Add SFMT (SIMD-oriented Fast Mersenne Twister) to externals library + add packagelist

--HG--
branch : trunk
This commit is contained in:
click
2010-06-07 20:45:58 +02:00
parent 7120513afe
commit 0000768855
6 changed files with 1191 additions and 0 deletions

40
externals/PackageList.txt vendored Normal file
View File

@@ -0,0 +1,40 @@
TrinityCore uses (parts of or in whole) the following opensource software :
ACE (ADAPTIVE Communication Environment)
http://www.cs.wustl.edu/~schmidt/ACE.html
bzip2 (a freely available, patent free, high-quality data compressor)
http://www.bzip.org/
G3D (a commercial-grade C++ 3D engine available as Open Source (BSD License)
http://g3d.sourceforge.net/
jemalloc (a general-purpose scalable concurrent malloc-implementation)
http://www.canonware.com/jemalloc/
libMPQ (a library for reading MPQ files)
https://libmpq.org/
MersenneTwister (a very fast random number generator)
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
SFMT (SIMD-oriented Fast Mersenne Twister)
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/index.html
MySQL (the world's most popular open source database software)
http://www.mysql.com/about/
OpenSSL (an opensource toolkit implementing SSL v2/v3 and TLS v1 protocols)
http://www.openssl.org/
sockets (a GPL licensed C++ class library wrapping the berkeley sockets C API)
http://www.alhem.net/Sockets/
utf8-cpp (UTF-8 with C++ in a Portable Way)
http://utfcpp.sourceforge.net/
vld (a free open-source memory leak detection system for Visual C++)
http://sites.google.com/site/dmoulding/vld
zlib (A Massively Spiffy Yet Delicately Unobtrusive Compression Library)
http://www.zlib.net/

156
externals/SFMT/SFMT-alti.h vendored Normal file
View File

@@ -0,0 +1,156 @@
/**
* @file SFMT-alti.h
*
* @brief SIMD oriented Fast Mersenne Twister(SFMT)
* pseudorandom number generator
*
* @author Mutsuo Saito (Hiroshima University)
* @author Makoto Matsumoto (Hiroshima University)
*
* Copyright (C) 2007 Mutsuo Saito, Makoto Matsumoto and Hiroshima
* University. All rights reserved.
*
* The new BSD License is applied to this software.
* see LICENSE.txt
*/
#ifndef SFMT_ALTI_H
#define SFMT_ALTI_H
inline static vector unsigned int vec_recursion(vector unsigned int a,
vector unsigned int b,
vector unsigned int c,
vector unsigned int d)
ALWAYSINLINE;
/**
* This function represents the recursion formula in AltiVec and BIG ENDIAN.
* @param a a 128-bit part of the interal state array
* @param b a 128-bit part of the interal state array
* @param c a 128-bit part of the interal state array
* @param d a 128-bit part of the interal state array
* @return output
*/
inline static vector unsigned int vec_recursion(vector unsigned int a,
vector unsigned int b,
vector unsigned int c,
vector unsigned int d) {
const vector unsigned int sl1 = ALTI_SL1;
const vector unsigned int sr1 = ALTI_SR1;
#ifdef ONLY64
const vector unsigned int mask = ALTI_MSK64;
const vector unsigned char perm_sl = ALTI_SL2_PERM64;
const vector unsigned char perm_sr = ALTI_SR2_PERM64;
#else
const vector unsigned int mask = ALTI_MSK;
const vector unsigned char perm_sl = ALTI_SL2_PERM;
const vector unsigned char perm_sr = ALTI_SR2_PERM;
#endif
vector unsigned int v, w, x, y, z;
x = vec_perm(a, (vector unsigned int)perm_sl, perm_sl);
v = a;
y = vec_sr(b, sr1);
z = vec_perm(c, (vector unsigned int)perm_sr, perm_sr);
w = vec_sl(d, sl1);
z = vec_xor(z, w);
y = vec_and(y, mask);
v = vec_xor(v, x);
z = vec_xor(z, y);
z = vec_xor(z, v);
return z;
}
/**
* This function fills the internal state array with pseudorandom
* integers.
*/
inline static void gen_rand_all(void) {
int i;
vector unsigned int r, r1, r2;
r1 = sfmt[N - 2].s;
r2 = sfmt[N - 1].s;
for (i = 0; i < N - POS1; i++) {
r = vec_recursion(sfmt[i].s, sfmt[i + POS1].s, r1, r2);
sfmt[i].s = r;
r1 = r2;
r2 = r;
}
for (; i < N; i++) {
r = vec_recursion(sfmt[i].s, sfmt[i + POS1 - N].s, r1, r2);
sfmt[i].s = r;
r1 = r2;
r2 = r;
}
}
/**
* This function fills the user-specified array with pseudorandom
* integers.
*
* @param array an 128-bit array to be filled by pseudorandom numbers.
* @param size number of 128-bit pesudorandom numbers to be generated.
*/
inline static void gen_rand_array(w128_t *array, int size) {
int i, j;
vector unsigned int r, r1, r2;
r1 = sfmt[N - 2].s;
r2 = sfmt[N - 1].s;
for (i = 0; i < N - POS1; i++) {
r = vec_recursion(sfmt[i].s, sfmt[i + POS1].s, r1, r2);
array[i].s = r;
r1 = r2;
r2 = r;
}
for (; i < N; i++) {
r = vec_recursion(sfmt[i].s, array[i + POS1 - N].s, r1, r2);
array[i].s = r;
r1 = r2;
r2 = r;
}
/* main loop */
for (; i < size - N; i++) {
r = vec_recursion(array[i - N].s, array[i + POS1 - N].s, r1, r2);
array[i].s = r;
r1 = r2;
r2 = r;
}
for (j = 0; j < 2 * N - size; j++) {
sfmt[j].s = array[j + size - N].s;
}
for (; i < size; i++) {
r = vec_recursion(array[i - N].s, array[i + POS1 - N].s, r1, r2);
array[i].s = r;
sfmt[j++].s = r;
r1 = r2;
r2 = r;
}
}
#ifndef ONLY64
#if defined(__APPLE__)
#define ALTI_SWAP (vector unsigned char) \
(4, 5, 6, 7, 0, 1, 2, 3, 12, 13, 14, 15, 8, 9, 10, 11)
#else
#define ALTI_SWAP {4, 5, 6, 7, 0, 1, 2, 3, 12, 13, 14, 15, 8, 9, 10, 11}
#endif
/**
* This function swaps high and low 32-bit of 64-bit integers in user
* specified array.
*
* @param array an 128-bit array to be swaped.
* @param size size of 128-bit array.
*/
inline static void swap(w128_t *array, int size) {
int i;
const vector unsigned char perm = ALTI_SWAP;
for (i = 0; i < size; i++) {
array[i].s = vec_perm(array[i].s, (vector unsigned int)perm, perm);
}
}
#endif
#endif

97
externals/SFMT/SFMT-params.h vendored Normal file
View File

@@ -0,0 +1,97 @@
#ifndef SFMT_PARAMS_H
#define SFMT_PARAMS_H
#if !defined(MEXP)
#ifdef __GNUC__
#warning "MEXP is not defined. I assume MEXP is 19937."
#endif
#define MEXP 19937
#endif
/*-----------------
BASIC DEFINITIONS
-----------------*/
/** Mersenne Exponent. The period of the sequence
* is a multiple of 2^MEXP-1.
* #define MEXP 19937 */
/** SFMT generator has an internal state array of 128-bit integers,
* and N is its size. */
#define N (MEXP / 128 + 1)
/** N32 is the size of internal state array when regarded as an array
* of 32-bit integers.*/
#define N32 (N * 4)
/** N64 is the size of internal state array when regarded as an array
* of 64-bit integers.*/
#define N64 (N * 2)
/*----------------------
the parameters of SFMT
following definitions are in paramsXXXX.h file.
----------------------*/
/** the pick up position of the array.
#define POS1 122
*/
/** the parameter of shift left as four 32-bit registers.
#define SL1 18
*/
/** the parameter of shift left as one 128-bit register.
* The 128-bit integer is shifted by (SL2 * 8) bits.
#define SL2 1
*/
/** the parameter of shift right as four 32-bit registers.
#define SR1 11
*/
/** the parameter of shift right as one 128-bit register.
* The 128-bit integer is shifted by (SL2 * 8) bits.
#define SR2 1
*/
/** A bitmask, used in the recursion. These parameters are introduced
* to break symmetry of SIMD.
#define MSK1 0xdfffffefU
#define MSK2 0xddfecb7fU
#define MSK3 0xbffaffffU
#define MSK4 0xbffffff6U
*/
/** These definitions are part of a 128-bit period certification vector.
#define PARITY1 0x00000001U
#define PARITY2 0x00000000U
#define PARITY3 0x00000000U
#define PARITY4 0xc98e126aU
*/
#if MEXP == 607
#include "SFMT-params607.h"
#elif MEXP == 1279
#include "SFMT-params1279.h"
#elif MEXP == 2281
#include "SFMT-params2281.h"
#elif MEXP == 4253
#include "SFMT-params4253.h"
#elif MEXP == 11213
#include "SFMT-params11213.h"
#elif MEXP == 19937
#include "SFMT-params19937.h"
#elif MEXP == 44497
#include "SFMT-params44497.h"
#elif MEXP == 86243
#include "SFMT-params86243.h"
#elif MEXP == 132049
#include "SFMT-params132049.h"
#elif MEXP == 216091
#include "SFMT-params216091.h"
#else
#ifdef __GNUC__
#error "MEXP is not valid."
#undef MEXP
#else
#undef MEXP
#endif
#endif
#endif /* SFMT_PARAMS_H */

121
externals/SFMT/SFMT-sse2.h vendored Normal file
View File

@@ -0,0 +1,121 @@
/**
* @file SFMT-sse2.h
* @brief SIMD oriented Fast Mersenne Twister(SFMT) for Intel SSE2
*
* @author Mutsuo Saito (Hiroshima University)
* @author Makoto Matsumoto (Hiroshima University)
*
* @note We assume LITTLE ENDIAN in this file
*
* Copyright (C) 2006, 2007 Mutsuo Saito, Makoto Matsumoto and Hiroshima
* University. All rights reserved.
*
* The new BSD License is applied to this software, see LICENSE.txt
*/
#ifndef SFMT_SSE2_H
#define SFMT_SSE2_H
PRE_ALWAYS static __m128i mm_recursion(__m128i *a, __m128i *b, __m128i c,
__m128i d, __m128i mask) ALWAYSINLINE;
/**
* This function represents the recursion formula.
* @param a a 128-bit part of the interal state array
* @param b a 128-bit part of the interal state array
* @param c a 128-bit part of the interal state array
* @param d a 128-bit part of the interal state array
* @param mask 128-bit mask
* @return output
*/
PRE_ALWAYS static __m128i mm_recursion(__m128i *a, __m128i *b,
__m128i c, __m128i d, __m128i mask) {
__m128i v, x, y, z;
x = _mm_load_si128(a);
y = _mm_srli_epi32(*b, SR1);
z = _mm_srli_si128(c, SR2);
v = _mm_slli_epi32(d, SL1);
z = _mm_xor_si128(z, x);
z = _mm_xor_si128(z, v);
x = _mm_slli_si128(x, SL2);
y = _mm_and_si128(y, mask);
z = _mm_xor_si128(z, x);
z = _mm_xor_si128(z, y);
return z;
}
/**
* This function fills the internal state array with pseudorandom
* integers.
*/
inline static void gen_rand_all(void) {
int i;
__m128i r, r1, r2, mask;
mask = _mm_set_epi32(MSK4, MSK3, MSK2, MSK1);
r1 = _mm_load_si128(&sfmt[N - 2].si);
r2 = _mm_load_si128(&sfmt[N - 1].si);
for (i = 0; i < N - POS1; i++) {
r = mm_recursion(&sfmt[i].si, &sfmt[i + POS1].si, r1, r2, mask);
_mm_store_si128(&sfmt[i].si, r);
r1 = r2;
r2 = r;
}
for (; i < N; i++) {
r = mm_recursion(&sfmt[i].si, &sfmt[i + POS1 - N].si, r1, r2, mask);
_mm_store_si128(&sfmt[i].si, r);
r1 = r2;
r2 = r;
}
}
/**
* This function fills the user-specified array with pseudorandom
* integers.
*
* @param array an 128-bit array to be filled by pseudorandom numbers.
* @param size number of 128-bit pesudorandom numbers to be generated.
*/
inline static void gen_rand_array(w128_t *array, int size) {
int i, j;
__m128i r, r1, r2, mask;
mask = _mm_set_epi32(MSK4, MSK3, MSK2, MSK1);
r1 = _mm_load_si128(&sfmt[N - 2].si);
r2 = _mm_load_si128(&sfmt[N - 1].si);
for (i = 0; i < N - POS1; i++) {
r = mm_recursion(&sfmt[i].si, &sfmt[i + POS1].si, r1, r2, mask);
_mm_store_si128(&array[i].si, r);
r1 = r2;
r2 = r;
}
for (; i < N; i++) {
r = mm_recursion(&sfmt[i].si, &array[i + POS1 - N].si, r1, r2, mask);
_mm_store_si128(&array[i].si, r);
r1 = r2;
r2 = r;
}
/* main loop */
for (; i < size - N; i++) {
r = mm_recursion(&array[i - N].si, &array[i + POS1 - N].si, r1, r2,
mask);
_mm_store_si128(&array[i].si, r);
r1 = r2;
r2 = r;
}
for (j = 0; j < 2 * N - size; j++) {
r = _mm_load_si128(&array[j + size - N].si);
_mm_store_si128(&sfmt[j].si, r);
}
for (; i < size; i++) {
r = mm_recursion(&array[i - N].si, &array[i + POS1 - N].si, r1, r2,
mask);
_mm_store_si128(&array[i].si, r);
_mm_store_si128(&sfmt[j++].si, r);
r1 = r2;
r2 = r;
}
}
#endif

620
externals/SFMT/SFMT.c vendored Normal file
View File

@@ -0,0 +1,620 @@
/**
* @file SFMT.c
* @brief SIMD oriented Fast Mersenne Twister(SFMT)
*
* @author Mutsuo Saito (Hiroshima University)
* @author Makoto Matsumoto (Hiroshima University)
*
* Copyright (C) 2006,2007 Mutsuo Saito, Makoto Matsumoto and Hiroshima
* University. All rights reserved.
*
* The new BSD License is applied to this software, see LICENSE.txt
*/
#include <string.h>
#include <assert.h>
#include "SFMT.h"
#include "SFMT-params.h"
#if defined(__BIG_ENDIAN__) && !defined(__amd64) && !defined(BIG_ENDIAN64)
#define BIG_ENDIAN64 1
#endif
#if defined(HAVE_ALTIVEC) && !defined(BIG_ENDIAN64)
#define BIG_ENDIAN64 1
#endif
#if defined(ONLY64) && !defined(BIG_ENDIAN64)
#if defined(__GNUC__)
#error "-DONLY64 must be specified with -DBIG_ENDIAN64"
#endif
#undef ONLY64
#endif
/*------------------------------------------------------
128-bit SIMD data type for Altivec, SSE2 or standard C
------------------------------------------------------*/
#if defined(HAVE_ALTIVEC)
#if !defined(__APPLE__)
#include <altivec.h>
#endif
/** 128-bit data structure */
union W128_T {
vector unsigned int s;
uint32_t u[4];
};
/** 128-bit data type */
typedef union W128_T w128_t;
#elif defined(HAVE_SSE2)
#include <emmintrin.h>
/** 128-bit data structure */
union W128_T {
__m128i si;
uint32_t u[4];
};
/** 128-bit data type */
typedef union W128_T w128_t;
#else
/** 128-bit data structure */
struct W128_T {
uint32_t u[4];
};
/** 128-bit data type */
typedef struct W128_T w128_t;
#endif
/*--------------------------------------
FILE GLOBAL VARIABLES
internal state, index counter and flag
--------------------------------------*/
/** the 128-bit internal state array */
static w128_t sfmt[N];
/** the 32bit integer pointer to the 128-bit internal state array */
static uint32_t *psfmt32 = &sfmt[0].u[0];
#if !defined(BIG_ENDIAN64) || defined(ONLY64)
/** the 64bit integer pointer to the 128-bit internal state array */
static uint64_t *psfmt64 = (uint64_t *)&sfmt[0].u[0];
#endif
/** index counter to the 32-bit internal state array */
static int idx;
/** a flag: it is 0 if and only if the internal state is not yet
* initialized. */
static int initialized = 0;
/** a parity check vector which certificate the period of 2^{MEXP} */
static uint32_t parity[4] = {PARITY1, PARITY2, PARITY3, PARITY4};
/*----------------
STATIC FUNCTIONS
----------------*/
inline static int idxof(int i);
inline static void rshift128(w128_t *out, w128_t const *in, int shift);
inline static void lshift128(w128_t *out, w128_t const *in, int shift);
inline static void gen_rand_all(void);
inline static void gen_rand_array(w128_t *array, int size);
inline static uint32_t func1(uint32_t x);
inline static uint32_t func2(uint32_t x);
static void period_certification(void);
#if defined(BIG_ENDIAN64) && !defined(ONLY64)
inline static void swap(w128_t *array, int size);
#endif
#if defined(HAVE_ALTIVEC)
#include "SFMT-alti.h"
#elif defined(HAVE_SSE2)
#include "SFMT-sse2.h"
#endif
/**
* This function simulate a 64-bit index of LITTLE ENDIAN
* in BIG ENDIAN machine.
*/
#ifdef ONLY64
inline static int idxof(int i) {
return i ^ 1;
}
#else
inline static int idxof(int i) {
return i;
}
#endif
/**
* This function simulates SIMD 128-bit right shift by the standard C.
* The 128-bit integer given in in is shifted by (shift * 8) bits.
* This function simulates the LITTLE ENDIAN SIMD.
* @param out the output of this function
* @param in the 128-bit data to be shifted
* @param shift the shift value
*/
#ifdef ONLY64
inline static void rshift128(w128_t *out, w128_t const *in, int shift) {
uint64_t th, tl, oh, ol;
th = ((uint64_t)in->u[2] << 32) | ((uint64_t)in->u[3]);
tl = ((uint64_t)in->u[0] << 32) | ((uint64_t)in->u[1]);
oh = th >> (shift * 8);
ol = tl >> (shift * 8);
ol |= th << (64 - shift * 8);
out->u[0] = (uint32_t)(ol >> 32);
out->u[1] = (uint32_t)ol;
out->u[2] = (uint32_t)(oh >> 32);
out->u[3] = (uint32_t)oh;
}
#else
inline static void rshift128(w128_t *out, w128_t const *in, int shift) {
uint64_t th, tl, oh, ol;
th = ((uint64_t)in->u[3] << 32) | ((uint64_t)in->u[2]);
tl = ((uint64_t)in->u[1] << 32) | ((uint64_t)in->u[0]);
oh = th >> (shift * 8);
ol = tl >> (shift * 8);
ol |= th << (64 - shift * 8);
out->u[1] = (uint32_t)(ol >> 32);
out->u[0] = (uint32_t)ol;
out->u[3] = (uint32_t)(oh >> 32);
out->u[2] = (uint32_t)oh;
}
#endif
/**
* This function simulates SIMD 128-bit left shift by the standard C.
* The 128-bit integer given in in is shifted by (shift * 8) bits.
* This function simulates the LITTLE ENDIAN SIMD.
* @param out the output of this function
* @param in the 128-bit data to be shifted
* @param shift the shift value
*/
#ifdef ONLY64
inline static void lshift128(w128_t *out, w128_t const *in, int shift) {
uint64_t th, tl, oh, ol;
th = ((uint64_t)in->u[2] << 32) | ((uint64_t)in->u[3]);
tl = ((uint64_t)in->u[0] << 32) | ((uint64_t)in->u[1]);
oh = th << (shift * 8);
ol = tl << (shift * 8);
oh |= tl >> (64 - shift * 8);
out->u[0] = (uint32_t)(ol >> 32);
out->u[1] = (uint32_t)ol;
out->u[2] = (uint32_t)(oh >> 32);
out->u[3] = (uint32_t)oh;
}
#else
inline static void lshift128(w128_t *out, w128_t const *in, int shift) {
uint64_t th, tl, oh, ol;
th = ((uint64_t)in->u[3] << 32) | ((uint64_t)in->u[2]);
tl = ((uint64_t)in->u[1] << 32) | ((uint64_t)in->u[0]);
oh = th << (shift * 8);
ol = tl << (shift * 8);
oh |= tl >> (64 - shift * 8);
out->u[1] = (uint32_t)(ol >> 32);
out->u[0] = (uint32_t)ol;
out->u[3] = (uint32_t)(oh >> 32);
out->u[2] = (uint32_t)oh;
}
#endif
/**
* This function represents the recursion formula.
* @param r output
* @param a a 128-bit part of the internal state array
* @param b a 128-bit part of the internal state array
* @param c a 128-bit part of the internal state array
* @param d a 128-bit part of the internal state array
*/
#if (!defined(HAVE_ALTIVEC)) && (!defined(HAVE_SSE2))
#ifdef ONLY64
inline static void do_recursion(w128_t *r, w128_t *a, w128_t *b, w128_t *c,
w128_t *d) {
w128_t x;
w128_t y;
lshift128(&x, a, SL2);
rshift128(&y, c, SR2);
r->u[0] = a->u[0] ^ x.u[0] ^ ((b->u[0] >> SR1) & MSK2) ^ y.u[0]
^ (d->u[0] << SL1);
r->u[1] = a->u[1] ^ x.u[1] ^ ((b->u[1] >> SR1) & MSK1) ^ y.u[1]
^ (d->u[1] << SL1);
r->u[2] = a->u[2] ^ x.u[2] ^ ((b->u[2] >> SR1) & MSK4) ^ y.u[2]
^ (d->u[2] << SL1);
r->u[3] = a->u[3] ^ x.u[3] ^ ((b->u[3] >> SR1) & MSK3) ^ y.u[3]
^ (d->u[3] << SL1);
}
#else
inline static void do_recursion(w128_t *r, w128_t *a, w128_t *b, w128_t *c,
w128_t *d) {
w128_t x;
w128_t y;
lshift128(&x, a, SL2);
rshift128(&y, c, SR2);
r->u[0] = a->u[0] ^ x.u[0] ^ ((b->u[0] >> SR1) & MSK1) ^ y.u[0]
^ (d->u[0] << SL1);
r->u[1] = a->u[1] ^ x.u[1] ^ ((b->u[1] >> SR1) & MSK2) ^ y.u[1]
^ (d->u[1] << SL1);
r->u[2] = a->u[2] ^ x.u[2] ^ ((b->u[2] >> SR1) & MSK3) ^ y.u[2]
^ (d->u[2] << SL1);
r->u[3] = a->u[3] ^ x.u[3] ^ ((b->u[3] >> SR1) & MSK4) ^ y.u[3]
^ (d->u[3] << SL1);
}
#endif
#endif
#if (!defined(HAVE_ALTIVEC)) && (!defined(HAVE_SSE2))
/**
* This function fills the internal state array with pseudorandom
* integers.
*/
inline static void gen_rand_all(void) {
int i;
w128_t *r1, *r2;
r1 = &sfmt[N - 2];
r2 = &sfmt[N - 1];
for (i = 0; i < N - POS1; i++) {
do_recursion(&sfmt[i], &sfmt[i], &sfmt[i + POS1], r1, r2);
r1 = r2;
r2 = &sfmt[i];
}
for (; i < N; i++) {
do_recursion(&sfmt[i], &sfmt[i], &sfmt[i + POS1 - N], r1, r2);
r1 = r2;
r2 = &sfmt[i];
}
}
/**
* This function fills the user-specified array with pseudorandom
* integers.
*
* @param array an 128-bit array to be filled by pseudorandom numbers.
* @param size number of 128-bit pseudorandom numbers to be generated.
*/
inline static void gen_rand_array(w128_t *array, int size) {
int i, j;
w128_t *r1, *r2;
r1 = &sfmt[N - 2];
r2 = &sfmt[N - 1];
for (i = 0; i < N - POS1; i++) {
do_recursion(&array[i], &sfmt[i], &sfmt[i + POS1], r1, r2);
r1 = r2;
r2 = &array[i];
}
for (; i < N; i++) {
do_recursion(&array[i], &sfmt[i], &array[i + POS1 - N], r1, r2);
r1 = r2;
r2 = &array[i];
}
for (; i < size - N; i++) {
do_recursion(&array[i], &array[i - N], &array[i + POS1 - N], r1, r2);
r1 = r2;
r2 = &array[i];
}
for (j = 0; j < 2 * N - size; j++) {
sfmt[j] = array[j + size - N];
}
for (; i < size; i++, j++) {
do_recursion(&array[i], &array[i - N], &array[i + POS1 - N], r1, r2);
r1 = r2;
r2 = &array[i];
sfmt[j] = array[i];
}
}
#endif
#if defined(BIG_ENDIAN64) && !defined(ONLY64) && !defined(HAVE_ALTIVEC)
inline static void swap(w128_t *array, int size) {
int i;
uint32_t x, y;
for (i = 0; i < size; i++) {
x = array[i].u[0];
y = array[i].u[2];
array[i].u[0] = array[i].u[1];
array[i].u[2] = array[i].u[3];
array[i].u[1] = x;
array[i].u[3] = y;
}
}
#endif
/**
* This function represents a function used in the initialization
* by init_by_array
* @param x 32-bit integer
* @return 32-bit integer
*/
static uint32_t func1(uint32_t x) {
return (x ^ (x >> 27)) * (uint32_t)1664525UL;
}
/**
* This function represents a function used in the initialization
* by init_by_array
* @param x 32-bit integer
* @return 32-bit integer
*/
static uint32_t func2(uint32_t x) {
return (x ^ (x >> 27)) * (uint32_t)1566083941UL;
}
/**
* This function certificate the period of 2^{MEXP}
*/
static void period_certification(void) {
int inner = 0;
int i, j;
uint32_t work;
for (i = 0; i < 4; i++)
inner ^= psfmt32[idxof(i)] & parity[i];
for (i = 16; i > 0; i >>= 1)
inner ^= inner >> i;
inner &= 1;
/* check OK */
if (inner == 1) {
return;
}
/* check NG, and modification */
for (i = 0; i < 4; i++) {
work = 1;
for (j = 0; j < 32; j++) {
if ((work & parity[i]) != 0) {
psfmt32[idxof(i)] ^= work;
return;
}
work = work << 1;
}
}
}
/*----------------
PUBLIC FUNCTIONS
----------------*/
/**
* This function returns the identification string.
* The string shows the word size, the Mersenne exponent,
* and all parameters of this generator.
*/
const char *get_idstring(void) {
return IDSTR;
}
/**
* This function returns the minimum size of array used for \b
* fill_array32() function.
* @return minimum size of array used for fill_array32() function.
*/
int get_min_array_size32(void) {
return N32;
}
/**
* This function returns the minimum size of array used for \b
* fill_array64() function.
* @return minimum size of array used for fill_array64() function.
*/
int get_min_array_size64(void) {
return N64;
}
#ifndef ONLY64
/**
* This function generates and returns 32-bit pseudorandom number.
* init_gen_rand or init_by_array must be called before this function.
* @return 32-bit pseudorandom number
*/
uint32_t gen_rand32(void) {
uint32_t r;
assert(initialized);
if (idx >= N32) {
gen_rand_all();
idx = 0;
}
r = psfmt32[idx++];
return r;
}
#endif
/**
* This function generates and returns 64-bit pseudorandom number.
* init_gen_rand or init_by_array must be called before this function.
* The function gen_rand64 should not be called after gen_rand32,
* unless an initialization is again executed.
* @return 64-bit pseudorandom number
*/
uint64_t gen_rand64(void) {
#if defined(BIG_ENDIAN64) && !defined(ONLY64)
uint32_t r1, r2;
#else
uint64_t r;
#endif
assert(initialized);
assert(idx % 2 == 0);
if (idx >= N32) {
gen_rand_all();
idx = 0;
}
#if defined(BIG_ENDIAN64) && !defined(ONLY64)
r1 = psfmt32[idx];
r2 = psfmt32[idx + 1];
idx += 2;
return ((uint64_t)r2 << 32) | r1;
#else
r = psfmt64[idx / 2];
idx += 2;
return r;
#endif
}
#ifndef ONLY64
/**
* This function generates pseudorandom 32-bit integers in the
* specified array[] by one call. The number of pseudorandom integers
* is specified by the argument size, which must be at least 624 and a
* multiple of four. The generation by this function is much faster
* than the following gen_rand function.
*
* For initialization, init_gen_rand or init_by_array must be called
* before the first call of this function. This function can not be
* used after calling gen_rand function, without initialization.
*
* @param array an array where pseudorandom 32-bit integers are filled
* by this function. The pointer to the array must be \b "aligned"
* (namely, must be a multiple of 16) in the SIMD version, since it
* refers to the address of a 128-bit integer. In the standard C
* version, the pointer is arbitrary.
*
* @param size the number of 32-bit pseudorandom integers to be
* generated. size must be a multiple of 4, and greater than or equal
* to (MEXP / 128 + 1) * 4.
*
* @note \b memalign or \b posix_memalign is available to get aligned
* memory. Mac OSX doesn't have these functions, but \b malloc of OSX
* returns the pointer to the aligned memory block.
*/
void fill_array32(uint32_t *array, int size) {
assert(initialized);
assert(idx == N32);
assert(size % 4 == 0);
assert(size >= N32);
gen_rand_array((w128_t *)array, size / 4);
idx = N32;
}
#endif
/**
* This function generates pseudorandom 64-bit integers in the
* specified array[] by one call. The number of pseudorandom integers
* is specified by the argument size, which must be at least 312 and a
* multiple of two. The generation by this function is much faster
* than the following gen_rand function.
*
* For initialization, init_gen_rand or init_by_array must be called
* before the first call of this function. This function can not be
* used after calling gen_rand function, without initialization.
*
* @param array an array where pseudorandom 64-bit integers are filled
* by this function. The pointer to the array must be "aligned"
* (namely, must be a multiple of 16) in the SIMD version, since it
* refers to the address of a 128-bit integer. In the standard C
* version, the pointer is arbitrary.
*
* @param size the number of 64-bit pseudorandom integers to be
* generated. size must be a multiple of 2, and greater than or equal
* to (MEXP / 128 + 1) * 2
*
* @note \b memalign or \b posix_memalign is available to get aligned
* memory. Mac OSX doesn't have these functions, but \b malloc of OSX
* returns the pointer to the aligned memory block.
*/
void fill_array64(uint64_t *array, int size) {
assert(initialized);
assert(idx == N32);
assert(size % 2 == 0);
assert(size >= N64);
gen_rand_array((w128_t *)array, size / 2);
idx = N32;
#if defined(BIG_ENDIAN64) && !defined(ONLY64)
swap((w128_t *)array, size /2);
#endif
}
/**
* This function initializes the internal state array with a 32-bit
* integer seed.
*
* @param seed a 32-bit integer used as the seed.
*/
void init_gen_rand(uint32_t seed) {
int i;
psfmt32[idxof(0)] = seed;
for (i = 1; i < N32; i++) {
psfmt32[idxof(i)] = 1812433253UL * (psfmt32[idxof(i - 1)]
^ (psfmt32[idxof(i - 1)] >> 30))
+ i;
}
idx = N32;
period_certification();
initialized = 1;
}
/**
* This function initializes the internal state array,
* with an array of 32-bit integers used as the seeds
* @param init_key the array of 32-bit integers, used as a seed.
* @param key_length the length of init_key.
*/
void init_by_array(uint32_t *init_key, int key_length) {
int i, j, count;
uint32_t r;
int lag;
int mid;
int size = N * 4;
if (size >= 623) {
lag = 11;
} else if (size >= 68) {
lag = 7;
} else if (size >= 39) {
lag = 5;
} else {
lag = 3;
}
mid = (size - lag) / 2;
memset(sfmt, 0x8b, sizeof(sfmt));
if (key_length + 1 > N32) {
count = key_length + 1;
} else {
count = N32;
}
r = func1(psfmt32[idxof(0)] ^ psfmt32[idxof(mid)]
^ psfmt32[idxof(N32 - 1)]);
psfmt32[idxof(mid)] += r;
r += key_length;
psfmt32[idxof(mid + lag)] += r;
psfmt32[idxof(0)] = r;
count--;
for (i = 1, j = 0; (j < count) && (j < key_length); j++) {
r = func1(psfmt32[idxof(i)] ^ psfmt32[idxof((i + mid) % N32)]
^ psfmt32[idxof((i + N32 - 1) % N32)]);
psfmt32[idxof((i + mid) % N32)] += r;
r += init_key[j] + i;
psfmt32[idxof((i + mid + lag) % N32)] += r;
psfmt32[idxof(i)] = r;
i = (i + 1) % N32;
}
for (; j < count; j++) {
r = func1(psfmt32[idxof(i)] ^ psfmt32[idxof((i + mid) % N32)]
^ psfmt32[idxof((i + N32 - 1) % N32)]);
psfmt32[idxof((i + mid) % N32)] += r;
r += i;
psfmt32[idxof((i + mid + lag) % N32)] += r;
psfmt32[idxof(i)] = r;
i = (i + 1) % N32;
}
for (j = 0; j < N32; j++) {
r = func2(psfmt32[idxof(i)] + psfmt32[idxof((i + mid) % N32)]
+ psfmt32[idxof((i + N32 - 1) % N32)]);
psfmt32[idxof((i + mid) % N32)] ^= r;
r -= i;
psfmt32[idxof((i + mid + lag) % N32)] ^= r;
psfmt32[idxof(i)] = r;
i = (i + 1) % N32;
}
idx = N32;
period_certification();
initialized = 1;
}

157
externals/SFMT/SFMT.h vendored Normal file
View File

@@ -0,0 +1,157 @@
/**
* @file SFMT.h
*
* @brief SIMD oriented Fast Mersenne Twister(SFMT) pseudorandom
* number generator
*
* @author Mutsuo Saito (Hiroshima University)
* @author Makoto Matsumoto (Hiroshima University)
*
* Copyright (C) 2006, 2007 Mutsuo Saito, Makoto Matsumoto and Hiroshima
* University. All rights reserved.
*
* The new BSD License is applied to this software.
* see LICENSE.txt
*
* @note We assume that your system has inttypes.h. If your system
* doesn't have inttypes.h, you have to typedef uint32_t and uint64_t,
* and you have to define PRIu64 and PRIx64 in this file as follows:
* @verbatim
typedef unsigned int uint32_t
typedef unsigned long long uint64_t
#define PRIu64 "llu"
#define PRIx64 "llx"
@endverbatim
* uint32_t must be exactly 32-bit unsigned integer type (no more, no
* less), and uint64_t must be exactly 64-bit unsigned integer type.
* PRIu64 and PRIx64 are used for printf function to print 64-bit
* unsigned int and 64-bit unsigned int in hexadecimal format.
*/
#ifndef SFMT_H
#define SFMT_H
#include <stdio.h>
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L)
#include <inttypes.h>
#elif defined(_MSC_VER) || defined(__BORLANDC__)
typedef unsigned int uint32_t;
typedef unsigned __int64 uint64_t;
#define inline __inline
#else
#include <inttypes.h>
#if defined(__GNUC__)
#define inline __inline__
#endif
#endif
#ifndef PRIu64
#if defined(_MSC_VER) || defined(__BORLANDC__)
#define PRIu64 "I64u"
#define PRIx64 "I64x"
#else
#define PRIu64 "llu"
#define PRIx64 "llx"
#endif
#endif
#if defined(__GNUC__)
#define ALWAYSINLINE __attribute__((always_inline))
#else
#define ALWAYSINLINE
#endif
#if defined(_MSC_VER)
#if _MSC_VER >= 1200
#define PRE_ALWAYS __forceinline
#else
#define PRE_ALWAYS inline
#endif
#else
#define PRE_ALWAYS inline
#endif
uint32_t gen_rand32(void);
uint64_t gen_rand64(void);
void fill_array32(uint32_t *array, int size);
void fill_array64(uint64_t *array, int size);
void init_gen_rand(uint32_t seed);
void init_by_array(uint32_t *init_key, int key_length);
const char *get_idstring(void);
int get_min_array_size32(void);
int get_min_array_size64(void);
/* These real versions are due to Isaku Wada */
/** generates a random number on [0,1]-real-interval */
inline static double to_real1(uint32_t v)
{
return v * (1.0/4294967295.0);
/* divided by 2^32-1 */
}
/** generates a random number on [0,1]-real-interval */
inline static double genrand_real1(void)
{
return to_real1(gen_rand32());
}
/** generates a random number on [0,1)-real-interval */
inline static double to_real2(uint32_t v)
{
return v * (1.0/4294967296.0);
/* divided by 2^32 */
}
/** generates a random number on [0,1)-real-interval */
inline static double genrand_real2(void)
{
return to_real2(gen_rand32());
}
/** generates a random number on (0,1)-real-interval */
inline static double to_real3(uint32_t v)
{
return (((double)v) + 0.5)*(1.0/4294967296.0);
/* divided by 2^32 */
}
/** generates a random number on (0,1)-real-interval */
inline static double genrand_real3(void)
{
return to_real3(gen_rand32());
}
/** These real versions are due to Isaku Wada */
/** generates a random number on [0,1) with 53-bit resolution*/
inline static double to_res53(uint64_t v)
{
return v * (1.0/18446744073709551616.0L);
}
/** generates a random number on [0,1) with 53-bit resolution from two
* 32 bit integers */
inline static double to_res53_mix(uint32_t x, uint32_t y)
{
return to_res53(x | ((uint64_t)y << 32));
}
/** generates a random number on [0,1) with 53-bit resolution
*/
inline static double genrand_res53(void)
{
return to_res53(gen_rand64());
}
/** generates a random number on [0,1) with 53-bit resolution
using 32bit integer.
*/
inline static double genrand_res53_mix(void)
{
uint32_t x, y;
x = gen_rand32();
y = gen_rand32();
return to_res53_mix(x, y);
}
#endif