/* * This file is part of the AzerothCore Project. See AUTHORS file for Copyright information * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU Affero General Public License as published by the * Free Software Foundation; either version 3 of the License, or (at your * option) any later version. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for * more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see . */ #include "WorldModel.h" #include "MapTree.h" #include "ModelIgnoreFlags.h" #include "ModelInstance.h" #include "VMapDefinitions.h" using G3D::Vector3; using G3D::Ray; template<> struct BoundsTrait { static void GetBounds(const VMAP::GroupModel& obj, G3D::AABox& out) { out = obj.GetBound(); } }; namespace VMAP { bool IntersectTriangle(const MeshTriangle& tri, std::vector::const_iterator points, const G3D::Ray& ray, float& distance) { static const float EPS = 1e-5f; // See RTR2 ch. 13.7 for the algorithm. const Vector3 e1 = points[tri.idx1] - points[tri.idx0]; const Vector3 e2 = points[tri.idx2] - points[tri.idx0]; const Vector3 p(ray.direction().cross(e2)); const float a = e1.dot(p); if (std::fabs(a) < EPS) { // Determinant is ill-conditioned; abort early return false; } const float f = 1.0f / a; const Vector3 s(ray.origin() - points[tri.idx0]); const float u = f * s.dot(p); if ((u < 0.0f) || (u > 1.0f)) { // We hit the plane of the m_geometry, but outside the m_geometry return false; } const Vector3 q(s.cross(e1)); const float v = f * ray.direction().dot(q); if ((v < 0.0f) || ((u + v) > 1.0f)) { // We hit the plane of the triangle, but outside the triangle return false; } const float t = f * e2.dot(q); if ((t > 0.0f) && (t < distance)) { // This is a new hit, closer than the previous one distance = t; /* baryCoord[0] = 1.0 - u - v; baryCoord[1] = u; baryCoord[2] = v; */ return true; } // This hit is after the previous hit, so ignore it return false; } class TriBoundFunc { public: TriBoundFunc(std::vector& vert): vertices(vert.begin()) { } void operator()(const MeshTriangle& tri, G3D::AABox& out) const { G3D::Vector3 lo = vertices[tri.idx0]; G3D::Vector3 hi = lo; lo = (lo.min(vertices[tri.idx1])).min(vertices[tri.idx2]); hi = (hi.max(vertices[tri.idx1])).max(vertices[tri.idx2]); out = G3D::AABox(lo, hi); } protected: const std::vector::const_iterator vertices; }; // ===================== WmoLiquid ================================== WmoLiquid::WmoLiquid(uint32 width, uint32 height, const Vector3& corner, uint32 type): iTilesX(width), iTilesY(height), iCorner(corner), iType(type) { if (width && height) { iHeight = new float[(width + 1) * (height + 1)]; iFlags = new uint8[width * height]; } else { iHeight = new float[1]; iFlags = nullptr; } } WmoLiquid::WmoLiquid(const WmoLiquid& other): iHeight(0), iFlags(0) { *this = other; // use assignment operator... } WmoLiquid::~WmoLiquid() { delete[] iHeight; delete[] iFlags; } WmoLiquid& WmoLiquid::operator=(const WmoLiquid& other) { if (this == &other) { return *this; } iTilesX = other.iTilesX; iTilesY = other.iTilesY; iCorner = other.iCorner; iType = other.iType; delete[] iHeight; delete[] iFlags; if (other.iHeight) { iHeight = new float[(iTilesX + 1) * (iTilesY + 1)]; memcpy(iHeight, other.iHeight, (iTilesX + 1) * (iTilesY + 1)*sizeof(float)); } else { iHeight = 0; } if (other.iFlags) { iFlags = new uint8[iTilesX * iTilesY]; memcpy(iFlags, other.iFlags, iTilesX * iTilesY); } else { iFlags = 0; } return *this; } bool WmoLiquid::GetLiquidHeight(const Vector3& pos, float& liqHeight) const { // simple case if (!iFlags) { liqHeight = iHeight[0]; return true; } float tx_f = (pos.x - iCorner.x) / LIQUID_TILE_SIZE; uint32 tx = uint32(tx_f); if (tx_f < 0.0f || tx >= iTilesX) { return false; } float ty_f = (pos.y - iCorner.y) / LIQUID_TILE_SIZE; uint32 ty = uint32(ty_f); if (ty_f < 0.0f || ty >= iTilesY) { return false; } // check if tile shall be used for liquid level // checking for 0x08 *might* be enough, but disabled tiles always are 0x?F: if (iFlags && (iFlags[tx + ty * iTilesX] & 0x0F) == 0x0F) { return false; } // (dx, dy) coordinates inside tile, in [0, 1]^2 float dx = tx_f - (float)tx; float dy = ty_f - (float)ty; /* Tesselate tile to two triangles (not sure if client does it exactly like this) ^ dy | 1 x---------x (1, 1) | (b) / | | / | | / | | / (a) | x---------x---> dx 0 1 */ if (!iHeight) { return false; } const uint32 rowOffset = iTilesX + 1; if (dx > dy) // case (a) { float sx = iHeight[tx + 1 + ty * rowOffset] - iHeight[tx + ty * rowOffset]; float sy = iHeight[tx + 1 + (ty + 1) * rowOffset] - iHeight[tx + 1 + ty * rowOffset]; liqHeight = iHeight[tx + ty * rowOffset] + dx * sx + dy * sy; } else // case (b) { float sx = iHeight[tx + 1 + (ty + 1) * rowOffset] - iHeight[tx + (ty + 1) * rowOffset]; float sy = iHeight[tx + (ty + 1) * rowOffset] - iHeight[tx + ty * rowOffset]; liqHeight = iHeight[tx + ty * rowOffset] + dx * sx + dy * sy; } return true; } uint32 WmoLiquid::GetFileSize() { return 2 * sizeof(uint32) + sizeof(Vector3) + sizeof(uint32) + (iFlags ? ((iTilesX + 1) * (iTilesY + 1) * sizeof(float) + iTilesX * iTilesY) : sizeof(float)); } bool WmoLiquid::writeToFile(FILE* wf) { bool result = false; if (fwrite(&iTilesX, sizeof(uint32), 1, wf) == 1 && fwrite(&iTilesY, sizeof(uint32), 1, wf) == 1 && fwrite(&iCorner, sizeof(Vector3), 1, wf) == 1 && fwrite(&iType, sizeof(uint32), 1, wf) == 1) { if (iTilesX && iTilesY) { uint32 size = (iTilesX + 1) * (iTilesY + 1); if (fwrite(iHeight, sizeof(float), size, wf) == size) { size = iTilesX * iTilesY; result = fwrite(iFlags, sizeof(uint8), size, wf) == size; } } else result = fwrite(iHeight, sizeof(float), 1, wf) == 1; } return result; } bool WmoLiquid::readFromFile(FILE* rf, WmoLiquid*& out) { bool result = false; WmoLiquid* liquid = new WmoLiquid(); if (fread(&liquid->iTilesX, sizeof(uint32), 1, rf) == 1 && fread(&liquid->iTilesY, sizeof(uint32), 1, rf) == 1 && fread(&liquid->iCorner, sizeof(Vector3), 1, rf) == 1 && fread(&liquid->iType, sizeof(uint32), 1, rf) == 1) { if (liquid->iTilesX && liquid->iTilesY) { uint32 size = (liquid->iTilesX + 1) * (liquid->iTilesY + 1); liquid->iHeight = new float[size]; if (fread(liquid->iHeight, sizeof(float), size, rf) == size) { size = liquid->iTilesX * liquid->iTilesY; liquid->iFlags = new uint8[size]; result = fread(liquid->iFlags, sizeof(uint8), size, rf) == size; } } else { liquid->iHeight = new float[1]; result = fread(liquid->iHeight, sizeof(float), 1, rf) == 1; } } if (!result) { delete liquid; } else { out = liquid; } return result; } void WmoLiquid::GetPosInfo(uint32& tilesX, uint32& tilesY, G3D::Vector3& corner) const { tilesX = iTilesX; tilesY = iTilesY; corner = iCorner; } // ===================== GroupModel ================================== GroupModel::GroupModel(const GroupModel& other): iBound(other.iBound), iMogpFlags(other.iMogpFlags), iGroupWMOID(other.iGroupWMOID), vertices(other.vertices), triangles(other.triangles), meshTree(other.meshTree), iLiquid(0) { if (other.iLiquid) { iLiquid = new WmoLiquid(*other.iLiquid); } } void GroupModel::setMeshData(std::vector& vert, std::vector& tri) { vertices.swap(vert); triangles.swap(tri); TriBoundFunc bFunc(vertices); meshTree.build(triangles, bFunc); } bool GroupModel::writeToFile(FILE* wf) { bool result = true; uint32 chunkSize, count; if (fwrite(&iBound, sizeof(G3D::AABox), 1, wf) != 1) { result = false; } if (result && fwrite(&iMogpFlags, sizeof(uint32), 1, wf) != 1) { result = false; } if (result && fwrite(&iGroupWMOID, sizeof(uint32), 1, wf) != 1) { result = false; } // write vertices if (result && fwrite("VERT", 1, 4, wf) != 4) { result = false; } count = vertices.size(); chunkSize = sizeof(uint32) + sizeof(Vector3) * count; if (result && fwrite(&chunkSize, sizeof(uint32), 1, wf) != 1) { result = false; } if (result && fwrite(&count, sizeof(uint32), 1, wf) != 1) { result = false; } if (!count) // models without (collision) geometry end here, unsure if they are useful { return result; } if (result && fwrite(&vertices[0], sizeof(Vector3), count, wf) != count) { result = false; } // write triangle mesh if (result && fwrite("TRIM", 1, 4, wf) != 4) { result = false; } count = triangles.size(); chunkSize = sizeof(uint32) + sizeof(MeshTriangle) * count; if (result && fwrite(&chunkSize, sizeof(uint32), 1, wf) != 1) { result = false; } if (result && fwrite(&count, sizeof(uint32), 1, wf) != 1) { result = false; } if (result && fwrite(&triangles[0], sizeof(MeshTriangle), count, wf) != count) { result = false; } // write mesh BIH if (result && fwrite("MBIH", 1, 4, wf) != 4) { result = false; } if (result) { result = meshTree.writeToFile(wf); } // write liquid data if (result && fwrite("LIQU", 1, 4, wf) != 4) { result = false; } if (!iLiquid) { chunkSize = 0; if (result && fwrite(&chunkSize, sizeof(uint32), 1, wf) != 1) { result = false; } return result; } chunkSize = iLiquid->GetFileSize(); if (result && fwrite(&chunkSize, sizeof(uint32), 1, wf) != 1) { result = false; } if (result) { result = iLiquid->writeToFile(wf); } return result; } bool GroupModel::readFromFile(FILE* rf) { char chunk[8]; bool result = true; uint32 chunkSize = 0; uint32 count = 0; triangles.clear(); vertices.clear(); delete iLiquid; iLiquid = nullptr; if (fread(&iBound, sizeof(G3D::AABox), 1, rf) != 1) { result = false; } if (result && fread(&iMogpFlags, sizeof(uint32), 1, rf) != 1) { result = false; } if (result && fread(&iGroupWMOID, sizeof(uint32), 1, rf) != 1) { result = false; } // read vertices if (result && !readChunk(rf, chunk, "VERT", 4)) { result = false; } if (result && fread(&chunkSize, sizeof(uint32), 1, rf) != 1) { result = false; } if (result && fread(&count, sizeof(uint32), 1, rf) != 1) { result = false; } if (!count) // models without (collision) geometry end here, unsure if they are useful { return result; } if (result) { vertices.resize(count); } if (result && fread(&vertices[0], sizeof(Vector3), count, rf) != count) { result = false; } // read triangle mesh if (result && !readChunk(rf, chunk, "TRIM", 4)) { result = false; } if (result && fread(&chunkSize, sizeof(uint32), 1, rf) != 1) { result = false; } if (result && fread(&count, sizeof(uint32), 1, rf) != 1) { result = false; } if (result) { triangles.resize(count); } if (result && fread(&triangles[0], sizeof(MeshTriangle), count, rf) != count) { result = false; } // read mesh BIH if (result && !readChunk(rf, chunk, "MBIH", 4)) { result = false; } if (result) { result = meshTree.readFromFile(rf); } // write liquid data if (result && !readChunk(rf, chunk, "LIQU", 4)) { result = false; } if (result && fread(&chunkSize, sizeof(uint32), 1, rf) != 1) { result = false; } if (result && chunkSize > 0) { result = WmoLiquid::readFromFile(rf, iLiquid); } return result; } struct GModelRayCallback { GModelRayCallback(const std::vector& tris, const std::vector& vert): vertices(vert.begin()), triangles(tris.begin()), hit(false) { } bool operator()(const G3D::Ray& ray, uint32 entry, float& distance, bool /*StopAtFirstHit*/) { bool result = IntersectTriangle(triangles[entry], vertices, ray, distance); if (result) { hit = true; } return hit; } std::vector::const_iterator vertices; std::vector::const_iterator triangles; bool hit; }; bool GroupModel::IntersectRay(const G3D::Ray& ray, float& distance, bool stopAtFirstHit) const { if (triangles.empty()) { return false; } GModelRayCallback callback(triangles, vertices); meshTree.intersectRay(ray, callback, distance, stopAtFirstHit); return callback.hit; } bool GroupModel::IsInsideObject(const Vector3& pos, const Vector3& down, float& z_dist) const { if (triangles.empty() || !iBound.contains(pos)) { return false; } Vector3 rPos = pos - 0.1f * down; float dist = G3D::inf(); G3D::Ray ray(rPos, down); bool hit = IntersectRay(ray, dist, false); if (hit) { z_dist = dist - 0.1f; } return hit; } bool GroupModel::GetLiquidLevel(const Vector3& pos, float& liqHeight) const { if (iLiquid) { return iLiquid->GetLiquidHeight(pos, liqHeight); } return false; } uint32 GroupModel::GetLiquidType() const { if (iLiquid) { return iLiquid->GetType(); } return 0; } void GroupModel::GetMeshData(std::vector& outVertices, std::vector& outTriangles, WmoLiquid*& liquid) { outVertices = vertices; outTriangles = triangles; liquid = iLiquid; } // ===================== WorldModel ================================== void WorldModel::setGroupModels(std::vector& models) { groupModels.swap(models); groupTree.build(groupModels, BoundsTrait::GetBounds, 1); } struct WModelRayCallBack { WModelRayCallBack(const std::vector& mod): models(mod.begin()), hit(false) { } bool operator()(const G3D::Ray& ray, uint32 entry, float& distance, bool StopAtFirstHit) { bool result = models[entry].IntersectRay(ray, distance, StopAtFirstHit); if (result) { hit = true; } return hit; } std::vector::const_iterator models; bool hit; }; bool WorldModel::IntersectRay(const G3D::Ray& ray, float& distance, bool stopAtFirstHit, ModelIgnoreFlags ignoreFlags) const { // If the caller asked us to ignore certain objects we should check flags if ((ignoreFlags & ModelIgnoreFlags::M2) != ModelIgnoreFlags::Nothing) { // M2 models are not taken into account for LoS calculation if caller requested their ignoring. if (Flags & MOD_M2) { return false; } } // small M2 workaround, maybe better make separate class with virtual intersection funcs // in any case, there's no need to use a bound tree if we only have one submodel if (groupModels.size() == 1) { return groupModels[0].IntersectRay(ray, distance, stopAtFirstHit); } WModelRayCallBack isc(groupModels); groupTree.intersectRay(ray, isc, distance, stopAtFirstHit); return isc.hit; } class WModelAreaCallback { public: WModelAreaCallback(const std::vector& vals, const Vector3& down): prims(vals.begin()), hit(vals.end()), minVol(G3D::inf()), zDist(G3D::inf()), zVec(down) { } std::vector::const_iterator prims; std::vector::const_iterator hit; float minVol; float zDist; Vector3 zVec; void operator()(const Vector3& point, uint32 entry) { float group_Z; //float pVol = prims[entry].GetBound().volume(); //if (pVol < minVol) //{ /* if (prims[entry].iBound.contains(point)) */ if (prims[entry].IsInsideObject(point, zVec, group_Z)) { //minVol = pVol; //hit = prims + entry; if (group_Z < zDist) { zDist = group_Z; hit = prims + entry; } #ifdef VMAP_DEBUG const GroupModel& gm = prims[entry]; printf("%10u %8X %7.3f, %7.3f, %7.3f | %7.3f, %7.3f, %7.3f | z=%f, p_z=%f\n", gm.GetWmoID(), gm.GetMogpFlags(), gm.GetBound().low().x, gm.GetBound().low().y, gm.GetBound().low().z, gm.GetBound().high().x, gm.GetBound().high().y, gm.GetBound().high().z, group_Z, point.z); #endif } //} //std::cout << "trying to intersect '" << prims[entry].name << "'\n"; } }; bool WorldModel::IntersectPoint(const G3D::Vector3& p, const G3D::Vector3& down, float& dist, AreaInfo& info) const { if (groupModels.empty()) { return false; } WModelAreaCallback callback(groupModels, down); groupTree.intersectPoint(p, callback); if (callback.hit != groupModels.end()) { info.rootId = RootWMOID; info.groupId = callback.hit->GetWmoID(); info.flags = callback.hit->GetMogpFlags(); info.result = true; dist = callback.zDist; return true; } return false; } bool WorldModel::GetLocationInfo(const G3D::Vector3& p, const G3D::Vector3& down, float& dist, LocationInfo& info) const { if (groupModels.empty()) { return false; } WModelAreaCallback callback(groupModels, down); groupTree.intersectPoint(p, callback); if (callback.hit != groupModels.end()) { info.rootId = RootWMOID; info.hitModel = &(*callback.hit); dist = callback.zDist; return true; } return false; } bool WorldModel::writeFile(const std::string& filename) { FILE* wf = fopen(filename.c_str(), "wb"); if (!wf) { return false; } uint32 chunkSize, count; bool result = fwrite(VMAP_MAGIC, 1, 8, wf) == 8; if (result && fwrite("WMOD", 1, 4, wf) != 4) { result = false; } chunkSize = sizeof(uint32) + sizeof(uint32); if (result && fwrite(&chunkSize, sizeof(uint32), 1, wf) != 1) { result = false; } if (result && fwrite(&RootWMOID, sizeof(uint32), 1, wf) != 1) { result = false; } // write group models count = groupModels.size(); if (count) { if (result && fwrite("GMOD", 1, 4, wf) != 4) { result = false; } //chunkSize = sizeof(uint32)+ sizeof(GroupModel)*count; //if (result && fwrite(&chunkSize, sizeof(uint32), 1, wf) != 1) result = false; if (result && fwrite(&count, sizeof(uint32), 1, wf) != 1) { result = false; } for (uint32 i = 0; i < groupModels.size() && result; ++i) { result = groupModels[i].writeToFile(wf); } // write group BIH if (result && fwrite("GBIH", 1, 4, wf) != 4) { result = false; } if (result) { result = groupTree.writeToFile(wf); } } fclose(wf); return result; } bool WorldModel::readFile(const std::string& filename) { FILE* rf = fopen(filename.c_str(), "rb"); if (!rf) { return false; } bool result = true; uint32 chunkSize = 0; uint32 count = 0; char chunk[8]; // Ignore the added magic header if (!readChunk(rf, chunk, VMAP_MAGIC, 8)) { result = false; } if (result && !readChunk(rf, chunk, "WMOD", 4)) { result = false; } if (result && fread(&chunkSize, sizeof(uint32), 1, rf) != 1) { result = false; } if (result && fread(&RootWMOID, sizeof(uint32), 1, rf) != 1) { result = false; } // read group models if (result && readChunk(rf, chunk, "GMOD", 4)) { //if (fread(&chunkSize, sizeof(uint32), 1, rf) != 1) result = false; if (fread(&count, sizeof(uint32), 1, rf) != 1) { result = false; } if (result) { groupModels.resize(count); } //if (result && fread(&groupModels[0], sizeof(GroupModel), count, rf) != count) result = false; for (uint32 i = 0; i < count && result; ++i) { result = groupModels[i].readFromFile(rf); } // read group BIH if (result && !readChunk(rf, chunk, "GBIH", 4)) { result = false; } if (result) { result = groupTree.readFromFile(rf); } } fclose(rf); return result; } void WorldModel::GetGroupModels(std::vector& outGroupModels) { outGroupModels = groupModels; } }