @brief Creates new event entry in map. * @param eventId The id of the new event. * @param time The time in milliseconds until the event occurs. * @param group The group which the event is associated to. Has to be between 1 and 8. 0 means it has no group. * @param phase The phase in which the event can occur. Has to be between 1 and 8. 0 means it can occur in all phases. */ void ScheduleEvent(uint32 eventId, uint32 time, uint32 group = 0, uint8 phase = 0) { if (group && group <= 8) eventId |= (1 << (group + 15)); if (phase && phase <= 8) eventId |= (1 << (phase + 23)); _eventMap.insert(EventStore::value_type(_time + time, eventId)); } /** * @name RescheduleEvent * @brief Cancels the given event and reschedules it. * @param eventId The id of the event. * @param time The time in milliseconds until the event occurs. * @param group The group which the event is associated to. Has to be between 1 and 8. 0 means it has no group. * @param phase The phase in which the event can occur. Has to be between 1 and 8. 0 means it can occur in all phases. */ void RescheduleEvent(uint32 eventId, uint32 time, uint32 group = 0, uint8 phase = 0) { CancelEvent(eventId); ScheduleEvent(eventId, time, group, phase); } /** * @name RepeatEvent * @brief Repeats the mostly recently executed event. * @param time Time until the event occurs. */ void Repeat(uint32 time) { _eventMap.insert(EventStore::value_type(_time + time, _lastEvent)); } /** * @name RepeatEvent * @brief Repeats the mostly recently executed event. * @param time Time until the event occurs. Equivalent to Repeat(urand(minTime, maxTime). */ void Repeat(uint32 minTime, uint32 maxTime) { Repeat(urand(minTime, maxTime)); } /** * @name ExecuteEvent * @brief Returns the next event to execute and removes it from map. * @return Id of the event to execute. */ uint32 ExecuteEvent() { while (!Empty()) { EventStore::iterator itr = _eventMap.begin(); if (itr->first > _time) return 0; else if (_phase && (itr->second & 0xFF000000) && !((itr->second >> 24) & _phase)) _eventMap.erase(itr); else { uint32 eventId = (itr->second & 0x0000FFFF); _lastEvent = itr->second; // include phase/group _eventMap.erase(itr); return eventId; } } return 0; } /** * @name DelayEvents * @brief Delays all events in the map. If delay is greater than or equal internal timer, delay will be 0. * @param delay Amount of delay. */ void DelayEvents(uint32 delay) { _time = delay < _time ? _time - delay : 0; } /** * @name DelayEvents * @brief Delay all events of the same group. * @param delay Amount of delay. * @param group Group of the events. */ void DelayEvents(uint32 delay, uint32 group) { if (!group || group > 8 || Empty()) return; EventStore delayed; for (EventStore::iterator itr = _eventMap.begin(); itr != _eventMap.end();) { if (itr->second & (1 << (group + 15))) { delayed.insert(EventStore::value_type(itr->first + delay, itr->second)); _eventMap.erase(itr++); } else ++itr; } _eventMap.insert(delayed.begin(), delayed.end()); } /** * @name CancelEvent * @brief Cancels all events of the specified id. * @param eventId Event id to cancel. */ void CancelEvent(uint32 eventId) { if (Empty()) return; for (EventStore::iterator itr = _eventMap.begin(); itr != _eventMap.end();) { if (eventId == (itr->second & 0x0000FFFF)) _eventMap.erase(itr++); else ++itr; } } /** * @name CancelEventGroup * @brief Cancel events belonging to specified group. * @param group Group to cancel. */ void CancelEventGroup(uint32 group) { if (!group || group > 8 || Empty()) return; for (EventStore::iterator itr = _eventMap.begin(); itr != _eventMap.end();) { if (itr->second & (1 << (group + 15))) _eventMap.erase(itr++); else ++itr; } } /** * @name GetNextEventTime * @brief Returns closest occurence of specified event. * @param eventId Wanted event id. * @return Time of found event. */ uint32 GetNextEventTime(uint32 eventId) const { if (Empty()) return 0; for (EventStore::const_iterator itr = _eventMap.begin(); itr != _eventMap.end(); ++itr) if (eventId == (itr->second & 0x0000FFFF)) return itr->first; return 0; } /** * @name GetNextEventTime * @return Time of next event. */ uint32 GetNextEventTime() const { return Empty() ? 0 : _eventMap.begin()->first; } /** * @name IsInPhase * @brief Returns wether event map is in specified phase or not. * @param phase Wanted phase. * @return True, if phase of event map contains specified phase. */ bool IsInPhase(uint8 phase) { return phase <= 8 && (!phase || _phase & (1 << (phase - 1))); } /** * @name GetTimeUntilEvent * @brief Returns time in milliseconds until next event. * @param Id of the event. * @return Time of next event. */ uint32 GetTimeUntilEvent(uint32 eventId) const; private: /** * @name _time * @brief Internal timer. * * This does not represent the real date/time value. * It's more like a stopwatch: It can run, it can be stopped, * it can be resetted and so on. Events occur when this timer * has reached their time value. Its value is changed in the * Update method. */ uint32 _time; /** * @name _phase * @brief Phase mask of the event map. * * Contains the phases the event map is in. Multiple * phases from 1 to 8 can be set with SetPhase or * AddPhase. RemovePhase deactives a phase. */ uint8 _phase; /** * @name _eventMap * @brief Internal event storage map. Contains the scheduled events. * * See typedef at the beginning of the class for more * details. */ EventStore _eventMap; /** * @name _lastEvent * @brief Stores information on the most recently executed event */ uint32 _lastEvent; }; #endif