/*
* Copyright (C) 2005-2010 MaNGOS
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "WorldModel.h"
#include "VMapDefinitions.h"
#include "MapTree.h"
using G3D::Vector3;
using G3D::Ray;
template<> struct BoundsTrait
{
static void getBounds(const VMAP::GroupModel& obj, G3D::AABox& out) { out = obj.GetBound(); }
};
namespace VMAP
{
bool IntersectTriangle(const MeshTriangle &tri, std::vector::const_iterator points, const G3D::Ray &ray, float &distance)
{
static const float EPS = 1e-5f;
// See RTR2 ch. 13.7 for the algorithm.
const Vector3 e1 = points[tri.idx1] - points[tri.idx0];
const Vector3 e2 = points[tri.idx2] - points[tri.idx0];
const Vector3 p(ray.direction().cross(e2));
const float a = e1.dot(p);
if (abs(a) < EPS) {
// Determinant is ill-conditioned; abort early
return false;
}
const float f = 1.0f / a;
const Vector3 s(ray.origin() - points[tri.idx0]);
const float u = f * s.dot(p);
if ((u < 0.0f) || (u > 1.0f)) {
// We hit the plane of the m_geometry, but outside the m_geometry
return false;
}
const Vector3 q(s.cross(e1));
const float v = f * ray.direction().dot(q);
if ((v < 0.0f) || ((u + v) > 1.0f)) {
// We hit the plane of the triangle, but outside the triangle
return false;
}
const float t = f * e2.dot(q);
if ((t > 0.0f) && (t < distance))
{
// This is a new hit, closer than the previous one
distance = t;
/* baryCoord[0] = 1.0 - u - v;
baryCoord[1] = u;
baryCoord[2] = v; */
return true;
}
// This hit is after the previous hit, so ignore it
return false;
}
class TriBoundFunc
{
public:
TriBoundFunc(std::vector &vert): vertices(vert.begin()) {}
void operator()(const MeshTriangle &tri, G3D::AABox &out) const
{
G3D::Vector3 lo = vertices[tri.idx0];
G3D::Vector3 hi = lo;
lo = (lo.min(vertices[tri.idx1])).min(vertices[tri.idx2]);
hi = (hi.max(vertices[tri.idx1])).max(vertices[tri.idx2]);
out = G3D::AABox(lo, hi);
}
protected:
const std::vector::const_iterator vertices;
};
// ===================== WmoLiquid ==================================
WmoLiquid::WmoLiquid(uint32 width, uint32 height, const Vector3 &corner, uint32 type):
iTilesX(width), iTilesY(height), iCorner(corner), iType(type)
{
iHeight = new float[(width+1)*(height+1)];
iFlags = new uint8[width*height];
}
WmoLiquid::WmoLiquid(const WmoLiquid &other): iHeight(0), iFlags(0)
{
*this = other; // use assignment operator...
}
WmoLiquid::~WmoLiquid()
{
delete[] iHeight;
delete[] iFlags;
}
WmoLiquid& WmoLiquid::operator=(const WmoLiquid &other)
{
if (this == &other)
return *this;
iTilesX = other.iTilesX;
iTilesY = other.iTilesY;
iCorner = other.iCorner;
iType = other.iType;
delete iHeight;
delete iFlags;
if (other.iHeight)
{
iHeight = new float[(iTilesX+1)*(iTilesY+1)];
memcpy(iHeight, other.iHeight, (iTilesX+1)*(iTilesY+1)*sizeof(float));
}
else
iHeight = 0;
if (other.iFlags)
{
iFlags = new uint8[iTilesX * iTilesY];
memcpy(iFlags, other.iFlags, iTilesX * iTilesY);
}
else
iFlags = 0;
return *this;
}
bool WmoLiquid::GetLiquidHeight(const Vector3 &pos, float &liqHeight) const
{
uint32 tx = (pos.x - iCorner.x)/LIQUID_TILE_SIZE;
if (tx<0 || tx >= iTilesX) return false;
uint32 ty = (pos.y - iCorner.y)/LIQUID_TILE_SIZE;
if (ty<0 || ty >= iTilesY) return false;
// checking for 0x08 *might* be enough, but disabled tiles always are 0x?F:
if ((iFlags[tx + ty*iTilesX] & 0x0F) == 0x0F)
return false;
//placeholder...use only lower left corner vertex
liqHeight = /* iCorner.z + */ iHeight[tx + ty*(iTilesX+1)];
return true;
}
uint32 WmoLiquid::GetFileSize()
{
return 2 * sizeof(uint32) +
sizeof(Vector3) +
(iTilesX + 1)*(iTilesY + 1) * sizeof(float) +
iTilesX * iTilesY;
}
bool WmoLiquid::writeToFile(FILE *wf)
{
bool result = true;
if (result && fwrite(&iTilesX, sizeof(uint32), 1, wf) != 1) result = false;
if (result && fwrite(&iTilesY, sizeof(uint32), 1, wf) != 1) result = false;
if (result && fwrite(&iCorner, sizeof(Vector3), 1, wf) != 1) result = false;
if (result && fwrite(&iType, sizeof(uint32), 1, wf) != 1) result = false;
uint32 size = (iTilesX + 1)*(iTilesY + 1);
if (result && fwrite(iHeight, sizeof(float), size, wf) != size) result = false;
size = iTilesX*iTilesY;
if (result && fwrite(iFlags, sizeof(uint8), size, wf) != size) result = false;
return result;
}
bool WmoLiquid::readFromFile(FILE *rf, WmoLiquid *&out)
{
bool result = true;
WmoLiquid *liquid = new WmoLiquid();
if (result && fread(&liquid->iTilesX, sizeof(uint32), 1, rf) != 1) result = false;
if (result && fread(&liquid->iTilesY, sizeof(uint32), 1, rf) != 1) result = false;
if (result && fread(&liquid->iCorner, sizeof(Vector3), 1, rf) != 1) result = false;
if (result && fread(&liquid->iType, sizeof(uint32), 1, rf) != 1) result = false;
uint32 size = (liquid->iTilesX + 1)*(liquid->iTilesY + 1);
liquid->iHeight = new float[size];
if (result && fread(liquid->iHeight, sizeof(float), size, rf) != size) result = false;
size = liquid->iTilesX * liquid->iTilesY;
liquid->iFlags = new uint8[size];
if (result && fread(liquid->iFlags, sizeof(uint8), size, rf) != size) result = false;
if (!result)
delete liquid;
out = liquid;
return result;
}
// ===================== GroupModel ==================================
GroupModel::GroupModel(const GroupModel &other):
iBound(other.iBound), iMogpFlags(other.iMogpFlags), iGroupWMOID(other.iGroupWMOID),
vertices(other.vertices), triangles(other.triangles), meshTree(other.meshTree), iLiquid(0)
{
if (other.iLiquid)
iLiquid = new WmoLiquid(*other.iLiquid);
}
void GroupModel::setMeshData(std::vector &vert, std::vector &tri)
{
vertices.swap(vert);
triangles.swap(tri);
TriBoundFunc bFunc(vertices);
meshTree.build(triangles, bFunc);
}
bool GroupModel::writeToFile(FILE *wf)
{
bool result = true;
uint32 chunkSize, count;
if (result && fwrite(&iBound, sizeof(G3D::AABox), 1, wf) != 1) result = false;
if (result && fwrite(&iMogpFlags, sizeof(uint32), 1, wf) != 1) result = false;
if (result && fwrite(&iGroupWMOID, sizeof(uint32), 1, wf) != 1) result = false;
// write vertices
if (result && fwrite("VERT", 1, 4, wf) != 4) result = false;
count = vertices.size();
chunkSize = sizeof(uint32)+ sizeof(Vector3)*count;
if (result && fwrite(&chunkSize, sizeof(uint32), 1, wf) != 1) result = false;
if (result && fwrite(&count, sizeof(uint32), 1, wf) != 1) result = false;
if (!count) // models without (collision) geometry end here, unsure if they are useful
return result;
if (result && fwrite(&vertices[0], sizeof(Vector3), count, wf) != count) result = false;
// write triangle mesh
if (result && fwrite("TRIM", 1, 4, wf) != 4) result = false;
count = triangles.size();
chunkSize = sizeof(uint32)+ sizeof(MeshTriangle)*count;
if (result && fwrite(&chunkSize, sizeof(uint32), 1, wf) != 1) result = false;
if (result && fwrite(&count, sizeof(uint32), 1, wf) != 1) result = false;
if (result && fwrite(&triangles[0], sizeof(MeshTriangle), count, wf) != count) result = false;
// write mesh BIH
if (result && fwrite("MBIH", 1, 4, wf) != 4) result = false;
if (result) result = meshTree.writeToFile(wf);
// write liquid data
if (result && fwrite("LIQU", 1, 4, wf) != 4) result = false;
if (!iLiquid)
{
chunkSize = 0;
if (result && fwrite(&chunkSize, sizeof(uint32), 1, wf) != 1) result = false;
return result;
}
chunkSize = iLiquid->GetFileSize();
if (result && fwrite(&chunkSize, sizeof(uint32), 1, wf) != 1) result = false;
if (result) result = iLiquid->writeToFile(wf);
return result;
}
bool GroupModel::readFromFile(FILE *rf)
{
char chunk[8];
bool result = true;
uint32 chunkSize, count;
triangles.clear();
vertices.clear();
delete iLiquid;
iLiquid = 0;
if (result && fread(&iBound, sizeof(G3D::AABox), 1, rf) != 1) result = false;
if (result && fread(&iMogpFlags, sizeof(uint32), 1, rf) != 1) result = false;
if (result && fread(&iGroupWMOID, sizeof(uint32), 1, rf) != 1) result = false;
// read vertices
if (result && !readChunk(rf, chunk, "VERT", 4)) result = false;
if (result && fread(&chunkSize, sizeof(uint32), 1, rf) != 1) result = false;
if (result && fread(&count, sizeof(uint32), 1, rf) != 1) result = false;
if (!count) // models without (collision) geometry end here, unsure if they are useful
return result;
if (result) vertices.resize(count);
if (result && fread(&vertices[0], sizeof(Vector3), count, rf) != count) result = false;
// read triangle mesh
if (result && !readChunk(rf, chunk, "TRIM", 4)) result = false;
if (result && fread(&chunkSize, sizeof(uint32), 1, rf) != 1) result = false;
if (result && fread(&count, sizeof(uint32), 1, rf) != 1) result = false;
if (result) triangles.resize(count);
if (result && fread(&triangles[0], sizeof(MeshTriangle), count, rf) != count) result = false;
// read mesh BIH
if (result && !readChunk(rf, chunk, "MBIH", 4)) result = false;
if (result) result = meshTree.readFromFile(rf);
// write liquid data
if (result && !readChunk(rf, chunk, "LIQU", 4)) result = false;
if (result && fread(&chunkSize, sizeof(uint32), 1, rf) != 1) result = false;
if (result && chunkSize > 0)
result = WmoLiquid::readFromFile(rf, iLiquid);
return result;
}
struct GModelRayCallback
{
GModelRayCallback(const std::vector &tris, const std::vector &vert):
vertices(vert.begin()), triangles(tris.begin()), hit(false) {}
bool operator()(const G3D::Ray& ray, uint32 entry, float& distance, bool pStopAtFirstHit)
{
bool result = IntersectTriangle(triangles[entry], vertices, ray, distance);
if (result) hit=true;
return hit;
}
std::vector::const_iterator vertices;
std::vector::const_iterator triangles;
bool hit;
};
bool GroupModel::IntersectRay(const G3D::Ray &ray, float &distance, bool stopAtFirstHit) const
{
if (!triangles.size())
return false;
GModelRayCallback callback(triangles, vertices);
meshTree.intersectRay(ray, callback, distance, stopAtFirstHit);
return callback.hit;
}
bool GroupModel::IsInsideObject(const Vector3 &pos, const Vector3 &down, float &z_dist) const
{
if (!triangles.size() || !iBound.contains(pos))
return false;
GModelRayCallback callback(triangles, vertices);
Vector3 rPos = pos - 0.1f * down;
float dist = G3D::inf();
G3D::Ray ray(rPos, down);
bool hit = IntersectRay(ray, dist, false);
if (hit)
z_dist = dist - 0.1f;
return hit;
}
bool GroupModel::GetLiquidLevel(const Vector3 &pos, float &liqHeight) const
{
if (iLiquid)
return iLiquid->GetLiquidHeight(pos, liqHeight);
return false;
}
uint32 GroupModel::GetLiquidType() const
{
// convert to type mask, matching MAP_LIQUID_TYPE_* defines in Map.h
if (iLiquid)
return (1 << iLiquid->GetType());
return 0;
}
// ===================== WorldModel ==================================
void WorldModel::setGroupModels(std::vector &models)
{
groupModels.swap(models);
groupTree.build(groupModels, BoundsTrait::getBounds, 1);
}
struct WModelRayCallBack
{
WModelRayCallBack(const std::vector &mod): models(mod.begin()), hit(false) {}
bool operator()(const G3D::Ray& ray, uint32 entry, float& distance, bool pStopAtFirstHit)
{
bool result = models[entry].IntersectRay(ray, distance, pStopAtFirstHit);
if (result) hit=true;
return hit;
}
std::vector::const_iterator models;
bool hit;
};
bool WorldModel::IntersectRay(const G3D::Ray &ray, float &distance, bool stopAtFirstHit) const
{
// small M2 workaround, maybe better make separate class with virtual intersection funcs
// in any case, there's no need to use a bound tree if we only have one submodel
if (groupModels.size() == 1)
return groupModels[0].IntersectRay(ray, distance, stopAtFirstHit);
WModelRayCallBack isc(groupModels);
groupTree.intersectRay(ray, isc, distance, stopAtFirstHit);
return isc.hit;
}
class WModelAreaCallback {
public:
WModelAreaCallback(const std::vector &vals, const Vector3 &down):
prims(vals.begin()), hit(vals.end()), minVol(G3D::inf()), zDist(G3D::inf()), zVec(down) {}
std::vector::const_iterator prims;
std::vector::const_iterator hit;
float minVol;
float zDist;
Vector3 zVec;
void operator()(const Vector3& point, uint32 entry)
{
float group_Z;
//float pVol = prims[entry].GetBound().volume();
//if(pVol < minVol)
//{
/* if (prims[entry].iBound.contains(point)) */
if (prims[entry].IsInsideObject(point, zVec, group_Z))
{
//minVol = pVol;
//hit = prims + entry;
if (group_Z < zDist)
{
zDist = group_Z;
hit = prims + entry;
}
#ifdef VMAP_DEBUG
const GroupModel &gm = prims[entry];
printf("%10u %8X %7.3f,%7.3f,%7.3f | %7.3f,%7.3f,%7.3f | z=%f, p_z=%f\n", gm.GetWmoID(), gm.GetMogpFlags(),
gm.GetBound().low().x, gm.GetBound().low().y, gm.GetBound().low().z,
gm.GetBound().high().x, gm.GetBound().high().y, gm.GetBound().high().z, group_Z, point.z);
#endif
}
//}
//std::cout << "trying to intersect '" << prims[entry].name << "'\n";
}
};
bool WorldModel::IntersectPoint(const G3D::Vector3 &p, const G3D::Vector3 &down, float &dist, AreaInfo &info) const
{
if (!groupModels.size())
return false;
WModelAreaCallback callback(groupModels, down);
groupTree.intersectPoint(p, callback);
if (callback.hit != groupModels.end())
{
info.rootId = RootWMOID;
info.groupId = callback.hit->GetWmoID();
info.flags = callback.hit->GetMogpFlags();
info.result = true;
dist = callback.zDist;
return true;
}
return false;
}
bool WorldModel::GetLocationInfo(const G3D::Vector3 &p, const G3D::Vector3 &down, float &dist, LocationInfo &info) const
{
if (!groupModels.size())
return false;
WModelAreaCallback callback(groupModels, down);
groupTree.intersectPoint(p, callback);
if (callback.hit != groupModels.end())
{
info.hitModel = &(*callback.hit);
dist = callback.zDist;
return true;
}
return false;
}
bool WorldModel::writeFile(const std::string &filename)
{
FILE *wf = fopen(filename.c_str(), "wb");
if (!wf)
return false;
bool result = true;
uint32 chunkSize, count;
result = fwrite(VMAP_MAGIC,1,8,wf) == 8;
if (result && fwrite("WMOD", 1, 4, wf) != 4) result = false;
chunkSize = sizeof(uint32) + sizeof(uint32);
if (result && fwrite(&chunkSize, sizeof(uint32), 1, wf) != 1) result = false;
if (result && fwrite(&RootWMOID, sizeof(uint32), 1, wf) != 1) result = false;
// write group models
count=groupModels.size();
if (count)
{
if (result && fwrite("GMOD", 1, 4, wf) != 4) result = false;
//chunkSize = sizeof(uint32)+ sizeof(GroupModel)*count;
//if (result && fwrite(&chunkSize, sizeof(uint32), 1, wf) != 1) result = false;
if (result && fwrite(&count, sizeof(uint32), 1, wf) != 1) result = false;
for (uint32 i=0; i