/* * This file is part of the AzerothCore Project. See AUTHORS file for Copyright information * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU Affero General Public License as published by the * Free Software Foundation; either version 3 of the License, or (at your * option) any later version. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for * more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see . */ #include "MapTree.h" #include "Errors.h" #include "Log.h" #include "Metric.h" #include "ModelInstance.h" #include "VMapDefinitions.h" #include "VMapMgr2.h" #include #include #include #include using G3D::Vector3; namespace VMAP { class MapRayCallback { public: MapRayCallback(ModelInstance* val, ModelIgnoreFlags ignoreFlags): prims(val), flags(ignoreFlags), hit(false) { } bool operator()(const G3D::Ray& ray, uint32 entry, float& distance, bool StopAtFirstHit) { bool result = prims[entry].intersectRay(ray, distance, StopAtFirstHit, flags); if (result) { hit = true; } return result; } bool didHit() { return hit; } protected: ModelInstance* prims; ModelIgnoreFlags flags; bool hit; }; class AreaInfoCallback { public: AreaInfoCallback(ModelInstance* val): prims(val) {} void operator()(const Vector3& point, uint32 entry) { #if defined(VMAP_DEBUG) LOG_DEBUG("maps", "AreaInfoCallback: trying to intersect '{}'", prims[entry].name); #endif prims[entry].intersectPoint(point, aInfo); } ModelInstance* prims; AreaInfo aInfo; }; class LocationInfoCallback { public: LocationInfoCallback(ModelInstance* val, LocationInfo& info): prims(val), locInfo(info), result(false) {} void operator()(const Vector3& point, uint32 entry) { #if defined(VMAP_DEBUG) LOG_DEBUG("maps", "LocationInfoCallback: trying to intersect '{}'", prims[entry].name); #endif if (prims[entry].GetLocationInfo(point, locInfo)) { result = true; } } ModelInstance* prims; LocationInfo& locInfo; bool result; }; //========================================================= std::string StaticMapTree::getTileFileName(uint32 mapID, uint32 tileX, uint32 tileY) { std::stringstream tilefilename; tilefilename.fill('0'); tilefilename << std::setw(3) << mapID << '_'; //tilefilename << std::setw(2) << tileX << '_' << std::setw(2) << tileY << ".vmtile"; tilefilename << std::setw(2) << tileY << '_' << std::setw(2) << tileX << ".vmtile"; return tilefilename.str(); } bool StaticMapTree::GetAreaInfo(Vector3& pos, uint32& flags, int32& adtId, int32& rootId, int32& groupId) const { AreaInfoCallback intersectionCallBack(iTreeValues); iTree.intersectPoint(pos, intersectionCallBack); if (intersectionCallBack.aInfo.result) { flags = intersectionCallBack.aInfo.flags; adtId = intersectionCallBack.aInfo.adtId; rootId = intersectionCallBack.aInfo.rootId; groupId = intersectionCallBack.aInfo.groupId; pos.z = intersectionCallBack.aInfo.ground_Z; return true; } return false; } bool StaticMapTree::GetLocationInfo(const Vector3& pos, LocationInfo& info) const { LocationInfoCallback intersectionCallBack(iTreeValues, info); iTree.intersectPoint(pos, intersectionCallBack); return intersectionCallBack.result; } StaticMapTree::StaticMapTree(uint32 mapID, const std::string& basePath) : iMapID(mapID), iIsTiled(false), iTreeValues(0), iBasePath(basePath) { if (iBasePath.length() > 0 && iBasePath[iBasePath.length() - 1] != '/' && iBasePath[iBasePath.length() - 1] != '\\') { iBasePath.push_back('/'); } } //========================================================= //! Make sure to call unloadMap() to unregister acquired model references before destroying StaticMapTree::~StaticMapTree() { delete[] iTreeValues; } //========================================================= /** If intersection is found within pMaxDist, sets pMaxDist to intersection distance and returns true. Else, pMaxDist is not modified and returns false; */ bool StaticMapTree::GetIntersectionTime(const G3D::Ray& pRay, float& pMaxDist, bool StopAtFirstHit, ModelIgnoreFlags ignoreFlags) const { float distance = pMaxDist; MapRayCallback intersectionCallBack(iTreeValues, ignoreFlags); iTree.intersectRay(pRay, intersectionCallBack, distance, StopAtFirstHit); if (intersectionCallBack.didHit()) { pMaxDist = distance; } return intersectionCallBack.didHit(); } //========================================================= bool StaticMapTree::isInLineOfSight(const Vector3& pos1, const Vector3& pos2, ModelIgnoreFlags ignoreFlags) const { float maxDist = (pos2 - pos1).magnitude(); // return false if distance is over max float, in case of cheater teleporting to the end of the universe if (maxDist == std::numeric_limits::max() || !std::isfinite(maxDist)) { return false; } // valid map coords should *never ever* produce float overflow, but this would produce NaNs too ASSERT(maxDist < std::numeric_limits::max()); // prevent NaN values which can cause BIH intersection to enter infinite loop if (maxDist < 1e-10f) { return true; } // direction with length of 1 G3D::Ray ray = G3D::Ray::fromOriginAndDirection(pos1, (pos2 - pos1) / maxDist); return !GetIntersectionTime(ray, maxDist, true, ignoreFlags); } //========================================================= /** When moving from pos1 to pos2 check if we hit an object. Return true and the position if we hit one Return the hit pos or the original dest pos */ bool StaticMapTree::GetObjectHitPos(const Vector3& pPos1, const Vector3& pPos2, Vector3& pResultHitPos, float pModifyDist) const { bool result = false; float maxDist = (pPos2 - pPos1).magnitude(); // valid map coords should *never ever* produce float overflow, but this would produce NaNs too ASSERT(maxDist < std::numeric_limits::max()); // prevent NaN values which can cause BIH intersection to enter infinite loop if (maxDist < 1e-10f) { pResultHitPos = pPos2; return false; } Vector3 dir = (pPos2 - pPos1) / maxDist; // direction with length of 1 G3D::Ray ray(pPos1, dir); float dist = maxDist; if (GetIntersectionTime(ray, dist, false, ModelIgnoreFlags::Nothing)) { pResultHitPos = pPos1 + dir * dist; if (pModifyDist < 0) { if ((pResultHitPos - pPos1).magnitude() > -pModifyDist) { pResultHitPos = pResultHitPos + dir * pModifyDist; } else { pResultHitPos = pPos1; } } else { pResultHitPos = pResultHitPos + dir * pModifyDist; } result = true; } else { pResultHitPos = pPos2; result = false; } return result; } //========================================================= float StaticMapTree::getHeight(const Vector3& pPos, float maxSearchDist) const { float height = G3D::finf(); Vector3 dir = Vector3(0, 0, -1); G3D::Ray ray(pPos, dir); // direction with length of 1 float maxDist = maxSearchDist; if (GetIntersectionTime(ray, maxDist, false, ModelIgnoreFlags::Nothing)) { height = pPos.z - maxDist; } return (height); } //========================================================= LoadResult StaticMapTree::CanLoadMap(const std::string& vmapPath, uint32 mapID, uint32 tileX, uint32 tileY) { std::string basePath = vmapPath; if (basePath.length() > 0 && basePath[basePath.length() - 1] != '/' && basePath[basePath.length() - 1] != '\\') { basePath.push_back('/'); } std::string fullname = basePath + VMapMgr2::getMapFileName(mapID); LoadResult result = LoadResult::Success; FILE* rf = fopen(fullname.c_str(), "rb"); if (!rf) { return LoadResult::FileNotFound; } char tiled; char chunk[8]; if (!readChunk(rf, chunk, VMAP_MAGIC, 8) || fread(&tiled, sizeof(char), 1, rf) != 1) { fclose(rf); return LoadResult::VersionMismatch; } if (tiled) { std::string tilefile = basePath + getTileFileName(mapID, tileX, tileY); FILE* tf = fopen(tilefile.c_str(), "rb"); if (!tf) { result = LoadResult::FileNotFound; } else { if (!readChunk(tf, chunk, VMAP_MAGIC, 8)) { result = LoadResult::VersionMismatch; } fclose(tf); } } fclose(rf); return result; } //========================================================= bool StaticMapTree::InitMap(const std::string& fname, VMapMgr2* vm) { //VMAP_DEBUG_LOG(LOG_FILTER_MAPS, "StaticMapTree::InitMap() : initializing StaticMapTree '{}'", fname); bool success = false; std::string fullname = iBasePath + fname; FILE* rf = fopen(fullname.c_str(), "rb"); if (!rf) { return false; } char chunk[8]; char tiled = '\0'; if (readChunk(rf, chunk, VMAP_MAGIC, 8) && fread(&tiled, sizeof(char), 1, rf) == 1 && readChunk(rf, chunk, "NODE", 4) && iTree.readFromFile(rf)) { iNTreeValues = iTree.primCount(); iTreeValues = new ModelInstance[iNTreeValues]; success = readChunk(rf, chunk, "GOBJ", 4); } iIsTiled = bool(tiled); // global model spawns // only non-tiled maps have them, and if so exactly one (so far at least...) ModelSpawn spawn; #ifdef VMAP_DEBUG //LOG_DEBUG(LOG_FILTER_MAPS, "StaticMapTree::InitMap() : map isTiled: {}", static_cast(iIsTiled)); #endif if (!iIsTiled && ModelSpawn::readFromFile(rf, spawn)) { WorldModel* model = vm->acquireModelInstance(iBasePath, spawn.name, spawn.flags); //VMAP_DEBUG_LOG(LOG_FILTER_MAPS, "StaticMapTree::InitMap() : loading {}", spawn.name); if (model) { // assume that global model always is the first and only tree value (could be improved...) iTreeValues[0] = ModelInstance(spawn, model); iLoadedSpawns[0] = 1; } else { success = false; //VMAP_ERROR_LOG(LOG_FILTER_GENERAL, "StaticMapTree::InitMap() : could not acquire WorldModel pointer for '{}'", spawn.name); } } fclose(rf); return success; } //========================================================= void StaticMapTree::UnloadMap(VMapMgr2* vm) { for (loadedSpawnMap::iterator i = iLoadedSpawns.begin(); i != iLoadedSpawns.end(); ++i) { iTreeValues[i->first].setUnloaded(); for (uint32 refCount = 0; refCount < i->second; ++refCount) { vm->releaseModelInstance(iTreeValues[i->first].name); } } iLoadedSpawns.clear(); iLoadedTiles.clear(); } //========================================================= bool StaticMapTree::LoadMapTile(uint32 tileX, uint32 tileY, VMapMgr2* vm) { if (!iIsTiled) { // currently, core creates grids for all maps, whether it has terrain tiles or not // so we need "fake" tile loads to know when we can unload map geometry iLoadedTiles[packTileID(tileX, tileY)] = false; return true; } if (!iTreeValues) { LOG_ERROR("maps", "StaticMapTree::LoadMapTile() : tree has not been initialized [{}, {}]", tileX, tileY); return false; } bool result = true; std::string tilefile = iBasePath + getTileFileName(iMapID, tileX, tileY); FILE* tf = fopen(tilefile.c_str(), "rb"); if (tf) { char chunk[8]; if (!readChunk(tf, chunk, VMAP_MAGIC, 8)) { result = false; } uint32 numSpawns = 0; if (result && fread(&numSpawns, sizeof(uint32), 1, tf) != 1) { result = false; } for (uint32 i = 0; i < numSpawns && result; ++i) { // read model spawns ModelSpawn spawn; result = ModelSpawn::readFromFile(tf, spawn); if (result) { // acquire model instance WorldModel* model = vm->acquireModelInstance(iBasePath, spawn.name, spawn.flags); if (!model) { LOG_ERROR("maps", "StaticMapTree::LoadMapTile() : could not acquire WorldModel pointer [{}, {}]", tileX, tileY); } // update tree uint32 referencedVal; if (fread(&referencedVal, sizeof(uint32), 1, tf) == 1) { if (!iLoadedSpawns.count(referencedVal)) { #if defined(VMAP_DEBUG) if (referencedVal > iNTreeValues) { LOG_DEBUG("maps", "StaticMapTree::LoadMapTile() : invalid tree element ({}/{})", referencedVal, iNTreeValues); continue; } #endif iTreeValues[referencedVal] = ModelInstance(spawn, model); iLoadedSpawns[referencedVal] = 1; } else { ++iLoadedSpawns[referencedVal]; #if defined(VMAP_DEBUG) if (iTreeValues[referencedVal].ID != spawn.ID) { LOG_DEBUG("maps", "StaticMapTree::LoadMapTile() : trying to load wrong spawn in node"); } else if (iTreeValues[referencedVal].name != spawn.name) { LOG_DEBUG("maps", "StaticMapTree::LoadMapTile() : name collision on GUID={}", spawn.ID); } #endif } } else { result = false; } } } iLoadedTiles[packTileID(tileX, tileY)] = true; fclose(tf); } else { iLoadedTiles[packTileID(tileX, tileY)] = false; } METRIC_EVENT("map_events", "LoadMapTile", "Map: " + std::to_string(iMapID) + " TileX: " + std::to_string(tileX) + " TileY: " + std::to_string(tileY)); return result; } //========================================================= void StaticMapTree::UnloadMapTile(uint32 tileX, uint32 tileY, VMapMgr2* vm) { uint32 tileID = packTileID(tileX, tileY); loadedTileMap::iterator tile = iLoadedTiles.find(tileID); if (tile == iLoadedTiles.end()) { LOG_ERROR("maps", "StaticMapTree::UnloadMapTile() : trying to unload non-loaded tile - Map:{} X:{} Y:{}", iMapID, tileX, tileY); return; } if (tile->second) // file associated with tile { std::string tilefile = iBasePath + getTileFileName(iMapID, tileX, tileY); FILE* tf = fopen(tilefile.c_str(), "rb"); if (tf) { bool result = true; char chunk[8]; if (!readChunk(tf, chunk, VMAP_MAGIC, 8)) { result = false; } uint32 numSpawns; if (fread(&numSpawns, sizeof(uint32), 1, tf) != 1) { result = false; } for (uint32 i = 0; i < numSpawns && result; ++i) { // read model spawns ModelSpawn spawn; result = ModelSpawn::readFromFile(tf, spawn); if (result) { // release model instance vm->releaseModelInstance(spawn.name); // update tree uint32 referencedNode; if (fread(&referencedNode, sizeof(uint32), 1, tf) != 1) { result = false; } else { if (!iLoadedSpawns.count(referencedNode)) { LOG_ERROR("maps", "StaticMapTree::UnloadMapTile() : trying to unload non-referenced model '{}' (ID:{})", spawn.name, spawn.ID); } else if (--iLoadedSpawns[referencedNode] == 0) { iTreeValues[referencedNode].setUnloaded(); iLoadedSpawns.erase(referencedNode); } } } } fclose(tf); } } iLoadedTiles.erase(tile); METRIC_EVENT("map_events", "UnloadMapTile", "Map: " + std::to_string(iMapID) + " TileX: " + std::to_string(tileX) + " TileY: " + std::to_string(tileY)); } void StaticMapTree::GetModelInstances(ModelInstance*& models, uint32& count) { models = iTreeValues; count = iNTreeValues; } }