/*
* This file is part of the AzerothCore Project. See AUTHORS file for Copyright information
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU Affero General Public License as published by the
* Free Software Foundation; either version 3 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see .
*/
#include "MapTree.h"
#include "Errors.h"
#include "Log.h"
#include "Metric.h"
#include "ModelInstance.h"
#include "VMapDefinitions.h"
#include "VMapMgr2.h"
#include
#include
#include
#include
using G3D::Vector3;
namespace VMAP
{
class MapRayCallback
{
public:
MapRayCallback(ModelInstance* val, ModelIgnoreFlags ignoreFlags): prims(val), flags(ignoreFlags), hit(false) { }
bool operator()(const G3D::Ray& ray, uint32 entry, float& distance, bool StopAtFirstHit)
{
bool result = prims[entry].intersectRay(ray, distance, StopAtFirstHit, flags);
if (result)
{
hit = true;
}
return result;
}
bool didHit() { return hit; }
protected:
ModelInstance* prims;
ModelIgnoreFlags flags;
bool hit;
};
class AreaInfoCallback
{
public:
AreaInfoCallback(ModelInstance* val): prims(val) {}
void operator()(const Vector3& point, uint32 entry)
{
#if defined(VMAP_DEBUG)
LOG_DEBUG("maps", "AreaInfoCallback: trying to intersect '{}'", prims[entry].name);
#endif
prims[entry].intersectPoint(point, aInfo);
}
ModelInstance* prims;
AreaInfo aInfo;
};
class LocationInfoCallback
{
public:
LocationInfoCallback(ModelInstance* val, LocationInfo& info): prims(val), locInfo(info), result(false) {}
void operator()(const Vector3& point, uint32 entry)
{
#if defined(VMAP_DEBUG)
LOG_DEBUG("maps", "LocationInfoCallback: trying to intersect '{}'", prims[entry].name);
#endif
if (prims[entry].GetLocationInfo(point, locInfo))
{
result = true;
}
}
ModelInstance* prims;
LocationInfo& locInfo;
bool result;
};
//=========================================================
std::string StaticMapTree::getTileFileName(uint32 mapID, uint32 tileX, uint32 tileY)
{
std::stringstream tilefilename;
tilefilename.fill('0');
tilefilename << std::setw(3) << mapID << '_';
//tilefilename << std::setw(2) << tileX << '_' << std::setw(2) << tileY << ".vmtile";
tilefilename << std::setw(2) << tileY << '_' << std::setw(2) << tileX << ".vmtile";
return tilefilename.str();
}
bool StaticMapTree::GetAreaInfo(Vector3& pos, uint32& flags, int32& adtId, int32& rootId, int32& groupId) const
{
AreaInfoCallback intersectionCallBack(iTreeValues);
iTree.intersectPoint(pos, intersectionCallBack);
if (intersectionCallBack.aInfo.result)
{
flags = intersectionCallBack.aInfo.flags;
adtId = intersectionCallBack.aInfo.adtId;
rootId = intersectionCallBack.aInfo.rootId;
groupId = intersectionCallBack.aInfo.groupId;
pos.z = intersectionCallBack.aInfo.ground_Z;
return true;
}
return false;
}
bool StaticMapTree::GetLocationInfo(const Vector3& pos, LocationInfo& info) const
{
LocationInfoCallback intersectionCallBack(iTreeValues, info);
iTree.intersectPoint(pos, intersectionCallBack);
return intersectionCallBack.result;
}
StaticMapTree::StaticMapTree(uint32 mapID, const std::string& basePath)
: iMapID(mapID), iIsTiled(false), iTreeValues(0), iBasePath(basePath)
{
if (iBasePath.length() > 0 && iBasePath[iBasePath.length() - 1] != '/' && iBasePath[iBasePath.length() - 1] != '\\')
{
iBasePath.push_back('/');
}
}
//=========================================================
//! Make sure to call unloadMap() to unregister acquired model references before destroying
StaticMapTree::~StaticMapTree()
{
delete[] iTreeValues;
}
//=========================================================
/**
If intersection is found within pMaxDist, sets pMaxDist to intersection distance and returns true.
Else, pMaxDist is not modified and returns false;
*/
bool StaticMapTree::GetIntersectionTime(const G3D::Ray& pRay, float& pMaxDist, bool StopAtFirstHit, ModelIgnoreFlags ignoreFlags) const
{
float distance = pMaxDist;
MapRayCallback intersectionCallBack(iTreeValues, ignoreFlags);
iTree.intersectRay(pRay, intersectionCallBack, distance, StopAtFirstHit);
if (intersectionCallBack.didHit())
{
pMaxDist = distance;
}
return intersectionCallBack.didHit();
}
//=========================================================
bool StaticMapTree::isInLineOfSight(const Vector3& pos1, const Vector3& pos2, ModelIgnoreFlags ignoreFlags) const
{
float maxDist = (pos2 - pos1).magnitude();
// return false if distance is over max float, in case of cheater teleporting to the end of the universe
if (maxDist == std::numeric_limits::max() || !std::isfinite(maxDist))
{
return false;
}
// valid map coords should *never ever* produce float overflow, but this would produce NaNs too
ASSERT(maxDist < std::numeric_limits::max());
// prevent NaN values which can cause BIH intersection to enter infinite loop
if (maxDist < 1e-10f)
{
return true;
}
// direction with length of 1
G3D::Ray ray = G3D::Ray::fromOriginAndDirection(pos1, (pos2 - pos1) / maxDist);
return !GetIntersectionTime(ray, maxDist, true, ignoreFlags);
}
//=========================================================
/**
When moving from pos1 to pos2 check if we hit an object. Return true and the position if we hit one
Return the hit pos or the original dest pos
*/
bool StaticMapTree::GetObjectHitPos(const Vector3& pPos1, const Vector3& pPos2, Vector3& pResultHitPos, float pModifyDist) const
{
bool result = false;
float maxDist = (pPos2 - pPos1).magnitude();
// valid map coords should *never ever* produce float overflow, but this would produce NaNs too
ASSERT(maxDist < std::numeric_limits::max());
// prevent NaN values which can cause BIH intersection to enter infinite loop
if (maxDist < 1e-10f)
{
pResultHitPos = pPos2;
return false;
}
Vector3 dir = (pPos2 - pPos1) / maxDist; // direction with length of 1
G3D::Ray ray(pPos1, dir);
float dist = maxDist;
if (GetIntersectionTime(ray, dist, false, ModelIgnoreFlags::Nothing))
{
pResultHitPos = pPos1 + dir * dist;
if (pModifyDist < 0)
{
if ((pResultHitPos - pPos1).magnitude() > -pModifyDist)
{
pResultHitPos = pResultHitPos + dir * pModifyDist;
}
else
{
pResultHitPos = pPos1;
}
}
else
{
pResultHitPos = pResultHitPos + dir * pModifyDist;
}
result = true;
}
else
{
pResultHitPos = pPos2;
result = false;
}
return result;
}
//=========================================================
float StaticMapTree::getHeight(const Vector3& pPos, float maxSearchDist) const
{
float height = G3D::finf();
Vector3 dir = Vector3(0, 0, -1);
G3D::Ray ray(pPos, dir); // direction with length of 1
float maxDist = maxSearchDist;
if (GetIntersectionTime(ray, maxDist, false, ModelIgnoreFlags::Nothing))
{
height = pPos.z - maxDist;
}
return (height);
}
//=========================================================
LoadResult StaticMapTree::CanLoadMap(const std::string& vmapPath, uint32 mapID, uint32 tileX, uint32 tileY)
{
std::string basePath = vmapPath;
if (basePath.length() > 0 && basePath[basePath.length() - 1] != '/' && basePath[basePath.length() - 1] != '\\')
{
basePath.push_back('/');
}
std::string fullname = basePath + VMapMgr2::getMapFileName(mapID);
LoadResult result = LoadResult::Success;
FILE* rf = fopen(fullname.c_str(), "rb");
if (!rf)
{
return LoadResult::FileNotFound;
}
char tiled;
char chunk[8];
if (!readChunk(rf, chunk, VMAP_MAGIC, 8) || fread(&tiled, sizeof(char), 1, rf) != 1)
{
fclose(rf);
return LoadResult::VersionMismatch;
}
if (tiled)
{
std::string tilefile = basePath + getTileFileName(mapID, tileX, tileY);
FILE* tf = fopen(tilefile.c_str(), "rb");
if (!tf)
{
result = LoadResult::FileNotFound;
}
else
{
if (!readChunk(tf, chunk, VMAP_MAGIC, 8))
{
result = LoadResult::VersionMismatch;
}
fclose(tf);
}
}
fclose(rf);
return result;
}
//=========================================================
bool StaticMapTree::InitMap(const std::string& fname, VMapMgr2* vm)
{
//VMAP_DEBUG_LOG(LOG_FILTER_MAPS, "StaticMapTree::InitMap() : initializing StaticMapTree '{}'", fname);
bool success = false;
std::string fullname = iBasePath + fname;
FILE* rf = fopen(fullname.c_str(), "rb");
if (!rf)
{
return false;
}
char chunk[8];
char tiled = '\0';
if (readChunk(rf, chunk, VMAP_MAGIC, 8) && fread(&tiled, sizeof(char), 1, rf) == 1 &&
readChunk(rf, chunk, "NODE", 4) && iTree.readFromFile(rf))
{
iNTreeValues = iTree.primCount();
iTreeValues = new ModelInstance[iNTreeValues];
success = readChunk(rf, chunk, "GOBJ", 4);
}
iIsTiled = bool(tiled);
// global model spawns
// only non-tiled maps have them, and if so exactly one (so far at least...)
ModelSpawn spawn;
#ifdef VMAP_DEBUG
//LOG_DEBUG(LOG_FILTER_MAPS, "StaticMapTree::InitMap() : map isTiled: {}", static_cast(iIsTiled));
#endif
if (!iIsTiled && ModelSpawn::readFromFile(rf, spawn))
{
WorldModel* model = vm->acquireModelInstance(iBasePath, spawn.name, spawn.flags);
//VMAP_DEBUG_LOG(LOG_FILTER_MAPS, "StaticMapTree::InitMap() : loading {}", spawn.name);
if (model)
{
// assume that global model always is the first and only tree value (could be improved...)
iTreeValues[0] = ModelInstance(spawn, model);
iLoadedSpawns[0] = 1;
}
else
{
success = false;
//VMAP_ERROR_LOG(LOG_FILTER_GENERAL, "StaticMapTree::InitMap() : could not acquire WorldModel pointer for '{}'", spawn.name);
}
}
fclose(rf);
return success;
}
//=========================================================
void StaticMapTree::UnloadMap(VMapMgr2* vm)
{
for (loadedSpawnMap::iterator i = iLoadedSpawns.begin(); i != iLoadedSpawns.end(); ++i)
{
iTreeValues[i->first].setUnloaded();
for (uint32 refCount = 0; refCount < i->second; ++refCount)
{
vm->releaseModelInstance(iTreeValues[i->first].name);
}
}
iLoadedSpawns.clear();
iLoadedTiles.clear();
}
//=========================================================
bool StaticMapTree::LoadMapTile(uint32 tileX, uint32 tileY, VMapMgr2* vm)
{
if (!iIsTiled)
{
// currently, core creates grids for all maps, whether it has terrain tiles or not
// so we need "fake" tile loads to know when we can unload map geometry
iLoadedTiles[packTileID(tileX, tileY)] = false;
return true;
}
if (!iTreeValues)
{
LOG_ERROR("maps", "StaticMapTree::LoadMapTile() : tree has not been initialized [{}, {}]", tileX, tileY);
return false;
}
bool result = true;
std::string tilefile = iBasePath + getTileFileName(iMapID, tileX, tileY);
FILE* tf = fopen(tilefile.c_str(), "rb");
if (tf)
{
char chunk[8];
if (!readChunk(tf, chunk, VMAP_MAGIC, 8))
{
result = false;
}
uint32 numSpawns = 0;
if (result && fread(&numSpawns, sizeof(uint32), 1, tf) != 1)
{
result = false;
}
for (uint32 i = 0; i < numSpawns && result; ++i)
{
// read model spawns
ModelSpawn spawn;
result = ModelSpawn::readFromFile(tf, spawn);
if (result)
{
// acquire model instance
WorldModel* model = vm->acquireModelInstance(iBasePath, spawn.name, spawn.flags);
if (!model)
{
LOG_ERROR("maps", "StaticMapTree::LoadMapTile() : could not acquire WorldModel pointer [{}, {}]", tileX, tileY);
}
// update tree
uint32 referencedVal;
if (fread(&referencedVal, sizeof(uint32), 1, tf) == 1)
{
if (!iLoadedSpawns.count(referencedVal))
{
#if defined(VMAP_DEBUG)
if (referencedVal > iNTreeValues)
{
LOG_DEBUG("maps", "StaticMapTree::LoadMapTile() : invalid tree element ({}/{})", referencedVal, iNTreeValues);
continue;
}
#endif
iTreeValues[referencedVal] = ModelInstance(spawn, model);
iLoadedSpawns[referencedVal] = 1;
}
else
{
++iLoadedSpawns[referencedVal];
#if defined(VMAP_DEBUG)
if (iTreeValues[referencedVal].ID != spawn.ID)
{
LOG_DEBUG("maps", "StaticMapTree::LoadMapTile() : trying to load wrong spawn in node");
}
else if (iTreeValues[referencedVal].name != spawn.name)
{
LOG_DEBUG("maps", "StaticMapTree::LoadMapTile() : name collision on GUID={}", spawn.ID);
}
#endif
}
}
else
{
result = false;
}
}
}
iLoadedTiles[packTileID(tileX, tileY)] = true;
fclose(tf);
}
else
{
iLoadedTiles[packTileID(tileX, tileY)] = false;
}
METRIC_EVENT("map_events", "LoadMapTile",
"Map: " + std::to_string(iMapID) + " TileX: " + std::to_string(tileX) + " TileY: " + std::to_string(tileY));
return result;
}
//=========================================================
void StaticMapTree::UnloadMapTile(uint32 tileX, uint32 tileY, VMapMgr2* vm)
{
uint32 tileID = packTileID(tileX, tileY);
loadedTileMap::iterator tile = iLoadedTiles.find(tileID);
if (tile == iLoadedTiles.end())
{
LOG_ERROR("maps", "StaticMapTree::UnloadMapTile() : trying to unload non-loaded tile - Map:{} X:{} Y:{}", iMapID, tileX, tileY);
return;
}
if (tile->second) // file associated with tile
{
std::string tilefile = iBasePath + getTileFileName(iMapID, tileX, tileY);
FILE* tf = fopen(tilefile.c_str(), "rb");
if (tf)
{
bool result = true;
char chunk[8];
if (!readChunk(tf, chunk, VMAP_MAGIC, 8))
{
result = false;
}
uint32 numSpawns;
if (fread(&numSpawns, sizeof(uint32), 1, tf) != 1)
{
result = false;
}
for (uint32 i = 0; i < numSpawns && result; ++i)
{
// read model spawns
ModelSpawn spawn;
result = ModelSpawn::readFromFile(tf, spawn);
if (result)
{
// release model instance
vm->releaseModelInstance(spawn.name);
// update tree
uint32 referencedNode;
if (fread(&referencedNode, sizeof(uint32), 1, tf) != 1)
{
result = false;
}
else
{
if (!iLoadedSpawns.count(referencedNode))
{
LOG_ERROR("maps", "StaticMapTree::UnloadMapTile() : trying to unload non-referenced model '{}' (ID:{})", spawn.name, spawn.ID);
}
else if (--iLoadedSpawns[referencedNode] == 0)
{
iTreeValues[referencedNode].setUnloaded();
iLoadedSpawns.erase(referencedNode);
}
}
}
}
fclose(tf);
}
}
iLoadedTiles.erase(tile);
METRIC_EVENT("map_events", "UnloadMapTile",
"Map: " + std::to_string(iMapID) + " TileX: " + std::to_string(tileX) + " TileY: " + std::to_string(tileY));
}
void StaticMapTree::GetModelInstances(ModelInstance*& models, uint32& count)
{
models = iTreeValues;
count = iNTreeValues;
}
}