summaryrefslogtreecommitdiff
path: root/deps/zlib/chunkcopy.h
diff options
context:
space:
mode:
Diffstat (limited to 'deps/zlib/chunkcopy.h')
-rw-r--r--deps/zlib/chunkcopy.h558
1 files changed, 0 insertions, 558 deletions
diff --git a/deps/zlib/chunkcopy.h b/deps/zlib/chunkcopy.h
deleted file mode 100644
index ce2242bcce..0000000000
--- a/deps/zlib/chunkcopy.h
+++ /dev/null
@@ -1,558 +0,0 @@
-/* chunkcopy.h -- fast chunk copy and set operations
- *
- * (C) 1995-2013 Jean-loup Gailly and Mark Adler
- *
- * This software is provided 'as-is', without any express or implied
- * warranty. In no event will the authors be held liable for any damages
- * arising from the use of this software.
- *
- * Permission is granted to anyone to use this software for any purpose,
- * including commercial applications, and to alter it and redistribute it
- * freely, subject to the following restrictions:
- *
- * 1. The origin of this software must not be misrepresented; you must not
- * claim that you wrote the original software. If you use this software
- * in a product, an acknowledgment in the product documentation would be
- * appreciated but is not required.
- * 2. Altered source versions must be plainly marked as such, and must not be
- * misrepresented as being the original software.
- * 3. This notice may not be removed or altered from any source distribution.
- *
- * Jean-loup Gailly Mark Adler
- * jloup@gzip.org madler@alumni.caltech.edu
- *
- * Copyright (C) 2017 ARM, Inc.
- * Copyright 2017 The Chromium Authors. All rights reserved.
- * Use of this source code is governed by a BSD-style license that can be
- * found in the Chromium source repository LICENSE file.
- */
-
-#ifndef CHUNKCOPY_H
-#define CHUNKCOPY_H
-
-#include <stdint.h>
-#include "zutil.h"
-
-#define Z_STATIC_ASSERT(name, assert) typedef char name[(assert) ? 1 : -1]
-
-#if __STDC_VERSION__ >= 199901L
-#define Z_RESTRICT restrict
-#else
-#define Z_RESTRICT
-#endif
-
-#if defined(__clang__) || defined(__GNUC__) || defined(__llvm__)
-#define Z_BUILTIN_MEMCPY __builtin_memcpy
-#define Z_BUILTIN_MEMSET __builtin_memset
-#else
-#define Z_BUILTIN_MEMCPY zmemcpy
-#define Z_BUILTIN_MEMSET zmemset
-#endif
-
-#if defined(INFLATE_CHUNK_SIMD_NEON)
-#include <arm_neon.h>
-typedef uint8x16_t z_vec128i_t;
-#elif defined(INFLATE_CHUNK_SIMD_SSE2)
-#include <emmintrin.h>
-typedef __m128i z_vec128i_t;
-#else
-typedef struct { uint8_t x[16]; } z_vec128i_t;
-#endif
-
-/*
- * chunk copy type: the z_vec128i_t type size should be exactly 128-bits
- * and equal to CHUNKCOPY_CHUNK_SIZE.
- */
-#define CHUNKCOPY_CHUNK_SIZE sizeof(z_vec128i_t)
-
-Z_STATIC_ASSERT(vector_128_bits_wide,
- CHUNKCOPY_CHUNK_SIZE == sizeof(int8_t) * 16);
-
-/*
- * Ask the compiler to perform a wide, unaligned load with a machine
- * instruction appropriate for the z_vec128i_t type.
- */
-static inline z_vec128i_t loadchunk(
- const unsigned char FAR* s) {
- z_vec128i_t v;
- Z_BUILTIN_MEMCPY(&v, s, sizeof(v));
- return v;
-}
-
-/*
- * Ask the compiler to perform a wide, unaligned store with a machine
- * instruction appropriate for the z_vec128i_t type.
- */
-static inline void storechunk(
- unsigned char FAR* d,
- const z_vec128i_t v) {
- Z_BUILTIN_MEMCPY(d, &v, sizeof(v));
-}
-
-/*
- * Perform a memcpy-like operation, assuming that length is non-zero and that
- * it's OK to overwrite at least CHUNKCOPY_CHUNK_SIZE bytes of output even if
- * the length is shorter than this.
- *
- * It also guarantees that it will properly unroll the data if the distance
- * between `out` and `from` is at least CHUNKCOPY_CHUNK_SIZE, which we rely on
- * in chunkcopy_relaxed().
- *
- * Aside from better memory bus utilisation, this means that short copies
- * (CHUNKCOPY_CHUNK_SIZE bytes or fewer) will fall straight through the loop
- * without iteration, which will hopefully make the branch prediction more
- * reliable.
- */
-static inline unsigned char FAR* chunkcopy_core(
- unsigned char FAR* out,
- const unsigned char FAR* from,
- unsigned len) {
- const int bump = (--len % CHUNKCOPY_CHUNK_SIZE) + 1;
- storechunk(out, loadchunk(from));
- out += bump;
- from += bump;
- len /= CHUNKCOPY_CHUNK_SIZE;
- while (len-- > 0) {
- storechunk(out, loadchunk(from));
- out += CHUNKCOPY_CHUNK_SIZE;
- from += CHUNKCOPY_CHUNK_SIZE;
- }
- return out;
-}
-
-/*
- * Like chunkcopy_core(), but avoid writing beyond of legal output.
- *
- * Accepts an additional pointer to the end of safe output. A generic safe
- * copy would use (out + len), but it's normally the case that the end of the
- * output buffer is beyond the end of the current copy, and this can still be
- * exploited.
- */
-static inline unsigned char FAR* chunkcopy_core_safe(
- unsigned char FAR* out,
- const unsigned char FAR* from,
- unsigned len,
- unsigned char FAR* limit) {
- Assert(out + len <= limit, "chunk copy exceeds safety limit");
- if ((limit - out) < (ptrdiff_t)CHUNKCOPY_CHUNK_SIZE) {
- const unsigned char FAR* Z_RESTRICT rfrom = from;
- if (len & 8) {
- Z_BUILTIN_MEMCPY(out, rfrom, 8);
- out += 8;
- rfrom += 8;
- }
- if (len & 4) {
- Z_BUILTIN_MEMCPY(out, rfrom, 4);
- out += 4;
- rfrom += 4;
- }
- if (len & 2) {
- Z_BUILTIN_MEMCPY(out, rfrom, 2);
- out += 2;
- rfrom += 2;
- }
- if (len & 1) {
- *out++ = *rfrom++;
- }
- return out;
- }
- return chunkcopy_core(out, from, len);
-}
-
-/*
- * Perform short copies until distance can be rewritten as being at least
- * CHUNKCOPY_CHUNK_SIZE.
- *
- * Assumes it's OK to overwrite at least the first 2*CHUNKCOPY_CHUNK_SIZE
- * bytes of output even if the copy is shorter than this. This assumption
- * holds within zlib inflate_fast(), which starts every iteration with at
- * least 258 bytes of output space available (258 being the maximum length
- * output from a single token; see inffast.c).
- */
-static inline unsigned char FAR* chunkunroll_relaxed(
- unsigned char FAR* out,
- unsigned FAR* dist,
- unsigned FAR* len) {
- const unsigned char FAR* from = out - *dist;
- while (*dist < *len && *dist < CHUNKCOPY_CHUNK_SIZE) {
- storechunk(out, loadchunk(from));
- out += *dist;
- *len -= *dist;
- *dist += *dist;
- }
- return out;
-}
-
-#if defined(INFLATE_CHUNK_SIMD_NEON)
-/*
- * v_load64_dup(): load *src as an unaligned 64-bit int and duplicate it in
- * every 64-bit component of the 128-bit result (64-bit int splat).
- */
-static inline z_vec128i_t v_load64_dup(const void* src) {
- return vcombine_u8(vld1_u8(src), vld1_u8(src));
-}
-
-/*
- * v_load32_dup(): load *src as an unaligned 32-bit int and duplicate it in
- * every 32-bit component of the 128-bit result (32-bit int splat).
- */
-static inline z_vec128i_t v_load32_dup(const void* src) {
- int32_t i32;
- Z_BUILTIN_MEMCPY(&i32, src, sizeof(i32));
- return vreinterpretq_u8_s32(vdupq_n_s32(i32));
-}
-
-/*
- * v_load16_dup(): load *src as an unaligned 16-bit int and duplicate it in
- * every 16-bit component of the 128-bit result (16-bit int splat).
- */
-static inline z_vec128i_t v_load16_dup(const void* src) {
- int16_t i16;
- Z_BUILTIN_MEMCPY(&i16, src, sizeof(i16));
- return vreinterpretq_u8_s16(vdupq_n_s16(i16));
-}
-
-/*
- * v_load8_dup(): load the 8-bit int *src and duplicate it in every 8-bit
- * component of the 128-bit result (8-bit int splat).
- */
-static inline z_vec128i_t v_load8_dup(const void* src) {
- return vld1q_dup_u8((const uint8_t*)src);
-}
-
-/*
- * v_store_128(): store the 128-bit vec in a memory destination (that might
- * not be 16-byte aligned) void* out.
- */
-static inline void v_store_128(void* out, const z_vec128i_t vec) {
- vst1q_u8(out, vec);
-}
-#elif defined (INFLATE_CHUNK_SIMD_SSE2)
-/*
- * v_load64_dup(): load *src as an unaligned 64-bit int and duplicate it in
- * every 64-bit component of the 128-bit result (64-bit int splat).
- */
-static inline z_vec128i_t v_load64_dup(const void* src) {
- int64_t i64;
- Z_BUILTIN_MEMCPY(&i64, src, sizeof(i64));
- return _mm_set1_epi64x(i64);
-}
-
-/*
- * v_load32_dup(): load *src as an unaligned 32-bit int and duplicate it in
- * every 32-bit component of the 128-bit result (32-bit int splat).
- */
-static inline z_vec128i_t v_load32_dup(const void* src) {
- int32_t i32;
- Z_BUILTIN_MEMCPY(&i32, src, sizeof(i32));
- return _mm_set1_epi32(i32);
-}
-
-/*
- * v_load16_dup(): load *src as an unaligned 16-bit int and duplicate it in
- * every 16-bit component of the 128-bit result (16-bit int splat).
- */
-static inline z_vec128i_t v_load16_dup(const void* src) {
- int16_t i16;
- Z_BUILTIN_MEMCPY(&i16, src, sizeof(i16));
- return _mm_set1_epi16(i16);
-}
-
-/*
- * v_load8_dup(): load the 8-bit int *src and duplicate it in every 8-bit
- * component of the 128-bit result (8-bit int splat).
- */
-static inline z_vec128i_t v_load8_dup(const void* src) {
- return _mm_set1_epi8(*(const char*)src);
-}
-
-/*
- * v_store_128(): store the 128-bit vec in a memory destination (that might
- * not be 16-byte aligned) void* out.
- */
-static inline void v_store_128(void* out, const z_vec128i_t vec) {
- _mm_storeu_si128((__m128i*)out, vec);
-}
-#else
-/*
- * Default implementations for chunk-copy functions rely on memcpy() being
- * inlined by the compiler for best performance. This is most likely to work
- * as expected when the length argument is constant (as is the case here) and
- * the target supports unaligned loads and stores. Since that's not always a
- * safe assumption, this may need extra compiler arguments such as
- * `-mno-strict-align` or `-munaligned-access`, or the availability of
- * extensions like SIMD.
- */
-
-/*
- * v_load64_dup(): load *src as an unaligned 64-bit int and duplicate it in
- * every 64-bit component of the 128-bit result (64-bit int splat).
- */
-static inline z_vec128i_t v_load64_dup(const void* src) {
- int64_t in;
- Z_BUILTIN_MEMCPY(&in, src, sizeof(in));
- z_vec128i_t out;
- for (int i = 0; i < sizeof(out); i += sizeof(in)) {
- Z_BUILTIN_MEMCPY((uint8_t*)&out + i, &in, sizeof(in));
- }
- return out;
-}
-
-/*
- * v_load32_dup(): load *src as an unaligned 32-bit int and duplicate it in
- * every 32-bit component of the 128-bit result (32-bit int splat).
- */
-static inline z_vec128i_t v_load32_dup(const void* src) {
- int32_t in;
- Z_BUILTIN_MEMCPY(&in, src, sizeof(in));
- z_vec128i_t out;
- for (int i = 0; i < sizeof(out); i += sizeof(in)) {
- Z_BUILTIN_MEMCPY((uint8_t*)&out + i, &in, sizeof(in));
- }
- return out;
-}
-
-/*
- * v_load16_dup(): load *src as an unaligned 16-bit int and duplicate it in
- * every 16-bit component of the 128-bit result (16-bit int splat).
- */
-static inline z_vec128i_t v_load16_dup(const void* src) {
- int16_t in;
- Z_BUILTIN_MEMCPY(&in, src, sizeof(in));
- z_vec128i_t out;
- for (int i = 0; i < sizeof(out); i += sizeof(in)) {
- Z_BUILTIN_MEMCPY((uint8_t*)&out + i, &in, sizeof(in));
- }
- return out;
-}
-
-/*
- * v_load8_dup(): load the 8-bit int *src and duplicate it in every 8-bit
- * component of the 128-bit result (8-bit int splat).
- */
-static inline z_vec128i_t v_load8_dup(const void* src) {
- int8_t in = *(uint8_t const*)src;
- z_vec128i_t out;
- Z_BUILTIN_MEMSET(&out, in, sizeof(out));
- return out;
-}
-
-/*
- * v_store_128(): store the 128-bit vec in a memory destination (that might
- * not be 16-byte aligned) void* out.
- */
-static inline void v_store_128(void* out, const z_vec128i_t vec) {
- Z_BUILTIN_MEMCPY(out, &vec, sizeof(vec));
-}
-#endif
-
-/*
- * Perform an overlapping copy which behaves as a memset() operation, but
- * supporting periods other than one, and assume that length is non-zero and
- * that it's OK to overwrite at least CHUNKCOPY_CHUNK_SIZE*3 bytes of output
- * even if the length is shorter than this.
- */
-static inline unsigned char FAR* chunkset_core(
- unsigned char FAR* out,
- unsigned period,
- unsigned len) {
- z_vec128i_t v;
- const int bump = ((len - 1) % sizeof(v)) + 1;
-
- switch (period) {
- case 1:
- v = v_load8_dup(out - 1);
- v_store_128(out, v);
- out += bump;
- len -= bump;
- while (len > 0) {
- v_store_128(out, v);
- out += sizeof(v);
- len -= sizeof(v);
- }
- return out;
- case 2:
- v = v_load16_dup(out - 2);
- v_store_128(out, v);
- out += bump;
- len -= bump;
- if (len > 0) {
- v = v_load16_dup(out - 2);
- do {
- v_store_128(out, v);
- out += sizeof(v);
- len -= sizeof(v);
- } while (len > 0);
- }
- return out;
- case 4:
- v = v_load32_dup(out - 4);
- v_store_128(out, v);
- out += bump;
- len -= bump;
- if (len > 0) {
- v = v_load32_dup(out - 4);
- do {
- v_store_128(out, v);
- out += sizeof(v);
- len -= sizeof(v);
- } while (len > 0);
- }
- return out;
- case 8:
- v = v_load64_dup(out - 8);
- v_store_128(out, v);
- out += bump;
- len -= bump;
- if (len > 0) {
- v = v_load64_dup(out - 8);
- do {
- v_store_128(out, v);
- out += sizeof(v);
- len -= sizeof(v);
- } while (len > 0);
- }
- return out;
- }
- out = chunkunroll_relaxed(out, &period, &len);
- return chunkcopy_core(out, out - period, len);
-}
-
-/*
- * Perform a memcpy-like operation, but assume that length is non-zero and that
- * it's OK to overwrite at least CHUNKCOPY_CHUNK_SIZE bytes of output even if
- * the length is shorter than this.
- *
- * Unlike chunkcopy_core() above, no guarantee is made regarding the behaviour
- * of overlapping buffers, regardless of the distance between the pointers.
- * This is reflected in the `restrict`-qualified pointers, allowing the
- * compiler to re-order loads and stores.
- */
-static inline unsigned char FAR* chunkcopy_relaxed(
- unsigned char FAR* Z_RESTRICT out,
- const unsigned char FAR* Z_RESTRICT from,
- unsigned len) {
- return chunkcopy_core(out, from, len);
-}
-
-/*
- * Like chunkcopy_relaxed(), but avoid writing beyond of legal output.
- *
- * Unlike chunkcopy_core_safe() above, no guarantee is made regarding the
- * behaviour of overlapping buffers, regardless of the distance between the
- * pointers. This is reflected in the `restrict`-qualified pointers, allowing
- * the compiler to re-order loads and stores.
- *
- * Accepts an additional pointer to the end of safe output. A generic safe
- * copy would use (out + len), but it's normally the case that the end of the
- * output buffer is beyond the end of the current copy, and this can still be
- * exploited.
- */
-static inline unsigned char FAR* chunkcopy_safe(
- unsigned char FAR* out,
- const unsigned char FAR* Z_RESTRICT from,
- unsigned len,
- unsigned char FAR* limit) {
- Assert(out + len <= limit, "chunk copy exceeds safety limit");
- return chunkcopy_core_safe(out, from, len, limit);
-}
-
-/*
- * Perform chunky copy within the same buffer, where the source and destination
- * may potentially overlap.
- *
- * Assumes that len > 0 on entry, and that it's safe to write at least
- * CHUNKCOPY_CHUNK_SIZE*3 bytes to the output.
- */
-static inline unsigned char FAR* chunkcopy_lapped_relaxed(
- unsigned char FAR* out,
- unsigned dist,
- unsigned len) {
- if (dist < len && dist < CHUNKCOPY_CHUNK_SIZE) {
- return chunkset_core(out, dist, len);
- }
- return chunkcopy_core(out, out - dist, len);
-}
-
-/*
- * Behave like chunkcopy_lapped_relaxed(), but avoid writing beyond of legal
- * output.
- *
- * Accepts an additional pointer to the end of safe output. A generic safe
- * copy would use (out + len), but it's normally the case that the end of the
- * output buffer is beyond the end of the current copy, and this can still be
- * exploited.
- */
-static inline unsigned char FAR* chunkcopy_lapped_safe(
- unsigned char FAR* out,
- unsigned dist,
- unsigned len,
- unsigned char FAR* limit) {
- Assert(out + len <= limit, "chunk copy exceeds safety limit");
- if ((limit - out) < (ptrdiff_t)(3 * CHUNKCOPY_CHUNK_SIZE)) {
- /* TODO(cavalcantii): try harder to optimise this */
- while (len-- > 0) {
- *out = *(out - dist);
- out++;
- }
- return out;
- }
- return chunkcopy_lapped_relaxed(out, dist, len);
-}
-
-/* TODO(cavalcanti): see crbug.com/1110083. */
-static inline unsigned char FAR* chunkcopy_safe_ugly(unsigned char FAR* out,
- unsigned dist,
- unsigned len,
- unsigned char FAR* limit) {
-#if defined(__GNUC__) && !defined(__clang__)
- /* Speed is the same as using chunkcopy_safe
- w/ GCC on ARM (tested gcc 6.3 and 7.5) and avoids
- undefined behavior.
- */
- return chunkcopy_core_safe(out, out - dist, len, limit);
-#elif defined(__clang__) && !defined(__aarch64__)
- /* Seems to perform better on 32bit (i.e. Android). */
- return chunkcopy_core_safe(out, out - dist, len, limit);
-#else
- /* Seems to perform better on 64-bit. */
- return chunkcopy_lapped_safe(out, dist, len, limit);
-#endif
-}
-
-/*
- * The chunk-copy code above deals with writing the decoded DEFLATE data to
- * the output with SIMD methods to increase decode speed. Reading the input
- * to the DEFLATE decoder with a wide, SIMD method can also increase decode
- * speed. This option is supported on little endian machines, and reads the
- * input data in 64-bit (8 byte) chunks.
- */
-
-#ifdef INFLATE_CHUNK_READ_64LE
-/*
- * Buffer the input in a uint64_t (8 bytes) in the wide input reading case.
- */
-typedef uint64_t inflate_holder_t;
-
-/*
- * Ask the compiler to perform a wide, unaligned load of a uint64_t using a
- * machine instruction appropriate for the uint64_t type.
- */
-static inline inflate_holder_t read64le(const unsigned char FAR *in) {
- inflate_holder_t input;
- Z_BUILTIN_MEMCPY(&input, in, sizeof(input));
- return input;
-}
-#else
-/*
- * Otherwise, buffer the input bits using zlib's default input buffer type.
- */
-typedef unsigned long inflate_holder_t;
-
-#endif /* INFLATE_CHUNK_READ_64LE */
-
-#undef Z_STATIC_ASSERT
-#undef Z_RESTRICT
-#undef Z_BUILTIN_MEMCPY
-
-#endif /* CHUNKCOPY_H */