mirror of
https://github.com/TrinityCore/TrinityCore.git
synced 2026-01-16 07:30:42 +01:00
Core/MMAPS: Update recastnavigation!
* Complete changelog can be found at http://code.google.com/p/recastnavigation/ * Adjusted a few config values Important: * New mmaps extraction is required * Folder size will be increased
This commit is contained in:
@@ -19,18 +19,41 @@
|
||||
#ifndef DETOURALLOCATOR_H
|
||||
#define DETOURALLOCATOR_H
|
||||
|
||||
/// Provides hint values to the memory allocator on how long the
|
||||
/// memory is expected to be used.
|
||||
enum dtAllocHint
|
||||
{
|
||||
DT_ALLOC_PERM, // Memory persist after a function call.
|
||||
DT_ALLOC_TEMP // Memory used temporarily within a function.
|
||||
DT_ALLOC_PERM, ///< Memory persist after a function call.
|
||||
DT_ALLOC_TEMP ///< Memory used temporarily within a function.
|
||||
};
|
||||
|
||||
/// A memory allocation function.
|
||||
// @param[in] size The size, in bytes of memory, to allocate.
|
||||
// @param[in] rcAllocHint A hint to the allocator on how long the memory is expected to be in use.
|
||||
// @return A pointer to the beginning of the allocated memory block, or null if the allocation failed.
|
||||
/// @see dtAllocSetCustom
|
||||
typedef void* (dtAllocFunc)(int size, dtAllocHint hint);
|
||||
|
||||
/// A memory deallocation function.
|
||||
/// @param[in] ptr A pointer to a memory block previously allocated using #dtAllocFunc.
|
||||
/// @see dtAllocSetCustom
|
||||
typedef void (dtFreeFunc)(void* ptr);
|
||||
|
||||
/// Sets the base custom allocation functions to be used by Detour.
|
||||
/// @param[in] allocFunc The memory allocation function to be used by #dtAlloc
|
||||
/// @param[in] freeFunc The memory de-allocation function to be used by #dtFree
|
||||
void dtAllocSetCustom(dtAllocFunc *allocFunc, dtFreeFunc *freeFunc);
|
||||
|
||||
/// Allocates a memory block.
|
||||
/// @param[in] size The size, in bytes of memory, to allocate.
|
||||
/// @param[in] hint A hint to the allocator on how long the memory is expected to be in use.
|
||||
/// @return A pointer to the beginning of the allocated memory block, or null if the allocation failed.
|
||||
/// @see dtFree
|
||||
void* dtAlloc(int size, dtAllocHint hint);
|
||||
|
||||
/// Deallocates a memory block.
|
||||
/// @param[in] ptr A pointer to a memory block previously allocated using #dtAlloc.
|
||||
/// @see dtAlloc
|
||||
void dtFree(void* ptr);
|
||||
|
||||
#endif
|
||||
|
||||
@@ -24,7 +24,7 @@
|
||||
|
||||
#ifdef NDEBUG
|
||||
// From http://cnicholson.net/2009/02/stupid-c-tricks-adventures-in-assert/
|
||||
# define dtAssert(x) do { (void)sizeof(x); } while(__LINE__==-1,false)
|
||||
# define dtAssert(x) do { (void)sizeof(x); } while((void)(__LINE__==-1),false)
|
||||
#else
|
||||
# include <assert.h>
|
||||
# define dtAssert assert
|
||||
|
||||
@@ -238,6 +238,9 @@ bool dtClosestHeightPointTriangle(const float* p, const float* a, const float* b
|
||||
return false;
|
||||
}
|
||||
|
||||
/// @par
|
||||
///
|
||||
/// All points are projected onto the xz-plane, so the y-values are ignored.
|
||||
bool dtPointInPolygon(const float* pt, const float* verts, const int nverts)
|
||||
{
|
||||
// TODO: Replace pnpoly with triArea2D tests?
|
||||
@@ -291,6 +294,9 @@ inline bool overlapRange(const float amin, const float amax,
|
||||
return ((amin+eps) > bmax || (amax-eps) < bmin) ? false : true;
|
||||
}
|
||||
|
||||
/// @par
|
||||
///
|
||||
/// All vertices are projected onto the xz-plane, so the y-values are ignored.
|
||||
bool dtOverlapPolyPoly2D(const float* polya, const int npolya,
|
||||
const float* polyb, const int npolyb)
|
||||
{
|
||||
@@ -327,3 +333,61 @@ bool dtOverlapPolyPoly2D(const float* polya, const int npolya,
|
||||
return true;
|
||||
}
|
||||
|
||||
// Returns a random point in a convex polygon.
|
||||
// Adapted from Graphics Gems article.
|
||||
void dtRandomPointInConvexPoly(const float* pts, const int npts, float* areas,
|
||||
const float s, const float t, float* out)
|
||||
{
|
||||
// Calc triangle araes
|
||||
float areasum = 0.0f;
|
||||
for (int i = 2; i < npts; i++) {
|
||||
areas[i] = dtTriArea2D(&pts[0], &pts[(i-1)*3], &pts[i*3]);
|
||||
areasum += dtMax(0.001f, areas[i]);
|
||||
}
|
||||
// Find sub triangle weighted by area.
|
||||
const float thr = s*areasum;
|
||||
float acc = 0.0f;
|
||||
float u = 0.0f;
|
||||
int tri = 0;
|
||||
for (int i = 2; i < npts; i++) {
|
||||
const float dacc = areas[i];
|
||||
if (thr >= acc && thr < (acc+dacc))
|
||||
{
|
||||
u = (thr - acc) / dacc;
|
||||
tri = i;
|
||||
break;
|
||||
}
|
||||
acc += dacc;
|
||||
}
|
||||
|
||||
float v = dtSqrt(t);
|
||||
|
||||
const float a = 1 - v;
|
||||
const float b = (1 - u) * v;
|
||||
const float c = u * v;
|
||||
const float* pa = &pts[0];
|
||||
const float* pb = &pts[(tri-1)*3];
|
||||
const float* pc = &pts[tri*3];
|
||||
|
||||
out[0] = a*pa[0] + b*pb[0] + c*pc[0];
|
||||
out[1] = a*pa[1] + b*pb[1] + c*pc[1];
|
||||
out[2] = a*pa[2] + b*pb[2] + c*pc[2];
|
||||
}
|
||||
|
||||
inline float vperpXZ(const float* a, const float* b) { return a[0]*b[2] - a[2]*b[0]; }
|
||||
|
||||
bool dtIntersectSegSeg2D(const float* ap, const float* aq,
|
||||
const float* bp, const float* bq,
|
||||
float& s, float& t)
|
||||
{
|
||||
float u[3], v[3], w[3];
|
||||
dtVsub(u,aq,ap);
|
||||
dtVsub(v,bq,bp);
|
||||
dtVsub(w,ap,bp);
|
||||
float d = vperpXZ(u,v);
|
||||
if (fabsf(d) < 1e-6f) return false;
|
||||
s = vperpXZ(v,w) / d;
|
||||
t = vperpXZ(u,w) / d;
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
@@ -19,15 +19,66 @@
|
||||
#ifndef DETOURCOMMON_H
|
||||
#define DETOURCOMMON_H
|
||||
|
||||
/**
|
||||
@defgroup detour Detour
|
||||
|
||||
Members in this module are used to create, manipulate, and query navigation
|
||||
meshes.
|
||||
|
||||
@note This is a summary list of members. Use the index or search
|
||||
feature to find minor members.
|
||||
*/
|
||||
|
||||
/// @name General helper functions
|
||||
/// @{
|
||||
|
||||
/// Swaps the values of the two parameters.
|
||||
/// @param[in,out] a Value A
|
||||
/// @param[in,out] b Value B
|
||||
template<class T> inline void dtSwap(T& a, T& b) { T t = a; a = b; b = t; }
|
||||
|
||||
/// Returns the minimum of two values.
|
||||
/// @param[in] a Value A
|
||||
/// @param[in] b Value B
|
||||
/// @return The minimum of the two values.
|
||||
template<class T> inline T dtMin(T a, T b) { return a < b ? a : b; }
|
||||
|
||||
/// Returns the maximum of two values.
|
||||
/// @param[in] a Value A
|
||||
/// @param[in] b Value B
|
||||
/// @return The maximum of the two values.
|
||||
template<class T> inline T dtMax(T a, T b) { return a > b ? a : b; }
|
||||
|
||||
/// Returns the absolute value.
|
||||
/// @param[in] a The value.
|
||||
/// @return The absolute value of the specified value.
|
||||
template<class T> inline T dtAbs(T a) { return a < 0 ? -a : a; }
|
||||
|
||||
/// Returns the square of the value.
|
||||
/// @param[in] a The value.
|
||||
/// @return The square of the value.
|
||||
template<class T> inline T dtSqr(T a) { return a*a; }
|
||||
|
||||
/// Clamps the value to the specified range.
|
||||
/// @param[in] v The value to clamp.
|
||||
/// @param[in] mn The minimum permitted return value.
|
||||
/// @param[in] mx The maximum permitted return value.
|
||||
/// @return The value, clamped to the specified range.
|
||||
template<class T> inline T dtClamp(T v, T mn, T mx) { return v < mn ? mn : (v > mx ? mx : v); }
|
||||
|
||||
/// Returns the square root of the value.
|
||||
/// @param[in] x The value.
|
||||
/// @return The square root of the vlaue.
|
||||
float dtSqrt(float x);
|
||||
|
||||
/// @}
|
||||
/// @name Vector helper functions.
|
||||
/// @{
|
||||
|
||||
/// Derives the cross product of two vectors. (@p v1 x @p v2)
|
||||
/// @param[out] dest The cross product. [(x, y, z)]
|
||||
/// @param[in] v1 A Vector [(x, y, z)]
|
||||
/// @param[in] v2 A vector [(x, y, z)]
|
||||
inline void dtVcross(float* dest, const float* v1, const float* v2)
|
||||
{
|
||||
dest[0] = v1[1]*v2[2] - v1[2]*v2[1];
|
||||
@@ -35,11 +86,20 @@ inline void dtVcross(float* dest, const float* v1, const float* v2)
|
||||
dest[2] = v1[0]*v2[1] - v1[1]*v2[0];
|
||||
}
|
||||
|
||||
/// Derives the dot product of two vectors. (@p v1 . @p v2)
|
||||
/// @param[in] v1 A Vector [(x, y, z)]
|
||||
/// @param[in] v2 A vector [(x, y, z)]
|
||||
/// @return The dot product.
|
||||
inline float dtVdot(const float* v1, const float* v2)
|
||||
{
|
||||
return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2];
|
||||
}
|
||||
|
||||
/// Performs a scaled vector addition. (@p v1 + (@p v2 * @p s))
|
||||
/// @param[out] dest The result vector. [(x, y, z)]
|
||||
/// @param[in] v1 The base vector. [(x, y, z)]
|
||||
/// @param[in] v2 The vector to scale and add to @p v1. [(x, y, z)]
|
||||
/// @param[in] s The amount to scale @p v2 by before adding to @p v1.
|
||||
inline void dtVmad(float* dest, const float* v1, const float* v2, const float s)
|
||||
{
|
||||
dest[0] = v1[0]+v2[0]*s;
|
||||
@@ -47,6 +107,11 @@ inline void dtVmad(float* dest, const float* v1, const float* v2, const float s)
|
||||
dest[2] = v1[2]+v2[2]*s;
|
||||
}
|
||||
|
||||
/// Performs a linear interpolation between two vectors. (@p v1 toward @p v2)
|
||||
/// @param[out] dest The result vector. [(x, y, x)]
|
||||
/// @param[in] v1 The starting vector.
|
||||
/// @param[in] v2 The destination vector.
|
||||
/// @param[in] t The interpolation factor. [Limits: 0 <= value <= 1.0]
|
||||
inline void dtVlerp(float* dest, const float* v1, const float* v2, const float t)
|
||||
{
|
||||
dest[0] = v1[0]+(v2[0]-v1[0])*t;
|
||||
@@ -54,6 +119,10 @@ inline void dtVlerp(float* dest, const float* v1, const float* v2, const float t
|
||||
dest[2] = v1[2]+(v2[2]-v1[2])*t;
|
||||
}
|
||||
|
||||
/// Performs a vector addition. (@p v1 + @p v2)
|
||||
/// @param[out] dest The result vector. [(x, y, z)]
|
||||
/// @param[in] v1 The base vector. [(x, y, z)]
|
||||
/// @param[in] v2 The vector to add to @p v1. [(x, y, z)]
|
||||
inline void dtVadd(float* dest, const float* v1, const float* v2)
|
||||
{
|
||||
dest[0] = v1[0]+v2[0];
|
||||
@@ -61,6 +130,10 @@ inline void dtVadd(float* dest, const float* v1, const float* v2)
|
||||
dest[2] = v1[2]+v2[2];
|
||||
}
|
||||
|
||||
/// Performs a vector subtraction. (@p v1 - @p v2)
|
||||
/// @param[out] dest The result vector. [(x, y, z)]
|
||||
/// @param[in] v1 The base vector. [(x, y, z)]
|
||||
/// @param[in] v2 The vector to subtract from @p v1. [(x, y, z)]
|
||||
inline void dtVsub(float* dest, const float* v1, const float* v2)
|
||||
{
|
||||
dest[0] = v1[0]-v2[0];
|
||||
@@ -68,6 +141,10 @@ inline void dtVsub(float* dest, const float* v1, const float* v2)
|
||||
dest[2] = v1[2]-v2[2];
|
||||
}
|
||||
|
||||
/// Scales the vector by the specified value. (@p v * @p t)
|
||||
/// @param[out] dest The result vector. [(x, y, z)]
|
||||
/// @param[in] v The vector to scale. [(x, y, z)]
|
||||
/// @param[in] t The scaling factor.
|
||||
inline void dtVscale(float* dest, const float* v, const float t)
|
||||
{
|
||||
dest[0] = v[0]*t;
|
||||
@@ -75,6 +152,9 @@ inline void dtVscale(float* dest, const float* v, const float t)
|
||||
dest[2] = v[2]*t;
|
||||
}
|
||||
|
||||
/// Selects the minimum value of each element from the specified vectors.
|
||||
/// @param[in,out] mn A vector. (Will be updated with the result.) [(x, y, z)]
|
||||
/// @param[in] v A vector. [(x, y, z)]
|
||||
inline void dtVmin(float* mn, const float* v)
|
||||
{
|
||||
mn[0] = dtMin(mn[0], v[0]);
|
||||
@@ -82,6 +162,9 @@ inline void dtVmin(float* mn, const float* v)
|
||||
mn[2] = dtMin(mn[2], v[2]);
|
||||
}
|
||||
|
||||
/// Selects the maximum value of each element from the specified vectors.
|
||||
/// @param[in,out] mx A vector. (Will be updated with the result.) [(x, y, z)]
|
||||
/// @param[in] v A vector. [(x, y, z)]
|
||||
inline void dtVmax(float* mx, const float* v)
|
||||
{
|
||||
mx[0] = dtMax(mx[0], v[0]);
|
||||
@@ -89,11 +172,19 @@ inline void dtVmax(float* mx, const float* v)
|
||||
mx[2] = dtMax(mx[2], v[2]);
|
||||
}
|
||||
|
||||
/// Sets the vector elements to the specified values.
|
||||
/// @param[out] dest The result vector. [(x, y, z)]
|
||||
/// @param[in] x The x-value of the vector.
|
||||
/// @param[in] y The y-value of the vector.
|
||||
/// @param[in] z The z-value of the vector.
|
||||
inline void dtVset(float* dest, const float x, const float y, const float z)
|
||||
{
|
||||
dest[0] = x; dest[1] = y; dest[2] = z;
|
||||
}
|
||||
|
||||
/// Performs a vector copy.
|
||||
/// @param[out] dest The result. [(x, y, z)]
|
||||
/// @param[in] a The vector to copy. [(x, y, z)]
|
||||
inline void dtVcopy(float* dest, const float* a)
|
||||
{
|
||||
dest[0] = a[0];
|
||||
@@ -101,16 +192,26 @@ inline void dtVcopy(float* dest, const float* a)
|
||||
dest[2] = a[2];
|
||||
}
|
||||
|
||||
/// Derives the scalar length of the vector.
|
||||
/// @param[in] v The vector. [(x, y, z)]
|
||||
/// @return The scalar length of the vector.
|
||||
inline float dtVlen(const float* v)
|
||||
{
|
||||
return dtSqrt(v[0]*v[0] + v[1]*v[1] + v[2]*v[2]);
|
||||
}
|
||||
|
||||
/// Derives the square of the scalar length of the vector. (len * len)
|
||||
/// @param[in] v The vector. [(x, y, z)]
|
||||
/// @return The square of the scalar length of the vector.
|
||||
inline float dtVlenSqr(const float* v)
|
||||
{
|
||||
return v[0]*v[0] + v[1]*v[1] + v[2]*v[2];
|
||||
}
|
||||
|
||||
/// Returns the distance between two points.
|
||||
/// @param[in] v1 A point. [(x, y, z)]
|
||||
/// @param[in] v2 A point. [(x, y, z)]
|
||||
/// @return The distance between the two points.
|
||||
inline float dtVdist(const float* v1, const float* v2)
|
||||
{
|
||||
const float dx = v2[0] - v1[0];
|
||||
@@ -119,6 +220,10 @@ inline float dtVdist(const float* v1, const float* v2)
|
||||
return dtSqrt(dx*dx + dy*dy + dz*dz);
|
||||
}
|
||||
|
||||
/// Returns the square of the distance between two points.
|
||||
/// @param[in] v1 A point. [(x, y, z)]
|
||||
/// @param[in] v2 A point. [(x, y, z)]
|
||||
/// @return The square of the distance between the two points.
|
||||
inline float dtVdistSqr(const float* v1, const float* v2)
|
||||
{
|
||||
const float dx = v2[0] - v1[0];
|
||||
@@ -127,6 +232,12 @@ inline float dtVdistSqr(const float* v1, const float* v2)
|
||||
return dx*dx + dy*dy + dz*dz;
|
||||
}
|
||||
|
||||
/// Derives the distance between the specified points on the xz-plane.
|
||||
/// @param[in] v1 A point. [(x, y, z)]
|
||||
/// @param[in] v2 A point. [(x, y, z)]
|
||||
/// @return The distance between the point on the xz-plane.
|
||||
///
|
||||
/// The vectors are projected onto the xz-plane, so the y-values are ignored.
|
||||
inline float dtVdist2D(const float* v1, const float* v2)
|
||||
{
|
||||
const float dx = v2[0] - v1[0];
|
||||
@@ -134,6 +245,10 @@ inline float dtVdist2D(const float* v1, const float* v2)
|
||||
return dtSqrt(dx*dx + dz*dz);
|
||||
}
|
||||
|
||||
/// Derives the square of the distance between the specified points on the xz-plane.
|
||||
/// @param[in] v1 A point. [(x, y, z)]
|
||||
/// @param[in] v2 A point. [(x, y, z)]
|
||||
/// @return The square of the distance between the point on the xz-plane.
|
||||
inline float dtVdist2DSqr(const float* v1, const float* v2)
|
||||
{
|
||||
const float dx = v2[0] - v1[0];
|
||||
@@ -141,6 +256,8 @@ inline float dtVdist2DSqr(const float* v1, const float* v2)
|
||||
return dx*dx + dz*dz;
|
||||
}
|
||||
|
||||
/// Normalizes the vector.
|
||||
/// @param[in,out] v The vector to normalize. [(x, y, z)]
|
||||
inline void dtVnormalize(float* v)
|
||||
{
|
||||
float d = 1.0f / dtSqrt(dtSqr(v[0]) + dtSqr(v[1]) + dtSqr(v[2]));
|
||||
@@ -149,6 +266,13 @@ inline void dtVnormalize(float* v)
|
||||
v[2] *= d;
|
||||
}
|
||||
|
||||
/// Performs a 'sloppy' colocation check of the specified points.
|
||||
/// @param[in] p0 A point. [(x, y, z)]
|
||||
/// @param[in] p1 A point. [(x, y, z)]
|
||||
/// @return True if the points are considered to be at the same location.
|
||||
///
|
||||
/// Basically, this function will return true if the specified points are
|
||||
/// close enough to eachother to be considered colocated.
|
||||
inline bool dtVequal(const float* p0, const float* p1)
|
||||
{
|
||||
static const float thr = dtSqr(1.0f/16384.0f);
|
||||
@@ -156,6 +280,138 @@ inline bool dtVequal(const float* p0, const float* p1)
|
||||
return d < thr;
|
||||
}
|
||||
|
||||
/// Derives the dot product of two vectors on the xz-plane. (@p u . @p v)
|
||||
/// @param[in] u A vector [(x, y, z)]
|
||||
/// @param[in] v A vector [(x, y, z)]
|
||||
/// @return The dot product on the xz-plane.
|
||||
///
|
||||
/// The vectors are projected onto the xz-plane, so the y-values are ignored.
|
||||
inline float dtVdot2D(const float* u, const float* v)
|
||||
{
|
||||
return u[0]*v[0] + u[2]*v[2];
|
||||
}
|
||||
|
||||
/// Derives the xz-plane 2D perp product of the two vectors. (uz*vx - ux*vz)
|
||||
/// @param[in] u The LHV vector [(x, y, z)]
|
||||
/// @param[in] v The RHV vector [(x, y, z)]
|
||||
/// @return The dot product on the xz-plane.
|
||||
///
|
||||
/// The vectors are projected onto the xz-plane, so the y-values are ignored.
|
||||
inline float dtVperp2D(const float* u, const float* v)
|
||||
{
|
||||
return u[2]*v[0] - u[0]*v[2];
|
||||
}
|
||||
|
||||
/// @}
|
||||
/// @name Computational geometry helper functions.
|
||||
/// @{
|
||||
|
||||
/// Derives the signed xz-plane area of the triangle ABC, or the relationship of line AB to point C.
|
||||
/// @param[in] a Vertex A. [(x, y, z)]
|
||||
/// @param[in] b Vertex B. [(x, y, z)]
|
||||
/// @param[in] c Vertex C. [(x, y, z)]
|
||||
/// @return The signed xz-plane area of the triangle.
|
||||
inline float dtTriArea2D(const float* a, const float* b, const float* c)
|
||||
{
|
||||
const float abx = b[0] - a[0];
|
||||
const float abz = b[2] - a[2];
|
||||
const float acx = c[0] - a[0];
|
||||
const float acz = c[2] - a[2];
|
||||
return acx*abz - abx*acz;
|
||||
}
|
||||
|
||||
/// Determines if two axis-aligned bounding boxes overlap.
|
||||
/// @param[in] amin Minimum bounds of box A. [(x, y, z)]
|
||||
/// @param[in] amax Maximum bounds of box A. [(x, y, z)]
|
||||
/// @param[in] bmin Minimum bounds of box B. [(x, y, z)]
|
||||
/// @param[in] bmax Maximum bounds of box B. [(x, y, z)]
|
||||
/// @return True if the two AABB's overlap.
|
||||
/// @see dtOverlapBounds
|
||||
inline bool dtOverlapQuantBounds(const unsigned short amin[3], const unsigned short amax[3],
|
||||
const unsigned short bmin[3], const unsigned short bmax[3])
|
||||
{
|
||||
bool overlap = true;
|
||||
overlap = (amin[0] > bmax[0] || amax[0] < bmin[0]) ? false : overlap;
|
||||
overlap = (amin[1] > bmax[1] || amax[1] < bmin[1]) ? false : overlap;
|
||||
overlap = (amin[2] > bmax[2] || amax[2] < bmin[2]) ? false : overlap;
|
||||
return overlap;
|
||||
}
|
||||
|
||||
/// Determines if two axis-aligned bounding boxes overlap.
|
||||
/// @param[in] amin Minimum bounds of box A. [(x, y, z)]
|
||||
/// @param[in] amax Maximum bounds of box A. [(x, y, z)]
|
||||
/// @param[in] bmin Minimum bounds of box B. [(x, y, z)]
|
||||
/// @param[in] bmax Maximum bounds of box B. [(x, y, z)]
|
||||
/// @return True if the two AABB's overlap.
|
||||
/// @see dtOverlapQuantBounds
|
||||
inline bool dtOverlapBounds(const float* amin, const float* amax,
|
||||
const float* bmin, const float* bmax)
|
||||
{
|
||||
bool overlap = true;
|
||||
overlap = (amin[0] > bmax[0] || amax[0] < bmin[0]) ? false : overlap;
|
||||
overlap = (amin[1] > bmax[1] || amax[1] < bmin[1]) ? false : overlap;
|
||||
overlap = (amin[2] > bmax[2] || amax[2] < bmin[2]) ? false : overlap;
|
||||
return overlap;
|
||||
}
|
||||
|
||||
/// Derives the closest point on a triangle from the specified reference point.
|
||||
/// @param[out] closest The closest point on the triangle.
|
||||
/// @param[in] p The reference point from which to test. [(x, y, z)]
|
||||
/// @param[in] a Vertex A of triangle ABC. [(x, y, z)]
|
||||
/// @param[in] b Vertex B of triangle ABC. [(x, y, z)]
|
||||
/// @param[in] c Vertex C of triangle ABC. [(x, y, z)]
|
||||
void dtClosestPtPointTriangle(float* closest, const float* p,
|
||||
const float* a, const float* b, const float* c);
|
||||
|
||||
/// Derives the y-axis height of the closest point on the triangle from the specified reference point.
|
||||
/// @param[in] p The reference point from which to test. [(x, y, z)]
|
||||
/// @param[in] a Vertex A of triangle ABC. [(x, y, z)]
|
||||
/// @param[in] b Vertex B of triangle ABC. [(x, y, z)]
|
||||
/// @param[in] c Vertex C of triangle ABC. [(x, y, z)]
|
||||
/// @param[out] h The resulting height.
|
||||
bool dtClosestHeightPointTriangle(const float* p, const float* a, const float* b, const float* c, float& h);
|
||||
|
||||
bool dtIntersectSegmentPoly2D(const float* p0, const float* p1,
|
||||
const float* verts, int nverts,
|
||||
float& tmin, float& tmax,
|
||||
int& segMin, int& segMax);
|
||||
|
||||
bool dtIntersectSegSeg2D(const float* ap, const float* aq,
|
||||
const float* bp, const float* bq,
|
||||
float& s, float& t);
|
||||
|
||||
/// Determines if the specified point is inside the convex polygon on the xz-plane.
|
||||
/// @param[in] pt The point to check. [(x, y, z)]
|
||||
/// @param[in] verts The polygon vertices. [(x, y, z) * @p nverts]
|
||||
/// @param[in] nverts The number of vertices. [Limit: >= 3]
|
||||
/// @return True if the point is inside the polygon.
|
||||
bool dtPointInPolygon(const float* pt, const float* verts, const int nverts);
|
||||
|
||||
bool dtDistancePtPolyEdgesSqr(const float* pt, const float* verts, const int nverts,
|
||||
float* ed, float* et);
|
||||
|
||||
float dtDistancePtSegSqr2D(const float* pt, const float* p, const float* q, float& t);
|
||||
|
||||
/// Derives the centroid of a convex polygon.
|
||||
/// @param[out] tc The centroid of the polgyon. [(x, y, z)]
|
||||
/// @param[in] idx The polygon indices. [(vertIndex) * @p nidx]
|
||||
/// @param[in] nidx The number of indices in the polygon. [Limit: >= 3]
|
||||
/// @param[in] verts The polygon vertices. [(x, y, z) * vertCount]
|
||||
void dtCalcPolyCenter(float* tc, const unsigned short* idx, int nidx, const float* verts);
|
||||
|
||||
/// Determines if the two convex polygons overlap on the xz-plane.
|
||||
/// @param[in] polya Polygon A vertices. [(x, y, z) * @p npolya]
|
||||
/// @param[in] npolya The number of vertices in polygon A.
|
||||
/// @param[in] polyb Polygon B vertices. [(x, y, z) * @p npolyb]
|
||||
/// @param[in] npolyb The number of vertices in polygon B.
|
||||
/// @return True if the two polygons overlap.
|
||||
bool dtOverlapPolyPoly2D(const float* polya, const int npolya,
|
||||
const float* polyb, const int npolyb);
|
||||
|
||||
/// @}
|
||||
/// @name Miscellanious functions.
|
||||
/// @{
|
||||
|
||||
inline unsigned int dtNextPow2(unsigned int v)
|
||||
{
|
||||
v--;
|
||||
@@ -184,65 +440,91 @@ inline int dtAlign4(int x) { return (x+3) & ~3; }
|
||||
|
||||
inline int dtOppositeTile(int side) { return (side+4) & 0x7; }
|
||||
|
||||
inline float dtVdot2D(const float* u, const float* v)
|
||||
inline void dtSwapByte(unsigned char* a, unsigned char* b)
|
||||
{
|
||||
return u[0]*v[0] + u[2]*v[2];
|
||||
unsigned char tmp = *a;
|
||||
*a = *b;
|
||||
*b = tmp;
|
||||
}
|
||||
|
||||
inline float dtVperp2D(const float* u, const float* v)
|
||||
inline void dtSwapEndian(unsigned short* v)
|
||||
{
|
||||
return u[2]*v[0] - u[0]*v[2];
|
||||
unsigned char* x = (unsigned char*)v;
|
||||
dtSwapByte(x+0, x+1);
|
||||
}
|
||||
|
||||
inline float dtTriArea2D(const float* a, const float* b, const float* c)
|
||||
inline void dtSwapEndian(short* v)
|
||||
{
|
||||
const float abx = b[0] - a[0];
|
||||
const float abz = b[2] - a[2];
|
||||
const float acx = c[0] - a[0];
|
||||
const float acz = c[2] - a[2];
|
||||
return acx*abz - abx*acz;
|
||||
unsigned char* x = (unsigned char*)v;
|
||||
dtSwapByte(x+0, x+1);
|
||||
}
|
||||
|
||||
inline bool dtOverlapQuantBounds(const unsigned short amin[3], const unsigned short amax[3],
|
||||
const unsigned short bmin[3], const unsigned short bmax[3])
|
||||
inline void dtSwapEndian(unsigned int* v)
|
||||
{
|
||||
bool overlap = true;
|
||||
overlap = (amin[0] > bmax[0] || amax[0] < bmin[0]) ? false : overlap;
|
||||
overlap = (amin[1] > bmax[1] || amax[1] < bmin[1]) ? false : overlap;
|
||||
overlap = (amin[2] > bmax[2] || amax[2] < bmin[2]) ? false : overlap;
|
||||
return overlap;
|
||||
unsigned char* x = (unsigned char*)v;
|
||||
dtSwapByte(x+0, x+3); dtSwapByte(x+1, x+2);
|
||||
}
|
||||
|
||||
inline bool dtOverlapBounds(const float* amin, const float* amax,
|
||||
const float* bmin, const float* bmax)
|
||||
inline void dtSwapEndian(int* v)
|
||||
{
|
||||
bool overlap = true;
|
||||
overlap = (amin[0] > bmax[0] || amax[0] < bmin[0]) ? false : overlap;
|
||||
overlap = (amin[1] > bmax[1] || amax[1] < bmin[1]) ? false : overlap;
|
||||
overlap = (amin[2] > bmax[2] || amax[2] < bmin[2]) ? false : overlap;
|
||||
return overlap;
|
||||
unsigned char* x = (unsigned char*)v;
|
||||
dtSwapByte(x+0, x+3); dtSwapByte(x+1, x+2);
|
||||
}
|
||||
|
||||
void dtClosestPtPointTriangle(float* closest, const float* p,
|
||||
const float* a, const float* b, const float* c);
|
||||
inline void dtSwapEndian(float* v)
|
||||
{
|
||||
unsigned char* x = (unsigned char*)v;
|
||||
dtSwapByte(x+0, x+3); dtSwapByte(x+1, x+2);
|
||||
}
|
||||
|
||||
bool dtClosestHeightPointTriangle(const float* p, const float* a, const float* b, const float* c, float& h);
|
||||
void dtRandomPointInConvexPoly(const float* pts, const int npts, float* areas,
|
||||
const float s, const float t, float* out);
|
||||
|
||||
bool dtIntersectSegmentPoly2D(const float* p0, const float* p1,
|
||||
const float* verts, int nverts,
|
||||
float& tmin, float& tmax,
|
||||
int& segMin, int& segMax);
|
||||
|
||||
bool dtPointInPolygon(const float* pt, const float* verts, const int nverts);
|
||||
|
||||
bool dtDistancePtPolyEdgesSqr(const float* pt, const float* verts, const int nverts,
|
||||
float* ed, float* et);
|
||||
|
||||
float dtDistancePtSegSqr2D(const float* pt, const float* p, const float* q, float& t);
|
||||
|
||||
void dtCalcPolyCenter(float* tc, const unsigned short* idx, int nidx, const float* verts);
|
||||
|
||||
bool dtOverlapPolyPoly2D(const float* polya, const int npolya,
|
||||
const float* polyb, const int npolyb);
|
||||
/// @}
|
||||
|
||||
#endif // DETOURCOMMON_H
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
|
||||
// This section contains detailed documentation for members that don't have
|
||||
// a source file. It reduces clutter in the main section of the header.
|
||||
|
||||
/**
|
||||
|
||||
@fn float dtTriArea2D(const float* a, const float* b, const float* c)
|
||||
@par
|
||||
|
||||
The vertices are projected onto the xz-plane, so the y-values are ignored.
|
||||
|
||||
This is a low cost function than can be used for various purposes. Its main purpose
|
||||
is for point/line relationship testing.
|
||||
|
||||
In all cases: A value of zero indicates that all vertices are collinear or represent the same point.
|
||||
(On the xz-plane.)
|
||||
|
||||
When used for point/line relationship tests, AB usually represents a line against which
|
||||
the C point is to be tested. In this case:
|
||||
|
||||
A positive value indicates that point C is to the left of line AB, looking from A toward B.<br/>
|
||||
A negative value indicates that point C is to the right of lineAB, looking from A toward B.
|
||||
|
||||
When used for evaluating a triangle:
|
||||
|
||||
The absolute value of the return value is two times the area of the triangle when it is
|
||||
projected onto the xz-plane.
|
||||
|
||||
A positive return value indicates:
|
||||
|
||||
<ul>
|
||||
<li>The vertices are wrapped in the normal Detour wrap direction.</li>
|
||||
<li>The triangle's 3D face normal is in the general up direction.</li>
|
||||
</ul>
|
||||
|
||||
A negative return value indicates:
|
||||
|
||||
<ul>
|
||||
<li>The vertices are reverse wrapped. (Wrapped opposite the normal Detour wrap direction.)</li>
|
||||
<li>The triangle's 3D face normal is in the general down direction.</li>
|
||||
</ul>
|
||||
|
||||
*/
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -20,9 +20,12 @@
|
||||
#define DETOURNAVMESH_H
|
||||
|
||||
#include "DetourAlloc.h"
|
||||
#include "DetourStatus.h"
|
||||
|
||||
|
||||
// Edited by TC
|
||||
#if defined(WIN32) && !defined(__MINGW32__)
|
||||
typedef unsigned __int64 uint64;
|
||||
typedef unsigned __int64 uint64;
|
||||
#else
|
||||
#include <stdint.h>
|
||||
#ifndef uint64_t
|
||||
@@ -30,312 +33,473 @@
|
||||
#include <linux/types.h>
|
||||
#endif
|
||||
#endif
|
||||
typedef uint64_t uint64;
|
||||
#endif
|
||||
typedef uint64_t uint64;
|
||||
#endif
|
||||
|
||||
// Note: If you want to use 64-bit refs, change the types of both dtPolyRef & dtTileRef.
|
||||
// It is also recommended to change dtHashRef() to proper 64-bit hash too.
|
||||
|
||||
// Reference to navigation polygon.
|
||||
typedef uint64 dtPolyRef;
|
||||
|
||||
// Reference to navigation mesh tile.
|
||||
typedef uint64 dtTileRef;
|
||||
|
||||
// Maximum number of vertices per navigation polygon.
|
||||
static const int DT_VERTS_PER_POLYGON = 6;
|
||||
|
||||
static const int DT_NAVMESH_MAGIC = 'D'<<24 | 'N'<<16 | 'A'<<8 | 'V'; //'DNAV';
|
||||
static const int DT_NAVMESH_VERSION = 6;
|
||||
|
||||
static const int DT_NAVMESH_STATE_MAGIC = 'D'<<24 | 'N'<<16 | 'M'<<8 | 'S'; //'DNMS';
|
||||
static const int DT_NAVMESH_STATE_VERSION = 1;
|
||||
|
||||
static const unsigned short DT_EXT_LINK = 0x8000;
|
||||
static const unsigned int DT_NULL_LINK = 0xffffffff;
|
||||
static const unsigned int DT_OFFMESH_CON_BIDIR = 1;
|
||||
|
||||
static const int DT_MAX_AREAS = 64;
|
||||
// It is also recommended that you change dtHashRef() to a proper 64-bit hash.
|
||||
|
||||
// Edited by TC
|
||||
// We cannot have over 31 bits for either tile nor poly
|
||||
// without changing polyCount to use 64bits too.
|
||||
static const int STATIC_SALT_BITS = 12;
|
||||
static const int STATIC_TILE_BITS = 21;
|
||||
static const int STATIC_POLY_BITS = 31;
|
||||
// we cannot have over 31 bits for either tile nor poly
|
||||
// without changing polyCount to use 64bits too.
|
||||
static const int STATIC_POLY_BITS = 31;
|
||||
|
||||
// Flags for addTile
|
||||
/// A handle to a polygon within a navigation mesh tile.
|
||||
/// @ingroup detour
|
||||
typedef uint64 dtPolyRef; // Edited by TC
|
||||
|
||||
/// A handle to a tile within a navigation mesh.
|
||||
/// @ingroup detour
|
||||
typedef uint64 dtTileRef; // Edited by TC
|
||||
|
||||
/// The maximum number of vertices per navigation polygon.
|
||||
/// @ingroup detour
|
||||
static const int DT_VERTS_PER_POLYGON = 6;
|
||||
|
||||
/// @{
|
||||
/// @name Tile Serialization Constants
|
||||
/// These constants are used to detect whether a navigation tile's data
|
||||
/// and state format is compatible with the current build.
|
||||
///
|
||||
|
||||
/// A magic number used to detect compatibility of navigation tile data.
|
||||
static const int DT_NAVMESH_MAGIC = 'D'<<24 | 'N'<<16 | 'A'<<8 | 'V';
|
||||
|
||||
/// A version number used to detect compatibility of navigation tile data.
|
||||
static const int DT_NAVMESH_VERSION = 7;
|
||||
|
||||
/// A magic number used to detect the compatibility of navigation tile states.
|
||||
static const int DT_NAVMESH_STATE_MAGIC = 'D'<<24 | 'N'<<16 | 'M'<<8 | 'S';
|
||||
|
||||
/// A version number used to detect compatibility of navigation tile states.
|
||||
static const int DT_NAVMESH_STATE_VERSION = 1;
|
||||
|
||||
/// @}
|
||||
|
||||
/// A flag that indicates that an entity links to an external entity.
|
||||
/// (E.g. A polygon edge is a portal that links to another polygon.)
|
||||
static const unsigned short DT_EXT_LINK = 0x8000;
|
||||
|
||||
/// A value that indicates the entity does not link to anything.
|
||||
static const unsigned int DT_NULL_LINK = 0xffffffff;
|
||||
|
||||
/// A flag that indicates that an off-mesh connection can be traversed in both directions. (Is bidirectional.)
|
||||
static const unsigned int DT_OFFMESH_CON_BIDIR = 1;
|
||||
|
||||
/// The maximum number of user defined area ids.
|
||||
/// @ingroup detour
|
||||
static const int DT_MAX_AREAS = 64;
|
||||
|
||||
/// Tile flags used for various functions and fields.
|
||||
/// For an example, see dtNavMesh::addTile().
|
||||
enum dtTileFlags
|
||||
{
|
||||
DT_TILE_FREE_DATA = 0x01, // Navmesh owns the tile memory and should free it.
|
||||
/// The navigation mesh owns the tile memory and is responsible for freeing it.
|
||||
DT_TILE_FREE_DATA = 0x01,
|
||||
};
|
||||
|
||||
// Flags returned by findStraightPath().
|
||||
/// Vertex flags returned by dtNavMeshQuery::findStraightPath.
|
||||
enum dtStraightPathFlags
|
||||
{
|
||||
DT_STRAIGHTPATH_START = 0x01, // The vertex is the start position.
|
||||
DT_STRAIGHTPATH_END = 0x02, // The vertex is the end position.
|
||||
DT_STRAIGHTPATH_OFFMESH_CONNECTION = 0x04, // The vertex is start of an off-mesh link.
|
||||
DT_STRAIGHTPATH_START = 0x01, ///< The vertex is the start position in the path.
|
||||
DT_STRAIGHTPATH_END = 0x02, ///< The vertex is the end position in the path.
|
||||
DT_STRAIGHTPATH_OFFMESH_CONNECTION = 0x04, ///< The vertex is the start of an off-mesh connection.
|
||||
};
|
||||
|
||||
// Flags describing polygon properties.
|
||||
/// Options for dtNavMeshQuery::findStraightPath.
|
||||
enum dtStraightPathOptions
|
||||
{
|
||||
DT_STRAIGHTPATH_AREA_CROSSINGS = 0x01, ///< Add a vertex at every polygon edge crossing where area changes.
|
||||
DT_STRAIGHTPATH_ALL_CROSSINGS = 0x02, ///< Add a vertex at every polygon edge crossing.
|
||||
};
|
||||
|
||||
/// Flags representing the type of a navigation mesh polygon.
|
||||
enum dtPolyTypes
|
||||
{
|
||||
DT_POLYTYPE_GROUND = 0, // Regular ground polygons.
|
||||
DT_POLYTYPE_OFFMESH_CONNECTION = 1, // Off-mesh connections.
|
||||
};
|
||||
|
||||
enum dtStatus
|
||||
{
|
||||
DT_FAILURE = 0, // Operation failed.
|
||||
DT_FAILURE_DATA_MAGIC,
|
||||
DT_FAILURE_DATA_VERSION,
|
||||
DT_FAILURE_OUT_OF_MEMORY,
|
||||
DT_SUCCESS, // Operation succeed.
|
||||
DT_IN_PROGRESS, // Operation still in progress.
|
||||
/// The polygon is a standard convex polygon that is part of the surface of the mesh.
|
||||
DT_POLYTYPE_GROUND = 0,
|
||||
/// The polygon is an off-mesh connection consisting of two vertices.
|
||||
DT_POLYTYPE_OFFMESH_CONNECTION = 1,
|
||||
};
|
||||
|
||||
|
||||
// Structure describing the navigation polygon data.
|
||||
/// Defines a polyogn within a dtMeshTile object.
|
||||
/// @ingroup detour
|
||||
struct dtPoly
|
||||
{
|
||||
unsigned int firstLink; // Index to first link in linked list.
|
||||
unsigned short verts[DT_VERTS_PER_POLYGON]; // Indices to vertices of the poly.
|
||||
unsigned short neis[DT_VERTS_PER_POLYGON]; // Refs to neighbours of the poly.
|
||||
unsigned short flags; // Flags (see dtPolyFlags).
|
||||
unsigned char vertCount; // Number of vertices.
|
||||
unsigned char areaAndtype; // Bit packed: Area ID of the polygon, and Polygon type, see dtPolyTypes..
|
||||
/// Index to first link in linked list. (Or #DT_NULL_LINK if there is no link.)
|
||||
unsigned int firstLink;
|
||||
|
||||
/// The indices of the polygon's vertices.
|
||||
/// The actual vertices are located in dtMeshTile::verts.
|
||||
unsigned short verts[DT_VERTS_PER_POLYGON];
|
||||
|
||||
/// Packed data representing neighbor polygons references and flags for each edge.
|
||||
unsigned short neis[DT_VERTS_PER_POLYGON];
|
||||
|
||||
/// The user defined polygon flags.
|
||||
unsigned short flags;
|
||||
|
||||
/// The number of vertices in the polygon.
|
||||
unsigned char vertCount;
|
||||
|
||||
/// The bit packed area id and polygon type.
|
||||
/// @note Use the structure's set and get methods to acess this value.
|
||||
unsigned char areaAndtype;
|
||||
|
||||
/// Sets the user defined area id. [Limit: < #DT_MAX_AREAS]
|
||||
inline void setArea(unsigned char a) { areaAndtype = (areaAndtype & 0xc0) | (a & 0x3f); }
|
||||
|
||||
/// Sets the polygon type. (See: #dtPolyTypes.)
|
||||
inline void setType(unsigned char t) { areaAndtype = (areaAndtype & 0x3f) | (t << 6); }
|
||||
|
||||
/// Gets the user defined area id.
|
||||
inline unsigned char getArea() const { return areaAndtype & 0x3f; }
|
||||
|
||||
/// Gets the polygon type. (See: #dtPolyTypes)
|
||||
inline unsigned char getType() const { return areaAndtype >> 6; }
|
||||
};
|
||||
|
||||
// Stucture describing polygon detail triangles.
|
||||
/// Defines the location of detail sub-mesh data within a dtMeshTile.
|
||||
struct dtPolyDetail
|
||||
{
|
||||
unsigned int vertBase; // Offset to detail vertex array.
|
||||
unsigned int triBase; // Offset to detail triangle array.
|
||||
unsigned char vertCount; // Number of vertices in the detail mesh.
|
||||
unsigned char triCount; // Number of triangles.
|
||||
unsigned int vertBase; ///< The offset of the vertices in the dtMeshTile::detailVerts array.
|
||||
unsigned int triBase; ///< The offset of the triangles in the dtMeshTile::detailTris array.
|
||||
unsigned char vertCount; ///< The number of vertices in the sub-mesh.
|
||||
unsigned char triCount; ///< The number of triangles in the sub-mesh.
|
||||
};
|
||||
|
||||
// Stucture describing a link to another polygon.
|
||||
/// Defines a link between polygons.
|
||||
/// @note This structure is rarely if ever used by the end user.
|
||||
/// @see dtMeshTile
|
||||
struct dtLink
|
||||
{
|
||||
dtPolyRef ref; // Neighbour reference.
|
||||
unsigned int next; // Index to next link.
|
||||
unsigned char edge; // Index to polygon edge which owns this link.
|
||||
unsigned char side; // If boundary link, defines on which side the link is.
|
||||
unsigned char bmin, bmax; // If boundary link, defines the sub edge area.
|
||||
dtPolyRef ref; ///< Neighbour reference. (The neighbor that is linked to.)
|
||||
unsigned int next; ///< Index of the next link.
|
||||
unsigned char edge; ///< Index of the polygon edge that owns this link.
|
||||
unsigned char side; ///< If a boundary link, defines on which side the link is.
|
||||
unsigned char bmin; ///< If a boundary link, defines the minimum sub-edge area.
|
||||
unsigned char bmax; ///< If a boundary link, defines the maximum sub-edge area.
|
||||
};
|
||||
|
||||
/// Bounding volume node.
|
||||
/// @note This structure is rarely if ever used by the end user.
|
||||
/// @see dtMeshTile
|
||||
struct dtBVNode
|
||||
{
|
||||
unsigned short bmin[3], bmax[3]; // BVnode bounds
|
||||
int i; // Index to item or if negative, escape index.
|
||||
unsigned short bmin[3]; ///< Minimum bounds of the node's AABB. [(x, y, z)]
|
||||
unsigned short bmax[3]; ///< Maximum bounds of the node's AABB. [(x, y, z)]
|
||||
int i; ///< The node's index. (Negative for escape sequence.)
|
||||
};
|
||||
|
||||
/// Defines an navigation mesh off-mesh connection within a dtMeshTile object.
|
||||
/// An off-mesh connection is a user defined traversable connection made up to two vertices.
|
||||
struct dtOffMeshConnection
|
||||
{
|
||||
float pos[6]; // Both end point locations.
|
||||
float rad; // Link connection radius.
|
||||
unsigned short poly; // Poly Id
|
||||
unsigned char flags; // Link flags
|
||||
unsigned char side; // End point side.
|
||||
unsigned int userId; // User ID to identify this connection.
|
||||
/// The endpoints of the connection. [(ax, ay, az, bx, by, bz)]
|
||||
float pos[6];
|
||||
|
||||
/// The radius of the endpoints. [Limit: >= 0]
|
||||
float rad;
|
||||
|
||||
/// The polygon reference of the connection within the tile.
|
||||
unsigned short poly;
|
||||
|
||||
/// Link flags.
|
||||
/// @note These are not the connection's user defined flags. Those are assigned via the
|
||||
/// connection's dtPoly definition. These are link flags used for internal purposes.
|
||||
unsigned char flags;
|
||||
|
||||
/// End point side.
|
||||
unsigned char side;
|
||||
|
||||
/// The id of the offmesh connection. (User assigned when the navigation mesh is built.)
|
||||
unsigned int userId;
|
||||
};
|
||||
|
||||
/// Provides high level information related to a dtMeshTile object.
|
||||
/// @ingroup detour
|
||||
struct dtMeshHeader
|
||||
{
|
||||
int magic; // Magic number, used to identify the data.
|
||||
int version; // Data version number.
|
||||
int x, y; // Location of the time on the grid.
|
||||
unsigned int userId; // User ID of the tile.
|
||||
int polyCount; // Number of polygons in the tile.
|
||||
int vertCount; // Number of vertices in the tile.
|
||||
int maxLinkCount; // Number of allocated links.
|
||||
int detailMeshCount; // Number of detail meshes.
|
||||
int detailVertCount; // Number of detail vertices.
|
||||
int detailTriCount; // Number of detail triangles.
|
||||
int bvNodeCount; // Number of BVtree nodes.
|
||||
int offMeshConCount; // Number of Off-Mesh links.
|
||||
int offMeshBase; // Index to first polygon which is Off-Mesh link.
|
||||
float walkableHeight; // Height of the agent.
|
||||
float walkableRadius; // Radius of the agent
|
||||
float walkableClimb; // Max climb height of the agent.
|
||||
float bmin[3], bmax[3]; // Bounding box of the tile.
|
||||
float bvQuantFactor; // BVtree quantization factor (world to bvnode coords)
|
||||
int magic; ///< Tile magic number. (Used to identify the data format.)
|
||||
int version; ///< Tile data format version number.
|
||||
int x; ///< The x-position of the tile within the dtNavMesh tile grid. (x, y, layer)
|
||||
int y; ///< The y-position of the tile within the dtNavMesh tile grid. (x, y, layer)
|
||||
int layer; ///< The layer of the tile within the dtNavMesh tile grid. (x, y, layer)
|
||||
unsigned int userId; ///< The user defined id of the tile.
|
||||
int polyCount; ///< The number of polygons in the tile.
|
||||
int vertCount; ///< The number of vertices in the tile.
|
||||
int maxLinkCount; ///< The number of allocated links.
|
||||
int detailMeshCount; ///< The number of sub-meshes in the detail mesh.
|
||||
|
||||
/// The number of unique vertices in the detail mesh. (In addition to the polygon vertices.)
|
||||
int detailVertCount;
|
||||
|
||||
int detailTriCount; ///< The number of triangles in the detail mesh.
|
||||
int bvNodeCount; ///< The number of bounding volume nodes. (Zero if bounding volumes are disabled.)
|
||||
int offMeshConCount; ///< The number of off-mesh connections.
|
||||
int offMeshBase; ///< The index of the first polygon which is an off-mesh connection.
|
||||
float walkableHeight; ///< The height of the agents using the tile.
|
||||
float walkableRadius; ///< The radius of the agents using the tile.
|
||||
float walkableClimb; ///< The maximum climb height of the agents using the tile.
|
||||
float bmin[3]; ///< The minimum bounds of the tile's AABB. [(x, y, z)]
|
||||
float bmax[3]; ///< The maximum bounds of the tile's AABB. [(x, y, z)]
|
||||
|
||||
/// The bounding volume quantization factor.
|
||||
float bvQuantFactor;
|
||||
};
|
||||
|
||||
/// Defines a navigation mesh tile.
|
||||
/// @ingroup detour
|
||||
struct dtMeshTile
|
||||
{
|
||||
unsigned int salt; // Counter describing modifications to the tile.
|
||||
unsigned int salt; ///< Counter describing modifications to the tile.
|
||||
|
||||
unsigned int linksFreeList; // Index to next free link.
|
||||
dtMeshHeader* header; // Pointer to tile header.
|
||||
dtPoly* polys; // Pointer to the polygons (will be updated when tile is added).
|
||||
float* verts; // Pointer to the vertices (will be updated when tile added).
|
||||
dtLink* links; // Pointer to the links (will be updated when tile added).
|
||||
dtPolyDetail* detailMeshes; // Pointer to detail meshes (will be updated when tile added).
|
||||
float* detailVerts; // Pointer to detail vertices (will be updated when tile added).
|
||||
unsigned char* detailTris; // Pointer to detail triangles (will be updated when tile added).
|
||||
dtBVNode* bvTree; // Pointer to BVtree nodes (will be updated when tile added).
|
||||
dtOffMeshConnection* offMeshCons; // Pointer to Off-Mesh links. (will be updated when tile added).
|
||||
unsigned int linksFreeList; ///< Index to the next free link.
|
||||
dtMeshHeader* header; ///< The tile header.
|
||||
dtPoly* polys; ///< The tile polygons. [Size: dtMeshHeader::polyCount]
|
||||
float* verts; ///< The tile vertices. [Size: dtMeshHeader::vertCount]
|
||||
dtLink* links; ///< The tile links. [Size: dtMeshHeader::maxLinkCount]
|
||||
dtPolyDetail* detailMeshes; ///< The tile's detail sub-meshes. [Size: dtMeshHeader::detailMeshCount]
|
||||
|
||||
/// The detail mesh's unique vertices. [(x, y, z) * dtMeshHeader::detailVertCount]
|
||||
float* detailVerts;
|
||||
|
||||
/// The detail mesh's triangles. [(vertA, vertB, vertC) * dtMeshHeader::detailTriCount]
|
||||
unsigned char* detailTris;
|
||||
|
||||
/// The tile bounding volume nodes. [Size: dtMeshHeader::bvNodeCount]
|
||||
/// (Will be null if bounding volumes are disabled.)
|
||||
dtBVNode* bvTree;
|
||||
|
||||
dtOffMeshConnection* offMeshCons; ///< The tile off-mesh connections. [Size: dtMeshHeader::offMeshConCount]
|
||||
|
||||
unsigned char* data; // Pointer to tile data.
|
||||
int dataSize; // Size of the tile data.
|
||||
int flags; // Tile flags, see dtTileFlags.
|
||||
dtMeshTile* next; // Next free tile or, next tile in spatial grid.
|
||||
unsigned char* data; ///< The tile data. (Not directly accessed under normal situations.)
|
||||
int dataSize; ///< Size of the tile data.
|
||||
int flags; ///< Tile flags. (See: #dtTileFlags)
|
||||
dtMeshTile* next; ///< The next free tile, or the next tile in the spatial grid.
|
||||
};
|
||||
|
||||
/// Configuration parameters used to define multi-tile navigation meshes.
|
||||
/// The values are used to allocate space during the initialization of a navigation mesh.
|
||||
/// @see dtNavMesh::init()
|
||||
/// @ingroup detour
|
||||
struct dtNavMeshParams
|
||||
{
|
||||
float orig[3]; // Origin of the nav mesh tile space.
|
||||
float tileWidth, tileHeight; // Width and height of each tile.
|
||||
int maxTiles; // Maximum number of tiles the navmesh can contain.
|
||||
int maxPolys; // Maximum number of polygons each tile can contain.
|
||||
float orig[3]; ///< The world space origin of the navigation mesh's tile space. [(x, y, z)]
|
||||
float tileWidth; ///< The width of each tile. (Along the x-axis.)
|
||||
float tileHeight; ///< The height of each tile. (Along the z-axis.)
|
||||
int maxTiles; ///< The maximum number of tiles the navigation mesh can contain.
|
||||
int maxPolys; ///< The maximum number of polygons each tile can contain.
|
||||
};
|
||||
|
||||
|
||||
/// A navigation mesh based on tiles of convex polygons.
|
||||
/// @ingroup detour
|
||||
class dtNavMesh
|
||||
{
|
||||
public:
|
||||
dtNavMesh();
|
||||
~dtNavMesh();
|
||||
|
||||
// Initializes the nav mesh for tiled use.
|
||||
// Params:
|
||||
// params - (in) navmesh initialization params, see dtNavMeshParams.
|
||||
// Returns: True if succeed, else false.
|
||||
/// @{
|
||||
/// @name Initialization and Tile Management
|
||||
|
||||
/// Initializes the navigation mesh for tiled use.
|
||||
/// @param[in] params Initialization parameters.
|
||||
/// @return The status flags for the operation.
|
||||
dtStatus init(const dtNavMeshParams* params);
|
||||
|
||||
// Initializes the nav mesh for single tile use.
|
||||
// Params:
|
||||
// data - (in) Data of the new tile mesh.
|
||||
// dataSize - (in) Data size of the new tile mesh.
|
||||
// flags - (in) Tile flags, see dtTileFlags.
|
||||
// Returns: True if succeed, else false.
|
||||
/// Initializes the navigation mesh for single tile use.
|
||||
/// @param[in] data Data of the new tile. (See: #dtCreateNavMeshData)
|
||||
/// @param[in] dataSize The data size of the new tile.
|
||||
/// @param[in] flags The tile flags. (See: #dtTileFlags)
|
||||
/// @return The status flags for the operation.
|
||||
/// @see dtCreateNavMeshData
|
||||
dtStatus init(unsigned char* data, const int dataSize, const int flags);
|
||||
|
||||
// Returns pointer to navmesh initialization params.
|
||||
/// The navigation mesh initialization params.
|
||||
const dtNavMeshParams* getParams() const;
|
||||
|
||||
// Adds new tile into the navmesh.
|
||||
// The add will fail if the data is in wrong format,
|
||||
// there is not enough tiles left, or if there is a tile already at the location.
|
||||
// Params:
|
||||
// data - (in) Data of the new tile mesh.
|
||||
// dataSize - (in) Data size of the new tile mesh.
|
||||
// flags - (in) Tile flags, see dtTileFlags.
|
||||
// lastRef - (in,optional) Last tile ref, the tile will be restored so that
|
||||
// the reference (as well as poly references) will be the same. Default: 0.
|
||||
// result - (out,optional) tile ref if the tile was succesfully added.
|
||||
|
||||
/// Adds a tile to the navigation mesh.
|
||||
/// @param[in] data Data for the new tile mesh. (See: #dtCreateNavMeshData)
|
||||
/// @param[in] dataSize Data size of the new tile mesh.
|
||||
/// @param[in] flags Tile flags. (See: #dtTileFlags)
|
||||
/// @param[in] lastRef The desired reference for the tile. (When reloading a tile.) [opt] [Default: 0]
|
||||
/// @param[out] result The tile reference. (If the tile was succesfully added.) [opt]
|
||||
/// @return The status flags for the operation.
|
||||
dtStatus addTile(unsigned char* data, int dataSize, int flags, dtTileRef lastRef, dtTileRef* result);
|
||||
|
||||
// Removes specified tile.
|
||||
// Params:
|
||||
// ref - (in) Reference to the tile to remove.
|
||||
// data - (out) Data associated with deleted tile.
|
||||
// dataSize - (out) Size of the data associated with deleted tile.
|
||||
/// Removes the specified tile from the navigation mesh.
|
||||
/// @param[in] ref The reference of the tile to remove.
|
||||
/// @param[out] data Data associated with deleted tile.
|
||||
/// @param[out] dataSize Size of the data associated with deleted tile.
|
||||
/// @return The status flags for the operation.
|
||||
dtStatus removeTile(dtTileRef ref, unsigned char** data, int* dataSize);
|
||||
|
||||
// Calculates tile location based in input world position.
|
||||
// Params:
|
||||
// pos - (in) world position of the query.
|
||||
// tx - (out) tile x location.
|
||||
// ty - (out) tile y location.
|
||||
/// @}
|
||||
|
||||
/// @{
|
||||
/// @name Query Functions
|
||||
|
||||
/// Calculates the tile grid location for the specified world position.
|
||||
/// @param[in] pos The world position for the query. [(x, y, z)]
|
||||
/// @param[out] tx The tile's x-location. (x, y)
|
||||
/// @param[out] ty The tile's y-location. (x, y)
|
||||
void calcTileLoc(const float* pos, int* tx, int* ty) const;
|
||||
|
||||
// Returns pointer to tile at specified location.
|
||||
// Params:
|
||||
// x,y - (in) Location of the tile to get.
|
||||
// Returns: pointer to tile if tile exists or 0 tile does not exists.
|
||||
const dtMeshTile* getTileAt(int x, int y) const;
|
||||
/// Gets the tile at the specified grid location.
|
||||
/// @param[in] x The tile's x-location. (x, y, layer)
|
||||
/// @param[in] y The tile's y-location. (x, y, layer)
|
||||
/// @param[in] layer The tile's layer. (x, y, layer)
|
||||
/// @return The tile, or null if the tile does not exist.
|
||||
const dtMeshTile* getTileAt(const int x, const int y, const int layer) const;
|
||||
|
||||
// Returns reference to tile at specified location.
|
||||
// Params:
|
||||
// x,y - (in) Location of the tile to get.
|
||||
// Returns: reference to tile if tile exists or 0 tile does not exists.
|
||||
dtTileRef getTileRefAt(int x, int y) const;
|
||||
/// Gets all tiles at the specified grid location. (All layers.)
|
||||
/// @param[in] x The tile's x-location. (x, y)
|
||||
/// @param[in] y The tile's y-location. (x, y)
|
||||
/// @param[out] tiles A pointer to an array of tiles that will hold the result.
|
||||
/// @param[in] maxTiles The maximum tiles the tiles parameter can hold.
|
||||
/// @return The number of tiles returned in the tiles array.
|
||||
int getTilesAt(const int x, const int y,
|
||||
dtMeshTile const** tiles, const int maxTiles) const;
|
||||
|
||||
// Returns tile references of a tile based on tile pointer.
|
||||
/// Gets the tile reference for the tile at specified grid location.
|
||||
/// @param[in] x The tile's x-location. (x, y, layer)
|
||||
/// @param[in] y The tile's y-location. (x, y, layer)
|
||||
/// @param[in] layer The tile's layer. (x, y, layer)
|
||||
/// @return The tile reference of the tile, or 0 if there is none.
|
||||
dtTileRef getTileRefAt(int x, int y, int layer) const;
|
||||
|
||||
/// Gets the tile reference for the specified tile.
|
||||
/// @param[in] tile The tile.
|
||||
/// @return The tile reference of the tile.
|
||||
dtTileRef getTileRef(const dtMeshTile* tile) const;
|
||||
|
||||
// Returns tile based on references.
|
||||
/// Gets the tile for the specified tile reference.
|
||||
/// @param[in] ref The tile reference of the tile to retrieve.
|
||||
/// @return The tile for the specified reference, or null if the
|
||||
/// reference is invalid.
|
||||
const dtMeshTile* getTileByRef(dtTileRef ref) const;
|
||||
|
||||
// Returns max number of tiles.
|
||||
/// The maximum number of tiles supported by the navigation mesh.
|
||||
/// @return The maximum number of tiles supported by the navigation mesh.
|
||||
int getMaxTiles() const;
|
||||
|
||||
// Returns pointer to tile in the tile array.
|
||||
// Params:
|
||||
// i - (in) Index to the tile to retrieve, max index is getMaxTiles()-1.
|
||||
// Returns: Pointer to specified tile.
|
||||
/// Gets the tile at the specified index.
|
||||
/// @param[in] i The tile index. [Limit: 0 >= index < #getMaxTiles()]
|
||||
/// @return The tile at the specified index.
|
||||
const dtMeshTile* getTile(int i) const;
|
||||
|
||||
// Returns pointer to tile and polygon pointed by the polygon reference.
|
||||
// Params:
|
||||
// ref - (in) reference to a polygon.
|
||||
// tile - (out) pointer to the tile containing the polygon.
|
||||
// poly - (out) pointer to the polygon.
|
||||
/// Gets the tile and polygon for the specified polygon reference.
|
||||
/// @param[in] ref The reference for the a polygon.
|
||||
/// @param[out] tile The tile containing the polygon.
|
||||
/// @param[out] poly The polygon.
|
||||
/// @return The status flags for the operation.
|
||||
dtStatus getTileAndPolyByRef(const dtPolyRef ref, const dtMeshTile** tile, const dtPoly** poly) const;
|
||||
|
||||
// Returns pointer to tile and polygon pointed by the polygon reference.
|
||||
// Note: this function does not check if 'ref' s valid, and is thus faster. Use only with valid refs!
|
||||
// Params:
|
||||
// ref - (in) reference to a polygon.
|
||||
// tile - (out) pointer to the tile containing the polygon.
|
||||
// poly - (out) pointer to the polygon.
|
||||
/// Returns the tile and polygon for the specified polygon reference.
|
||||
/// @param[in] ref A known valid reference for a polygon.
|
||||
/// @param[out] tile The tile containing the polygon.
|
||||
/// @param[out] poly The polygon.
|
||||
void getTileAndPolyByRefUnsafe(const dtPolyRef ref, const dtMeshTile** tile, const dtPoly** poly) const;
|
||||
|
||||
// Returns true if polygon reference points to valid data.
|
||||
/// Checks the validity of a polygon reference.
|
||||
/// @param[in] ref The polygon reference to check.
|
||||
/// @return True if polygon reference is valid for the navigation mesh.
|
||||
bool isValidPolyRef(dtPolyRef ref) const;
|
||||
|
||||
// Returns base poly id for specified tile, polygon refs can be deducted from this.
|
||||
/// Gets the polygon reference for the tile's base polygon.
|
||||
/// @param[in] tile The tile.
|
||||
/// @return The polygon reference for the base polygon in the specified tile.
|
||||
dtPolyRef getPolyRefBase(const dtMeshTile* tile) const;
|
||||
|
||||
// Returns start and end location of an off-mesh link polygon.
|
||||
// Params:
|
||||
// prevRef - (in) ref to the polygon before the link (used to select direction).
|
||||
// polyRef - (in) ref to the off-mesh link polygon.
|
||||
// startPos[3] - (out) start point of the link.
|
||||
// endPos[3] - (out) end point of the link.
|
||||
// Returns: true if link is found.
|
||||
/// Gets the endpoints for an off-mesh connection, ordered by "direction of travel".
|
||||
/// @param[in] prevRef The reference of the polygon before the connection.
|
||||
/// @param[in] polyRef The reference of the off-mesh connection polygon.
|
||||
/// @param[out] startPos The start position of the off-mesh connection. [(x, y, z)]
|
||||
/// @param[out] endPos The end position of the off-mesh connection. [(x, y, z)]
|
||||
/// @return The status flags for the operation.
|
||||
dtStatus getOffMeshConnectionPolyEndPoints(dtPolyRef prevRef, dtPolyRef polyRef, float* startPos, float* endPos) const;
|
||||
|
||||
// Returns pointer to off-mesh connection based on polyref, or null if ref not valid.
|
||||
/// Gets the specified off-mesh connection.
|
||||
/// @param[in] ref The polygon reference of the off-mesh connection.
|
||||
/// @return The specified off-mesh connection, or null if the polygon reference is not valid.
|
||||
const dtOffMeshConnection* getOffMeshConnectionByRef(dtPolyRef ref) const;
|
||||
|
||||
// Sets polygon flags.
|
||||
/// @}
|
||||
|
||||
/// @{
|
||||
/// @name State Management
|
||||
/// These functions do not effect #dtTileRef or #dtPolyRef's.
|
||||
|
||||
/// Sets the user defined flags for the specified polygon.
|
||||
/// @param[in] ref The polygon reference.
|
||||
/// @param[in] flags The new flags for the polygon.
|
||||
/// @return The status flags for the operation.
|
||||
dtStatus setPolyFlags(dtPolyRef ref, unsigned short flags);
|
||||
|
||||
// Return polygon flags.
|
||||
/// Gets the user defined flags for the specified polygon.
|
||||
/// @param[in] ref The polygon reference.
|
||||
/// @param[out] resultFlags The polygon flags.
|
||||
/// @return The status flags for the operation.
|
||||
dtStatus getPolyFlags(dtPolyRef ref, unsigned short* resultFlags) const;
|
||||
|
||||
// Set polygon type.
|
||||
/// Sets the user defined area for the specified polygon.
|
||||
/// @param[in] ref The polygon reference.
|
||||
/// @param[in] area The new area id for the polygon. [Limit: < #DT_MAX_AREAS]
|
||||
/// @return The status flags for the operation.
|
||||
dtStatus setPolyArea(dtPolyRef ref, unsigned char area);
|
||||
|
||||
// Return polygon area type.
|
||||
/// Gets the user defined area for the specified polygon.
|
||||
/// @param[in] ref The polygon reference.
|
||||
/// @param[out] resultArea The area id for the polygon.
|
||||
/// @return The status flags for the operation.
|
||||
dtStatus getPolyArea(dtPolyRef ref, unsigned char* resultArea) const;
|
||||
|
||||
|
||||
// Returns number of bytes required to store tile state.
|
||||
/// Gets the size of the buffer required by #storeTileState to store the specified tile's state.
|
||||
/// @param[in] tile The tile.
|
||||
/// @return The size of the buffer required to store the state.
|
||||
int getTileStateSize(const dtMeshTile* tile) const;
|
||||
|
||||
// Stores tile state to buffer.
|
||||
/// Stores the non-structural state of the tile in the specified buffer. (Flags, area ids, etc.)
|
||||
/// @param[in] tile The tile.
|
||||
/// @param[out] data The buffer to store the tile's state in.
|
||||
/// @param[in] maxDataSize The size of the data buffer. [Limit: >= #getTileStateSize]
|
||||
/// @return The status flags for the operation.
|
||||
dtStatus storeTileState(const dtMeshTile* tile, unsigned char* data, const int maxDataSize) const;
|
||||
|
||||
// Restores tile state.
|
||||
/// Restores the state of the tile.
|
||||
/// @param[in] tile The tile.
|
||||
/// @param[in] data The new state. (Obtained from #storeTileState.)
|
||||
/// @param[in] maxDataSize The size of the state within the data buffer.
|
||||
/// @return The status flags for the operation.
|
||||
dtStatus restoreTileState(dtMeshTile* tile, const unsigned char* data, const int maxDataSize);
|
||||
|
||||
/// @}
|
||||
|
||||
// Encodes a tile id.
|
||||
/// @{
|
||||
/// @name Encoding and Decoding
|
||||
/// These functions are generally meant for internal use only.
|
||||
|
||||
/// Derives a standard polygon reference.
|
||||
/// @note This function is generally meant for internal use only.
|
||||
/// @param[in] salt The tile's salt value.
|
||||
/// @param[in] it The index of the tile.
|
||||
/// @param[in] ip The index of the polygon within the tile.
|
||||
inline dtPolyRef encodePolyId(unsigned int salt, unsigned int it, unsigned int ip) const
|
||||
{
|
||||
return ((dtPolyRef)salt << (m_polyBits+m_tileBits)) | ((dtPolyRef)it << m_polyBits) | (dtPolyRef)ip;
|
||||
}
|
||||
|
||||
// Decodes a tile id.
|
||||
/// Decodes a standard polygon reference.
|
||||
/// @note This function is generally meant for internal use only.
|
||||
/// @param[in] ref The polygon reference to decode.
|
||||
/// @param[out] salt The tile's salt value.
|
||||
/// @param[out] it The index of the tile.
|
||||
/// @param[out] ip The index of the polygon within the tile.
|
||||
/// @see #encodePolyId
|
||||
inline void decodePolyId(dtPolyRef ref, unsigned int& salt, unsigned int& it, unsigned int& ip) const
|
||||
{
|
||||
const dtPolyRef saltMask = ((dtPolyRef)1<<m_saltBits)-1;
|
||||
@@ -346,83 +510,201 @@ public:
|
||||
ip = (unsigned int)(ref & polyMask);
|
||||
}
|
||||
|
||||
// Decodes a tile salt.
|
||||
/// Extracts a tile's salt value from the specified polygon reference.
|
||||
/// @note This function is generally meant for internal use only.
|
||||
/// @param[in] ref The polygon reference.
|
||||
/// @see #encodePolyId
|
||||
inline unsigned int decodePolyIdSalt(dtPolyRef ref) const
|
||||
{
|
||||
const dtPolyRef saltMask = ((dtPolyRef)1<<m_saltBits)-1;
|
||||
return (unsigned int)((ref >> (m_polyBits+m_tileBits)) & saltMask);
|
||||
}
|
||||
|
||||
// Decodes a tile id.
|
||||
/// Extracts the tile's index from the specified polygon reference.
|
||||
/// @note This function is generally meant for internal use only.
|
||||
/// @param[in] ref The polygon reference.
|
||||
/// @see #encodePolyId
|
||||
inline unsigned int decodePolyIdTile(dtPolyRef ref) const
|
||||
{
|
||||
const dtPolyRef tileMask = ((dtPolyRef)1<<m_tileBits)-1;
|
||||
return (unsigned int)((ref >> m_polyBits) & tileMask);
|
||||
}
|
||||
|
||||
// Decodes a poly id.
|
||||
/// Extracts the polygon's index (within its tile) from the specified polygon reference.
|
||||
/// @note This function is generally meant for internal use only.
|
||||
/// @param[in] ref The polygon reference.
|
||||
/// @see #encodePolyId
|
||||
inline unsigned int decodePolyIdPoly(dtPolyRef ref) const
|
||||
{
|
||||
const dtPolyRef polyMask = ((dtPolyRef)1<<m_polyBits)-1;
|
||||
return (unsigned int)(ref & polyMask);
|
||||
}
|
||||
|
||||
/// @}
|
||||
|
||||
private:
|
||||
|
||||
// Returns pointer to tile in the tile array.
|
||||
/// Returns pointer to tile in the tile array.
|
||||
dtMeshTile* getTile(int i);
|
||||
|
||||
// Returns neighbour tile based on side.
|
||||
dtMeshTile* getNeighbourTileAt(int x, int y, int side) const;
|
||||
// Returns all polygons in neighbour tile based on portal defined by the segment.
|
||||
/// Returns neighbour tile based on side.
|
||||
int getTilesAt(const int x, const int y,
|
||||
dtMeshTile** tiles, const int maxTiles) const;
|
||||
|
||||
/// Returns neighbour tile based on side.
|
||||
int getNeighbourTilesAt(const int x, const int y, const int side,
|
||||
dtMeshTile** tiles, const int maxTiles) const;
|
||||
|
||||
/// Returns all polygons in neighbour tile based on portal defined by the segment.
|
||||
int findConnectingPolys(const float* va, const float* vb,
|
||||
const dtMeshTile* tile, int side,
|
||||
dtPolyRef* con, float* conarea, int maxcon) const;
|
||||
|
||||
// Builds internal polygons links for a tile.
|
||||
/// Builds internal polygons links for a tile.
|
||||
void connectIntLinks(dtMeshTile* tile);
|
||||
// Builds internal polygons links for a tile.
|
||||
void connectIntOffMeshLinks(dtMeshTile* tile);
|
||||
/// Builds internal polygons links for a tile.
|
||||
void baseOffMeshLinks(dtMeshTile* tile);
|
||||
|
||||
// Builds external polygon links for a tile.
|
||||
/// Builds external polygon links for a tile.
|
||||
void connectExtLinks(dtMeshTile* tile, dtMeshTile* target, int side);
|
||||
// Builds external polygon links for a tile.
|
||||
/// Builds external polygon links for a tile.
|
||||
void connectExtOffMeshLinks(dtMeshTile* tile, dtMeshTile* target, int side);
|
||||
|
||||
// Removes external links at specified side.
|
||||
void unconnectExtLinks(dtMeshTile* tile, int side);
|
||||
/// Removes external links at specified side.
|
||||
void unconnectExtLinks(dtMeshTile* tile, dtMeshTile* target);
|
||||
|
||||
|
||||
// TODO: These methods are duplicates from dtNavMeshQuery, but are needed for off-mesh connection finding.
|
||||
|
||||
// Queries polygons within a tile.
|
||||
/// Queries polygons within a tile.
|
||||
int queryPolygonsInTile(const dtMeshTile* tile, const float* qmin, const float* qmax,
|
||||
dtPolyRef* polys, const int maxPolys) const;
|
||||
// Find nearest polygon within a tile.
|
||||
/// Find nearest polygon within a tile.
|
||||
dtPolyRef findNearestPolyInTile(const dtMeshTile* tile, const float* center,
|
||||
const float* extents, float* nearestPt) const;
|
||||
// Returns closest point on polygon.
|
||||
dtStatus closestPointOnPolyInTile(const dtMeshTile* tile, unsigned int ip,
|
||||
const float* pos, float* closest) const;
|
||||
/// Returns closest point on polygon.
|
||||
void closestPointOnPolyInTile(const dtMeshTile* tile, unsigned int ip,
|
||||
const float* pos, float* closest) const;
|
||||
|
||||
dtNavMeshParams m_params; // Current initialization params. TODO: do not store this info twice.
|
||||
float m_orig[3]; // Origin of the tile (0,0)
|
||||
float m_tileWidth, m_tileHeight; // Dimensions of each tile.
|
||||
int m_maxTiles; // Max number of tiles.
|
||||
int m_tileLutSize; // Tile hash lookup size (must be pot).
|
||||
int m_tileLutMask; // Tile hash lookup mask.
|
||||
dtNavMeshParams m_params; ///< Current initialization params. TODO: do not store this info twice.
|
||||
float m_orig[3]; ///< Origin of the tile (0,0)
|
||||
float m_tileWidth, m_tileHeight; ///< Dimensions of each tile.
|
||||
int m_maxTiles; ///< Max number of tiles.
|
||||
int m_tileLutSize; ///< Tile hash lookup size (must be pot).
|
||||
int m_tileLutMask; ///< Tile hash lookup mask.
|
||||
|
||||
dtMeshTile** m_posLookup; // Tile hash lookup.
|
||||
dtMeshTile* m_nextFree; // Freelist of tiles.
|
||||
dtMeshTile* m_tiles; // List of tiles.
|
||||
dtMeshTile** m_posLookup; ///< Tile hash lookup.
|
||||
dtMeshTile* m_nextFree; ///< Freelist of tiles.
|
||||
dtMeshTile* m_tiles; ///< List of tiles.
|
||||
|
||||
unsigned int m_saltBits; // Number of salt bits in the tile ID.
|
||||
unsigned int m_tileBits; // Number of tile bits in the tile ID.
|
||||
unsigned int m_polyBits; // Number of poly bits in the tile ID.
|
||||
unsigned int m_saltBits; ///< Number of salt bits in the tile ID.
|
||||
unsigned int m_tileBits; ///< Number of tile bits in the tile ID.
|
||||
unsigned int m_polyBits; ///< Number of poly bits in the tile ID.
|
||||
};
|
||||
|
||||
// Helper function to allocate navmesh class using Detour allocator.
|
||||
/// Allocates a navigation mesh object using the Detour allocator.
|
||||
/// @return A navigation mesh that is ready for initialization, or null on failure.
|
||||
/// @ingroup detour
|
||||
dtNavMesh* dtAllocNavMesh();
|
||||
|
||||
/// Frees the specified navigation mesh object using the Detour allocator.
|
||||
/// @param[in] navmesh A navigation mesh allocated using #dtAllocNavMesh
|
||||
/// @ingroup detour
|
||||
void dtFreeNavMesh(dtNavMesh* navmesh);
|
||||
|
||||
#endif // DETOURNAVMESH_H
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
|
||||
// This section contains detailed documentation for members that don't have
|
||||
// a source file. It reduces clutter in the main section of the header.
|
||||
|
||||
/**
|
||||
|
||||
@typedef dtPolyRef
|
||||
@par
|
||||
|
||||
Polygon references are subject to the same invalidate/preserve/restore
|
||||
rules that apply to #dtTileRef's. If the #dtTileRef for the polygon's
|
||||
tile changes, the polygon reference becomes invalid.
|
||||
|
||||
Changing a polygon's flags, area id, etc. does not impact its polygon
|
||||
reference.
|
||||
|
||||
@typedef dtTileRef
|
||||
@par
|
||||
|
||||
The following changes will invalidate a tile reference:
|
||||
|
||||
- The referenced tile has been removed from the navigation mesh.
|
||||
- The navigation mesh has been initialized using a different set
|
||||
of #dtNavMeshParams.
|
||||
|
||||
A tile reference is preserved/restored if the tile is added to a navigation
|
||||
mesh initialized with the original #dtNavMeshParams and is added at the
|
||||
original reference location. (E.g. The lastRef parameter is used with
|
||||
dtNavMesh::addTile.)
|
||||
|
||||
Basically, if the storage structure of a tile changes, its associated
|
||||
tile reference changes.
|
||||
|
||||
|
||||
@var unsigned short dtPoly::neis[DT_VERTS_PER_POLYGON]
|
||||
@par
|
||||
|
||||
Each entry represents data for the edge starting at the vertex of the same index.
|
||||
E.g. The entry at index n represents the edge data for vertex[n] to vertex[n+1].
|
||||
|
||||
A value of zero indicates the edge has no polygon connection. (It makes up the
|
||||
border of the navigation mesh.)
|
||||
|
||||
The information can be extracted as follows:
|
||||
@code
|
||||
neighborRef = neis[n] & 0xff; // Get the neighbor polygon reference.
|
||||
|
||||
if (neis[n] & #DT_EX_LINK)
|
||||
{
|
||||
// The edge is an external (portal) edge.
|
||||
}
|
||||
@endcode
|
||||
|
||||
@var float dtMeshHeader::bvQuantFactor
|
||||
@par
|
||||
|
||||
This value is used for converting between world and bounding volume coordinates.
|
||||
For example:
|
||||
@code
|
||||
const float cs = 1.0f / tile->header->bvQuantFactor;
|
||||
const dtBVNode* n = &tile->bvTree[i];
|
||||
if (n->i >= 0)
|
||||
{
|
||||
// This is a leaf node.
|
||||
float worldMinX = tile->header->bmin[0] + n->bmin[0]*cs;
|
||||
float worldMinY = tile->header->bmin[0] + n->bmin[1]*cs;
|
||||
// Etc...
|
||||
}
|
||||
@endcode
|
||||
|
||||
@struct dtMeshTile
|
||||
@par
|
||||
|
||||
Tiles generally only exist within the context of a dtNavMesh object.
|
||||
|
||||
Some tile content is optional. For example, a tile may not contain any
|
||||
off-mesh connections. In this case the associated pointer will be null.
|
||||
|
||||
If a detail mesh exists it will share vertices with the base polygon mesh.
|
||||
Only the vertices unique to the detail mesh will be stored in #detailVerts.
|
||||
|
||||
@warning Tiles returned by a dtNavMesh object are not guarenteed to be populated.
|
||||
For example: The tile at a location might not have been loaded yet, or may have been removed.
|
||||
In this case, pointers will be null. So if in doubt, check the polygon count in the
|
||||
tile's header to determine if a tile has polygons defined.
|
||||
|
||||
@var float dtOffMeshConnection::pos[6]
|
||||
@par
|
||||
|
||||
For a properly built navigation mesh, vertex A will always be within the bounds of the mesh.
|
||||
Vertex B is not required to be within the bounds of the mesh.
|
||||
|
||||
*/
|
||||
|
||||
@@ -20,6 +20,7 @@
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <float.h>
|
||||
#include "DetourNavMesh.h"
|
||||
#include "DetourCommon.h"
|
||||
#include "DetourNavMeshBuilder.h"
|
||||
@@ -237,11 +238,19 @@ static unsigned char classifyOffMeshPoint(const float* pt, const float* bmin, co
|
||||
case ZM: return 6;
|
||||
case XP|ZM: return 7;
|
||||
};
|
||||
|
||||
return 0xff;
|
||||
}
|
||||
|
||||
// TODO: Better error handling.
|
||||
|
||||
/// @par
|
||||
///
|
||||
/// The output data array is allocated using the detour allocator (dtAlloc()). The method
|
||||
/// used to free the memory will be determined by how the tile is added to the navigation
|
||||
/// mesh.
|
||||
///
|
||||
/// @see dtNavMesh, dtNavMesh::addTile()
|
||||
bool dtCreateNavMeshData(dtNavMeshCreateParams* params, unsigned char** outData, int* outDataSize)
|
||||
{
|
||||
if (params->nvp > DT_VERTS_PER_POLYGON)
|
||||
@@ -252,8 +261,6 @@ bool dtCreateNavMeshData(dtNavMeshCreateParams* params, unsigned char** outData,
|
||||
return false;
|
||||
if (!params->polyCount || !params->polys)
|
||||
return false;
|
||||
if (!params->detailMeshes || !params->detailVerts || !params->detailTris)
|
||||
return false;
|
||||
|
||||
const int nvp = params->nvp;
|
||||
|
||||
@@ -269,10 +276,50 @@ bool dtCreateNavMeshData(dtNavMeshCreateParams* params, unsigned char** outData,
|
||||
if (!offMeshConClass)
|
||||
return false;
|
||||
|
||||
// Find tight heigh bounds, used for culling out off-mesh start locations.
|
||||
float hmin = FLT_MAX;
|
||||
float hmax = -FLT_MAX;
|
||||
|
||||
if (params->detailVerts && params->detailVertsCount)
|
||||
{
|
||||
for (int i = 0; i < params->detailVertsCount; ++i)
|
||||
{
|
||||
const float h = params->detailVerts[i*3+1];
|
||||
hmin = dtMin(hmin,h);
|
||||
hmax = dtMax(hmax,h);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for (int i = 0; i < params->vertCount; ++i)
|
||||
{
|
||||
const unsigned short* iv = ¶ms->verts[i*3];
|
||||
const float h = params->bmin[1] + iv[1] * params->ch;
|
||||
hmin = dtMin(hmin,h);
|
||||
hmax = dtMax(hmax,h);
|
||||
}
|
||||
}
|
||||
hmin -= params->walkableClimb;
|
||||
hmax += params->walkableClimb;
|
||||
float bmin[3], bmax[3];
|
||||
dtVcopy(bmin, params->bmin);
|
||||
dtVcopy(bmax, params->bmax);
|
||||
bmin[1] = hmin;
|
||||
bmax[1] = hmax;
|
||||
|
||||
for (int i = 0; i < params->offMeshConCount; ++i)
|
||||
{
|
||||
offMeshConClass[i*2+0] = classifyOffMeshPoint(¶ms->offMeshConVerts[(i*2+0)*3], params->bmin, params->bmax);
|
||||
offMeshConClass[i*2+1] = classifyOffMeshPoint(¶ms->offMeshConVerts[(i*2+1)*3], params->bmin, params->bmax);
|
||||
const float* p0 = ¶ms->offMeshConVerts[(i*2+0)*3];
|
||||
const float* p1 = ¶ms->offMeshConVerts[(i*2+1)*3];
|
||||
offMeshConClass[i*2+0] = classifyOffMeshPoint(p0, bmin, bmax);
|
||||
offMeshConClass[i*2+1] = classifyOffMeshPoint(p1, bmin, bmax);
|
||||
|
||||
// Zero out off-mesh start positions which are not even potentially touching the mesh.
|
||||
if (offMeshConClass[i*2+0] == 0xff)
|
||||
{
|
||||
if (p0[1] < bmin[1] || p0[1] > bmax[1])
|
||||
offMeshConClass[i*2+0] = 0;
|
||||
}
|
||||
|
||||
// Cound how many links should be allocated for off-mesh connections.
|
||||
if (offMeshConClass[i*2+0] == 0xff)
|
||||
@@ -298,23 +345,13 @@ bool dtCreateNavMeshData(dtNavMeshCreateParams* params, unsigned char** outData,
|
||||
for (int j = 0; j < nvp; ++j)
|
||||
{
|
||||
if (p[j] == MESH_NULL_IDX) break;
|
||||
int nj = j+1;
|
||||
if (nj >= nvp || p[nj] == MESH_NULL_IDX) nj = 0;
|
||||
const unsigned short* va = ¶ms->verts[p[j]*3];
|
||||
const unsigned short* vb = ¶ms->verts[p[nj]*3];
|
||||
|
||||
edgeCount++;
|
||||
|
||||
if (params->tileSize > 0)
|
||||
if (p[nvp+j] & 0x8000)
|
||||
{
|
||||
if (va[0] == params->tileSize && vb[0] == params->tileSize)
|
||||
portalCount++; // x+
|
||||
else if (va[2] == params->tileSize && vb[2] == params->tileSize)
|
||||
portalCount++; // z+
|
||||
else if (va[0] == 0 && vb[0] == 0)
|
||||
portalCount++; // x-
|
||||
else if (va[2] == 0 && vb[2] == 0)
|
||||
portalCount++; // z-
|
||||
unsigned short dir = p[nvp+j] & 0xf;
|
||||
if (dir != 0xf)
|
||||
portalCount++;
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -323,18 +360,41 @@ bool dtCreateNavMeshData(dtNavMeshCreateParams* params, unsigned char** outData,
|
||||
|
||||
// Find unique detail vertices.
|
||||
int uniqueDetailVertCount = 0;
|
||||
for (int i = 0; i < params->polyCount; ++i)
|
||||
int detailTriCount = 0;
|
||||
if (params->detailMeshes)
|
||||
{
|
||||
const unsigned short* p = ¶ms->polys[i*nvp*2];
|
||||
int ndv = params->detailMeshes[i*4+1];
|
||||
int nv = 0;
|
||||
for (int j = 0; j < nvp; ++j)
|
||||
// Has detail mesh, count unique detail vertex count and use input detail tri count.
|
||||
detailTriCount = params->detailTriCount;
|
||||
for (int i = 0; i < params->polyCount; ++i)
|
||||
{
|
||||
if (p[j] == MESH_NULL_IDX) break;
|
||||
nv++;
|
||||
const unsigned short* p = ¶ms->polys[i*nvp*2];
|
||||
int ndv = params->detailMeshes[i*4+1];
|
||||
int nv = 0;
|
||||
for (int j = 0; j < nvp; ++j)
|
||||
{
|
||||
if (p[j] == MESH_NULL_IDX) break;
|
||||
nv++;
|
||||
}
|
||||
ndv -= nv;
|
||||
uniqueDetailVertCount += ndv;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
// No input detail mesh, build detail mesh from nav polys.
|
||||
uniqueDetailVertCount = 0; // No extra detail verts.
|
||||
detailTriCount = 0;
|
||||
for (int i = 0; i < params->polyCount; ++i)
|
||||
{
|
||||
const unsigned short* p = ¶ms->polys[i*nvp*2];
|
||||
int nv = 0;
|
||||
for (int j = 0; j < nvp; ++j)
|
||||
{
|
||||
if (p[j] == MESH_NULL_IDX) break;
|
||||
nv++;
|
||||
}
|
||||
detailTriCount += nv-2;
|
||||
}
|
||||
ndv -= nv;
|
||||
uniqueDetailVertCount += ndv;
|
||||
}
|
||||
|
||||
// Calculate data size
|
||||
@@ -344,8 +404,8 @@ bool dtCreateNavMeshData(dtNavMeshCreateParams* params, unsigned char** outData,
|
||||
const int linksSize = dtAlign4(sizeof(dtLink)*maxLinkCount);
|
||||
const int detailMeshesSize = dtAlign4(sizeof(dtPolyDetail)*params->polyCount);
|
||||
const int detailVertsSize = dtAlign4(sizeof(float)*3*uniqueDetailVertCount);
|
||||
const int detailTrisSize = dtAlign4(sizeof(unsigned char)*4*params->detailTriCount);
|
||||
const int bvTreeSize = dtAlign4(sizeof(dtBVNode)*params->polyCount*2);
|
||||
const int detailTrisSize = dtAlign4(sizeof(unsigned char)*4*detailTriCount);
|
||||
const int bvTreeSize = params->buildBvTree ? dtAlign4(sizeof(dtBVNode)*params->polyCount*2) : 0;
|
||||
const int offMeshConsSize = dtAlign4(sizeof(dtOffMeshConnection)*storedOffMeshConCount);
|
||||
|
||||
const int dataSize = headerSize + vertsSize + polysSize + linksSize +
|
||||
@@ -377,6 +437,7 @@ bool dtCreateNavMeshData(dtNavMeshCreateParams* params, unsigned char** outData,
|
||||
header->version = DT_NAVMESH_VERSION;
|
||||
header->x = params->tileX;
|
||||
header->y = params->tileY;
|
||||
header->layer = params->tileLayer;
|
||||
header->userId = params->userId;
|
||||
header->polyCount = totPolyCount;
|
||||
header->vertCount = totVertCount;
|
||||
@@ -385,14 +446,14 @@ bool dtCreateNavMeshData(dtNavMeshCreateParams* params, unsigned char** outData,
|
||||
dtVcopy(header->bmax, params->bmax);
|
||||
header->detailMeshCount = params->polyCount;
|
||||
header->detailVertCount = uniqueDetailVertCount;
|
||||
header->detailTriCount = params->detailTriCount;
|
||||
header->detailTriCount = detailTriCount;
|
||||
header->bvQuantFactor = 1.0f / params->cs;
|
||||
header->offMeshBase = params->polyCount;
|
||||
header->walkableHeight = params->walkableHeight;
|
||||
header->walkableRadius = params->walkableRadius;
|
||||
header->walkableClimb = params->walkableClimb;
|
||||
header->offMeshConCount = storedOffMeshConCount;
|
||||
header->bvNodeCount = params->polyCount*2;
|
||||
header->bvNodeCount = params->buildBvTree ? params->polyCount*2 : 0;
|
||||
|
||||
const int offMeshVertsBase = params->vertCount;
|
||||
const int offMeshPolyBase = params->polyCount;
|
||||
@@ -436,7 +497,27 @@ bool dtCreateNavMeshData(dtNavMeshCreateParams* params, unsigned char** outData,
|
||||
{
|
||||
if (src[j] == MESH_NULL_IDX) break;
|
||||
p->verts[j] = src[j];
|
||||
p->neis[j] = (src[nvp+j]+1) & 0xffff;
|
||||
if (src[nvp+j] & 0x8000)
|
||||
{
|
||||
// Border or portal edge.
|
||||
unsigned short dir = src[nvp+j] & 0xf;
|
||||
if (dir == 0xf) // Border
|
||||
p->neis[j] = 0;
|
||||
else if (dir == 0) // Portal x-
|
||||
p->neis[j] = DT_EXT_LINK | 4;
|
||||
else if (dir == 1) // Portal z+
|
||||
p->neis[j] = DT_EXT_LINK | 2;
|
||||
else if (dir == 2) // Portal x+
|
||||
p->neis[j] = DT_EXT_LINK | 0;
|
||||
else if (dir == 3) // Portal z-
|
||||
p->neis[j] = DT_EXT_LINK | 6;
|
||||
}
|
||||
else
|
||||
{
|
||||
// Normal connection
|
||||
p->neis[j] = src[nvp+j]+1;
|
||||
}
|
||||
|
||||
p->vertCount++;
|
||||
}
|
||||
src += nvp*2;
|
||||
@@ -458,61 +539,68 @@ bool dtCreateNavMeshData(dtNavMeshCreateParams* params, unsigned char** outData,
|
||||
n++;
|
||||
}
|
||||
}
|
||||
|
||||
// Store portal edges.
|
||||
if (params->tileSize > 0)
|
||||
{
|
||||
for (int i = 0; i < params->polyCount; ++i)
|
||||
{
|
||||
dtPoly* poly = &navPolys[i];
|
||||
for (int j = 0; j < poly->vertCount; ++j)
|
||||
{
|
||||
int nj = j+1;
|
||||
if (nj >= poly->vertCount) nj = 0;
|
||||
|
||||
const unsigned short* va = ¶ms->verts[poly->verts[j]*3];
|
||||
const unsigned short* vb = ¶ms->verts[poly->verts[nj]*3];
|
||||
|
||||
if (va[0] == params->tileSize && vb[0] == params->tileSize) // x+
|
||||
poly->neis[j] = DT_EXT_LINK | 0;
|
||||
else if (va[2] == params->tileSize && vb[2] == params->tileSize) // z+
|
||||
poly->neis[j] = DT_EXT_LINK | 2;
|
||||
else if (va[0] == 0 && vb[0] == 0) // x-
|
||||
poly->neis[j] = DT_EXT_LINK | 4;
|
||||
else if (va[2] == 0 && vb[2] == 0) // z-
|
||||
poly->neis[j] = DT_EXT_LINK | 6;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Store detail meshes and vertices.
|
||||
// The nav polygon vertices are stored as the first vertices on each mesh.
|
||||
// We compress the mesh data by skipping them and using the navmesh coordinates.
|
||||
unsigned short vbase = 0;
|
||||
for (int i = 0; i < params->polyCount; ++i)
|
||||
if (params->detailMeshes)
|
||||
{
|
||||
dtPolyDetail& dtl = navDMeshes[i];
|
||||
const int vb = (int)params->detailMeshes[i*4+0];
|
||||
const int ndv = (int)params->detailMeshes[i*4+1];
|
||||
const int nv = navPolys[i].vertCount;
|
||||
dtl.vertBase = (unsigned int)vbase;
|
||||
dtl.vertCount = (unsigned char)(ndv-nv);
|
||||
dtl.triBase = (unsigned int)params->detailMeshes[i*4+2];
|
||||
dtl.triCount = (unsigned char)params->detailMeshes[i*4+3];
|
||||
// Copy vertices except the first 'nv' verts which are equal to nav poly verts.
|
||||
if (ndv-nv)
|
||||
unsigned short vbase = 0;
|
||||
for (int i = 0; i < params->polyCount; ++i)
|
||||
{
|
||||
memcpy(&navDVerts[vbase*3], ¶ms->detailVerts[(vb+nv)*3], sizeof(float)*3*(ndv-nv));
|
||||
vbase += (unsigned short)(ndv-nv);
|
||||
dtPolyDetail& dtl = navDMeshes[i];
|
||||
const int vb = (int)params->detailMeshes[i*4+0];
|
||||
const int ndv = (int)params->detailMeshes[i*4+1];
|
||||
const int nv = navPolys[i].vertCount;
|
||||
dtl.vertBase = (unsigned int)vbase;
|
||||
dtl.vertCount = (unsigned char)(ndv-nv);
|
||||
dtl.triBase = (unsigned int)params->detailMeshes[i*4+2];
|
||||
dtl.triCount = (unsigned char)params->detailMeshes[i*4+3];
|
||||
// Copy vertices except the first 'nv' verts which are equal to nav poly verts.
|
||||
if (ndv-nv)
|
||||
{
|
||||
memcpy(&navDVerts[vbase*3], ¶ms->detailVerts[(vb+nv)*3], sizeof(float)*3*(ndv-nv));
|
||||
vbase += (unsigned short)(ndv-nv);
|
||||
}
|
||||
}
|
||||
// Store triangles.
|
||||
memcpy(navDTris, params->detailTris, sizeof(unsigned char)*4*params->detailTriCount);
|
||||
}
|
||||
else
|
||||
{
|
||||
// Create dummy detail mesh by triangulating polys.
|
||||
int tbase = 0;
|
||||
for (int i = 0; i < params->polyCount; ++i)
|
||||
{
|
||||
dtPolyDetail& dtl = navDMeshes[i];
|
||||
const int nv = navPolys[i].vertCount;
|
||||
dtl.vertBase = 0;
|
||||
dtl.vertCount = 0;
|
||||
dtl.triBase = (unsigned int)tbase;
|
||||
dtl.triCount = (unsigned char)(nv-2);
|
||||
// Triangulate polygon (local indices).
|
||||
for (int j = 2; j < nv; ++j)
|
||||
{
|
||||
unsigned char* t = &navDTris[tbase*4];
|
||||
t[0] = 0;
|
||||
t[1] = (unsigned char)(j-1);
|
||||
t[2] = (unsigned char)j;
|
||||
// Bit for each edge that belongs to poly boundary.
|
||||
t[3] = (1<<2);
|
||||
if (j == 2) t[3] |= (1<<0);
|
||||
if (j == nv-1) t[3] |= (1<<4);
|
||||
tbase++;
|
||||
}
|
||||
}
|
||||
}
|
||||
// Store triangles.
|
||||
memcpy(navDTris, params->detailTris, sizeof(unsigned char)*4*params->detailTriCount);
|
||||
|
||||
// Store and create BVtree.
|
||||
// TODO: take detail mesh into account! use byte per bbox extent?
|
||||
createBVTree(params->verts, params->vertCount, params->polys, params->polyCount,
|
||||
nvp, params->cs, params->ch, params->polyCount*2, navBvtree);
|
||||
if (params->buildBvTree)
|
||||
{
|
||||
createBVTree(params->verts, params->vertCount, params->polys, params->polyCount,
|
||||
nvp, params->cs, params->ch, params->polyCount*2, navBvtree);
|
||||
}
|
||||
|
||||
// Store Off-Mesh connections.
|
||||
n = 0;
|
||||
@@ -544,51 +632,14 @@ bool dtCreateNavMeshData(dtNavMeshCreateParams* params, unsigned char** outData,
|
||||
return true;
|
||||
}
|
||||
|
||||
inline void swapByte(unsigned char* a, unsigned char* b)
|
||||
{
|
||||
unsigned char tmp = *a;
|
||||
*a = *b;
|
||||
*b = tmp;
|
||||
}
|
||||
|
||||
inline void swapEndian(unsigned short* v)
|
||||
{
|
||||
unsigned char* x = (unsigned char*)v;
|
||||
swapByte(x+0, x+1);
|
||||
}
|
||||
|
||||
inline void swapEndian(short* v)
|
||||
{
|
||||
unsigned char* x = (unsigned char*)v;
|
||||
swapByte(x+0, x+1);
|
||||
}
|
||||
|
||||
inline void swapEndian(unsigned int* v)
|
||||
{
|
||||
unsigned char* x = (unsigned char*)v;
|
||||
swapByte(x+0, x+3); swapByte(x+1, x+2);
|
||||
}
|
||||
|
||||
inline void swapEndian(int* v)
|
||||
{
|
||||
unsigned char* x = (unsigned char*)v;
|
||||
swapByte(x+0, x+3); swapByte(x+1, x+2);
|
||||
}
|
||||
|
||||
inline void swapEndian(float* v)
|
||||
{
|
||||
unsigned char* x = (unsigned char*)v;
|
||||
swapByte(x+0, x+3); swapByte(x+1, x+2);
|
||||
}
|
||||
|
||||
bool dtNavMeshHeaderSwapEndian(unsigned char* data, const int /*dataSize*/)
|
||||
{
|
||||
dtMeshHeader* header = (dtMeshHeader*)data;
|
||||
|
||||
int swappedMagic = DT_NAVMESH_MAGIC;
|
||||
int swappedVersion = DT_NAVMESH_VERSION;
|
||||
swapEndian(&swappedMagic);
|
||||
swapEndian(&swappedVersion);
|
||||
dtSwapEndian(&swappedMagic);
|
||||
dtSwapEndian(&swappedVersion);
|
||||
|
||||
if ((header->magic != DT_NAVMESH_MAGIC || header->version != DT_NAVMESH_VERSION) &&
|
||||
(header->magic != swappedMagic || header->version != swappedVersion))
|
||||
@@ -596,36 +647,43 @@ bool dtNavMeshHeaderSwapEndian(unsigned char* data, const int /*dataSize*/)
|
||||
return false;
|
||||
}
|
||||
|
||||
swapEndian(&header->magic);
|
||||
swapEndian(&header->version);
|
||||
swapEndian(&header->x);
|
||||
swapEndian(&header->y);
|
||||
swapEndian(&header->userId);
|
||||
swapEndian(&header->polyCount);
|
||||
swapEndian(&header->vertCount);
|
||||
swapEndian(&header->maxLinkCount);
|
||||
swapEndian(&header->detailMeshCount);
|
||||
swapEndian(&header->detailVertCount);
|
||||
swapEndian(&header->detailTriCount);
|
||||
swapEndian(&header->bvNodeCount);
|
||||
swapEndian(&header->offMeshConCount);
|
||||
swapEndian(&header->offMeshBase);
|
||||
swapEndian(&header->walkableHeight);
|
||||
swapEndian(&header->walkableRadius);
|
||||
swapEndian(&header->walkableClimb);
|
||||
swapEndian(&header->bmin[0]);
|
||||
swapEndian(&header->bmin[1]);
|
||||
swapEndian(&header->bmin[2]);
|
||||
swapEndian(&header->bmax[0]);
|
||||
swapEndian(&header->bmax[1]);
|
||||
swapEndian(&header->bmax[2]);
|
||||
swapEndian(&header->bvQuantFactor);
|
||||
dtSwapEndian(&header->magic);
|
||||
dtSwapEndian(&header->version);
|
||||
dtSwapEndian(&header->x);
|
||||
dtSwapEndian(&header->y);
|
||||
dtSwapEndian(&header->layer);
|
||||
dtSwapEndian(&header->userId);
|
||||
dtSwapEndian(&header->polyCount);
|
||||
dtSwapEndian(&header->vertCount);
|
||||
dtSwapEndian(&header->maxLinkCount);
|
||||
dtSwapEndian(&header->detailMeshCount);
|
||||
dtSwapEndian(&header->detailVertCount);
|
||||
dtSwapEndian(&header->detailTriCount);
|
||||
dtSwapEndian(&header->bvNodeCount);
|
||||
dtSwapEndian(&header->offMeshConCount);
|
||||
dtSwapEndian(&header->offMeshBase);
|
||||
dtSwapEndian(&header->walkableHeight);
|
||||
dtSwapEndian(&header->walkableRadius);
|
||||
dtSwapEndian(&header->walkableClimb);
|
||||
dtSwapEndian(&header->bmin[0]);
|
||||
dtSwapEndian(&header->bmin[1]);
|
||||
dtSwapEndian(&header->bmin[2]);
|
||||
dtSwapEndian(&header->bmax[0]);
|
||||
dtSwapEndian(&header->bmax[1]);
|
||||
dtSwapEndian(&header->bmax[2]);
|
||||
dtSwapEndian(&header->bvQuantFactor);
|
||||
|
||||
// Freelist index and pointers are updated when tile is added, no need to swap.
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/// @par
|
||||
///
|
||||
/// @warning This function assumes that the header is in the correct endianess already.
|
||||
/// Call #dtNavMeshHeaderSwapEndian() first on the data if the data is expected to be in wrong endianess
|
||||
/// to start with. Call #dtNavMeshHeaderSwapEndian() after the data has been swapped if converting from
|
||||
/// native to foreign endianess.
|
||||
bool dtNavMeshDataSwapEndian(unsigned char* data, const int /*dataSize*/)
|
||||
{
|
||||
// Make sure the data is in right format.
|
||||
@@ -659,7 +717,7 @@ bool dtNavMeshDataSwapEndian(unsigned char* data, const int /*dataSize*/)
|
||||
// Vertices
|
||||
for (int i = 0; i < header->vertCount*3; ++i)
|
||||
{
|
||||
swapEndian(&verts[i]);
|
||||
dtSwapEndian(&verts[i]);
|
||||
}
|
||||
|
||||
// Polys
|
||||
@@ -669,10 +727,10 @@ bool dtNavMeshDataSwapEndian(unsigned char* data, const int /*dataSize*/)
|
||||
// poly->firstLink is update when tile is added, no need to swap.
|
||||
for (int j = 0; j < DT_VERTS_PER_POLYGON; ++j)
|
||||
{
|
||||
swapEndian(&p->verts[j]);
|
||||
swapEndian(&p->neis[j]);
|
||||
dtSwapEndian(&p->verts[j]);
|
||||
dtSwapEndian(&p->neis[j]);
|
||||
}
|
||||
swapEndian(&p->flags);
|
||||
dtSwapEndian(&p->flags);
|
||||
}
|
||||
|
||||
// Links are rebuild when tile is added, no need to swap.
|
||||
@@ -681,14 +739,14 @@ bool dtNavMeshDataSwapEndian(unsigned char* data, const int /*dataSize*/)
|
||||
for (int i = 0; i < header->detailMeshCount; ++i)
|
||||
{
|
||||
dtPolyDetail* pd = &detailMeshes[i];
|
||||
swapEndian(&pd->vertBase);
|
||||
swapEndian(&pd->triBase);
|
||||
dtSwapEndian(&pd->vertBase);
|
||||
dtSwapEndian(&pd->triBase);
|
||||
}
|
||||
|
||||
// Detail verts
|
||||
for (int i = 0; i < header->detailVertCount*3; ++i)
|
||||
{
|
||||
swapEndian(&detailVerts[i]);
|
||||
dtSwapEndian(&detailVerts[i]);
|
||||
}
|
||||
|
||||
// BV-tree
|
||||
@@ -697,10 +755,10 @@ bool dtNavMeshDataSwapEndian(unsigned char* data, const int /*dataSize*/)
|
||||
dtBVNode* node = &bvTree[i];
|
||||
for (int j = 0; j < 3; ++j)
|
||||
{
|
||||
swapEndian(&node->bmin[j]);
|
||||
swapEndian(&node->bmax[j]);
|
||||
dtSwapEndian(&node->bmin[j]);
|
||||
dtSwapEndian(&node->bmax[j]);
|
||||
}
|
||||
swapEndian(&node->i);
|
||||
dtSwapEndian(&node->i);
|
||||
}
|
||||
|
||||
// Off-mesh Connections.
|
||||
@@ -708,9 +766,9 @@ bool dtNavMeshDataSwapEndian(unsigned char* data, const int /*dataSize*/)
|
||||
{
|
||||
dtOffMeshConnection* con = &offMeshCons[i];
|
||||
for (int j = 0; j < 6; ++j)
|
||||
swapEndian(&con->pos[j]);
|
||||
swapEndian(&con->rad);
|
||||
swapEndian(&con->poly);
|
||||
dtSwapEndian(&con->pos[j]);
|
||||
dtSwapEndian(&con->rad);
|
||||
dtSwapEndian(&con->poly);
|
||||
}
|
||||
|
||||
return true;
|
||||
|
||||
@@ -21,57 +21,128 @@
|
||||
|
||||
#include "DetourAlloc.h"
|
||||
|
||||
|
||||
// The units of the parameters are specified in parenthesis as follows:
|
||||
// (vx) voxels, (wu) world units
|
||||
/// Represents the source data used to build an navigation mesh tile.
|
||||
/// @ingroup detour
|
||||
struct dtNavMeshCreateParams
|
||||
{
|
||||
// Navmesh vertices.
|
||||
const unsigned short* verts; // Array of vertices, each vertex has 3 components. (vx).
|
||||
int vertCount; // Vertex count
|
||||
// Navmesh polygons
|
||||
const unsigned short* polys; // Array of polygons, uses same format as rcPolyMesh.
|
||||
const unsigned short* polyFlags; // Array of flags per polygon.
|
||||
const unsigned char* polyAreas; // Array of area ids per polygon.
|
||||
int polyCount; // Number of polygons
|
||||
int nvp; // Number of verts per polygon.
|
||||
// Navmesh Detail
|
||||
const unsigned int* detailMeshes; // Detail meshes, uses same format as rcPolyMeshDetail.
|
||||
const float* detailVerts; // Detail mesh vertices, uses same format as rcPolyMeshDetail (wu).
|
||||
int detailVertsCount; // Total number of detail vertices
|
||||
const unsigned char* detailTris; // Array of detail tris per detail mesh.
|
||||
int detailTriCount; // Total number of detail triangles.
|
||||
// Off-Mesh Connections.
|
||||
const float* offMeshConVerts; // Off-mesh connection vertices (wu).
|
||||
const float* offMeshConRad; // Off-mesh connection radii (wu).
|
||||
const unsigned short* offMeshConFlags; // Off-mesh connection flags.
|
||||
const unsigned char* offMeshConAreas; // Off-mesh connection area ids.
|
||||
const unsigned char* offMeshConDir; // Off-mesh connection direction flags (1 = bidir, 0 = oneway).
|
||||
const unsigned int* offMeshConUserID; // Off-mesh connection user id (optional).
|
||||
int offMeshConCount; // Number of off-mesh connections
|
||||
// Tile location
|
||||
unsigned int userId; // User ID bound to the tile.
|
||||
int tileX, tileY; // Tile location (tile coords).
|
||||
float bmin[3], bmax[3]; // Tile bounds (wu).
|
||||
// Settings
|
||||
float walkableHeight; // Agent height (wu).
|
||||
float walkableRadius; // Agent radius (wu).
|
||||
float walkableClimb; // Agent max climb (wu).
|
||||
float cs; // Cell size (xz) (wu).
|
||||
float ch; // Cell height (y) (wu).
|
||||
int tileSize; // Tile size (width & height) (vx).
|
||||
|
||||
/// @name Polygon Mesh Attributes
|
||||
/// Used to create the base navigation graph.
|
||||
/// See #rcPolyMesh for details related to these attributes.
|
||||
/// @{
|
||||
|
||||
const unsigned short* verts; ///< The polygon mesh vertices. [(x, y, z) * #vertCount] [Unit: vx]
|
||||
int vertCount; ///< The number vertices in the polygon mesh. [Limit: >= 3]
|
||||
const unsigned short* polys; ///< The polygon data. [Size: #polyCount * 2 * #nvp]
|
||||
const unsigned short* polyFlags; ///< The user defined flags assigned to each polygon. [Size: #polyCount]
|
||||
const unsigned char* polyAreas; ///< The user defined area ids assigned to each polygon. [Size: #polyCount]
|
||||
int polyCount; ///< Number of polygons in the mesh. [Limit: >= 1]
|
||||
int nvp; ///< Number maximum number of vertices per polygon. [Limit: >= 3]
|
||||
|
||||
/// @}
|
||||
/// @name Height Detail Attributes (Optional)
|
||||
/// See #rcPolyMeshDetail for details related to these attributes.
|
||||
/// @{
|
||||
|
||||
const unsigned int* detailMeshes; ///< The height detail sub-mesh data. [Size: 4 * #polyCount]
|
||||
const float* detailVerts; ///< The detail mesh vertices. [Size: 3 * #detailVertsCount] [Unit: wu]
|
||||
int detailVertsCount; ///< The number of vertices in the detail mesh.
|
||||
const unsigned char* detailTris; ///< The detail mesh triangles. [Size: 4 * #detailTriCount]
|
||||
int detailTriCount; ///< The number of triangles in the detail mesh.
|
||||
|
||||
/// @}
|
||||
/// @name Off-Mesh Connections Attributes (Optional)
|
||||
/// Used to define a custom point-to-point edge within the navigation graph, an
|
||||
/// off-mesh connection is a user defined traversable connection made up to two vertices,
|
||||
/// at least one of which resides within a navigation mesh polygon.
|
||||
/// @{
|
||||
|
||||
/// Off-mesh connection vertices. [(ax, ay, az, bx, by, bz) * #offMeshConCount] [Unit: wu]
|
||||
const float* offMeshConVerts;
|
||||
/// Off-mesh connection radii. [Size: #offMeshConCount] [Unit: wu]
|
||||
const float* offMeshConRad;
|
||||
/// User defined flags assigned to the off-mesh connections. [Size: #offMeshConCount]
|
||||
const unsigned short* offMeshConFlags;
|
||||
/// User defined area ids assigned to the off-mesh connections. [Size: #offMeshConCount]
|
||||
const unsigned char* offMeshConAreas;
|
||||
/// The permitted travel direction of the off-mesh connections. [Size: #offMeshConCount]
|
||||
///
|
||||
/// 0 = Travel only from endpoint A to endpoint B.<br/>
|
||||
/// #DT_OFFMESH_CON_BIDIR = Bidirectional travel.
|
||||
const unsigned char* offMeshConDir;
|
||||
/// The user defined ids of the off-mesh connection. [Size: #offMeshConCount]
|
||||
const unsigned int* offMeshConUserID;
|
||||
/// The number of off-mesh connections. [Limit: >= 0]
|
||||
int offMeshConCount;
|
||||
|
||||
/// @}
|
||||
/// @name Tile Attributes
|
||||
/// @note The tile grid/layer data can be left at zero if the destination is a single tile mesh.
|
||||
/// @{
|
||||
|
||||
unsigned int userId; ///< The user defined id of the tile.
|
||||
int tileX; ///< The tile's x-grid location within the multi-tile destination mesh. (Along the x-axis.)
|
||||
int tileY; ///< The tile's y-grid location within the multi-tile desitation mesh. (Along the z-axis.)
|
||||
int tileLayer; ///< The tile's layer within the layered destination mesh. [Limit: >= 0] (Along the y-axis.)
|
||||
float bmin[3]; ///< The minimum bounds of the tile. [(x, y, z)] [Unit: wu]
|
||||
float bmax[3]; ///< The maximum bounds of the tile. [(x, y, z)] [Unit: wu]
|
||||
|
||||
/// @}
|
||||
/// @name General Configuration Attributes
|
||||
/// @{
|
||||
|
||||
float walkableHeight; ///< The agent height. [Unit: wu]
|
||||
float walkableRadius; ///< The agent radius. [Unit: wu]
|
||||
float walkableClimb; ///< The agent maximum traversable ledge. (Up/Down) [Unit: wu]
|
||||
float cs; ///< The xz-plane cell size of the polygon mesh. [Limit: > 0] [Unit: wu]
|
||||
float ch; ///< The y-axis cell height of the polygon mesh. [Limit: > 0] [Unit: wu]
|
||||
|
||||
/// True if a bounding volume tree should be built for the tile.
|
||||
/// @note The BVTree is not normally needed for layered navigation meshes.
|
||||
bool buildBvTree;
|
||||
|
||||
/// @}
|
||||
};
|
||||
|
||||
// Build navmesh data from given input data.
|
||||
/// Builds navigation mesh tile data from the provided tile creation data.
|
||||
/// @ingroup detour
|
||||
/// @param[in] params Tile creation data.
|
||||
/// @param[out] outData The resulting tile data.
|
||||
/// @param[out] outDataSize The size of the tile data array.
|
||||
/// @return True if the tile data was successfully created.
|
||||
bool dtCreateNavMeshData(dtNavMeshCreateParams* params, unsigned char** outData, int* outDataSize);
|
||||
|
||||
// Swaps endianess of navmesh header.
|
||||
/// Swaps the endianess of the tile data's header (#dtMeshHeader).
|
||||
/// @param[in,out] data The tile data array.
|
||||
/// @param[in] dataSize The size of the data array.
|
||||
bool dtNavMeshHeaderSwapEndian(unsigned char* data, const int dataSize);
|
||||
|
||||
// Swaps endianess of the navmesh data. This function assumes that the header is in correct
|
||||
// endianess already. Call dtNavMeshHeaderSwapEndian() first on the data if the data is
|
||||
// assumed to be in wrong endianess to start with. If converting from native endianess to foreign,
|
||||
// call dtNavMeshHeaderSwapEndian() after the data has been swapped.
|
||||
/// Swaps endianess of the tile data.
|
||||
/// @param[in,out] data The tile data array.
|
||||
/// @param[in] dataSize The size of the data array.
|
||||
bool dtNavMeshDataSwapEndian(unsigned char* data, const int dataSize);
|
||||
|
||||
#endif // DETOURNAVMESHBUILDER_H
|
||||
|
||||
// This section contains detailed documentation for members that don't have
|
||||
// a source file. It reduces clutter in the main section of the header.
|
||||
|
||||
/**
|
||||
|
||||
@struct dtNavMeshCreateParams
|
||||
@par
|
||||
|
||||
This structure is used to marshal data between the Recast mesh generation pipeline and Detour navigation components.
|
||||
|
||||
See the rcPolyMesh and rcPolyMeshDetail documentation for detailed information related to mesh structure.
|
||||
|
||||
Units are usually in voxels (vx) or world units (wu). The units for voxels, grid size, and cell size
|
||||
are all based on the values of #cs and #ch.
|
||||
|
||||
The standard navigation mesh build process is to create tile data using dtCreateNavMeshData, then add the tile
|
||||
to a navigation mesh using either the dtNavMesh single tile <tt>init()</tt> function or the dtNavMesh::addTile()
|
||||
function.
|
||||
|
||||
@see dtCreateNavMeshData
|
||||
|
||||
*/
|
||||
File diff suppressed because it is too large
Load Diff
@@ -20,39 +20,31 @@
|
||||
#define DETOURNAVMESHQUERY_H
|
||||
|
||||
#include "DetourNavMesh.h"
|
||||
#include "DetourStatus.h"
|
||||
|
||||
|
||||
// Define DT_VIRTUAL_QUERYFILTER if you wish to derive a custom filter from dtQueryFilter.
|
||||
// On certain platforms indirect or virtual function call is expensive. The default
|
||||
// setting is to use non-virtual functions, the actualy implementations of the functions
|
||||
// setting is to use non-virtual functions, the actual implementations of the functions
|
||||
// are declared as inline for maximum speed.
|
||||
|
||||
//#define DT_VIRTUAL_QUERYFILTER 1
|
||||
|
||||
// Class for polygon filtering and cost calculation during query operations.
|
||||
// - It is possible to derive a custom query filter from dtQueryFilter by overriding
|
||||
// the virtual functions passFilter() and getCost().
|
||||
// - Both functions should be as fast as possible. Use cached local copy of data
|
||||
// instead of accessing your own objects where possible.
|
||||
// - You do not need to adhere to the flags and cost logic provided by the default
|
||||
// implementation.
|
||||
// - In order for the A* to work properly, the cost should be proportional to
|
||||
// the travel distance. Using cost modifier less than 1.0 is likely to lead
|
||||
// to problems during pathfinding.
|
||||
/// Defines polygon filtering and traversal costs for navigation mesh query operations.
|
||||
/// @ingroup detour
|
||||
class dtQueryFilter
|
||||
{
|
||||
float m_areaCost[DT_MAX_AREAS]; // Array storing cost per area type, used by default implementation.
|
||||
unsigned short m_includeFlags; // Include poly flags, used by default implementation.
|
||||
unsigned short m_excludeFlags; // Exclude poly flags, used by default implementation.
|
||||
float m_areaCost[DT_MAX_AREAS]; ///< Cost per area type. (Used by default implementation.)
|
||||
unsigned short m_includeFlags; ///< Flags for polygons that can be visited. (Used by default implementation.)
|
||||
unsigned short m_excludeFlags; ///< Flags for polygons that should not be visted. (Used by default implementation.)
|
||||
|
||||
public:
|
||||
dtQueryFilter();
|
||||
|
||||
// Returns true if the polygon is can visited.
|
||||
// Params:
|
||||
// ref - (in) reference to the polygon test.
|
||||
// tile - (in) pointer to the tile of the polygon test.
|
||||
// poly - (in) pointer to the polygon test.
|
||||
/// Returns true if the polygon can be visited. (I.e. Is traversable.)
|
||||
/// @param[in] ref The reference id of the polygon test.
|
||||
/// @param[in] tile The tile containing the polygon.
|
||||
/// @param[in] poly The polygon to test.
|
||||
#ifdef DT_VIRTUAL_QUERYFILTER
|
||||
virtual bool passFilter(const dtPolyRef ref,
|
||||
const dtMeshTile* tile,
|
||||
@@ -63,16 +55,19 @@ public:
|
||||
const dtPoly* poly) const;
|
||||
#endif
|
||||
|
||||
// Returns cost to travel from 'pa' to 'pb'.'
|
||||
// The segment is fully contained inside 'cur'.
|
||||
// 'pa' lies on the edge between 'prev' and 'cur',
|
||||
// 'pb' lies on the edge between 'cur' and 'next'.
|
||||
// Params:
|
||||
// pa - (in) segment start position.
|
||||
// pb - (in) segment end position.
|
||||
// prevRef, prevTile, prevPoly - (in) data describing the previous polygon, can be null.
|
||||
// curRef, curTile, curPoly - (in) data describing the current polygon.
|
||||
// nextRef, nextTile, nextPoly - (in) data describing the next polygon, can be null.
|
||||
/// Returns cost to move from the beginning to the end of a line segment
|
||||
/// that is fully contained within a polygon.
|
||||
/// @param[in] pa The start position on the edge of the previous and current polygon. [(x, y, z)]
|
||||
/// @param[in] pb The end position on the edge of the current and next polygon. [(x, y, z)]
|
||||
/// @param[in] prevRef The reference id of the previous polygon. [opt]
|
||||
/// @param[in] prevTile The tile containing the previous polygon. [opt]
|
||||
/// @param[in] prevPoly The previous polygon. [opt]
|
||||
/// @param[in] curRef The reference id of the current polygon.
|
||||
/// @param[in] curTile The tile containing the current polygon.
|
||||
/// @param[in] curPoly The current polygon.
|
||||
/// @param[in] nextRef The refernece id of the next polygon. [opt]
|
||||
/// @param[in] nextTile The tile containing the next polygon. [opt]
|
||||
/// @param[in] nextPoly The next polygon. [opt]
|
||||
#ifdef DT_VIRTUAL_QUERYFILTER
|
||||
virtual float getCost(const float* pa, const float* pb,
|
||||
const dtPolyRef prevRef, const dtMeshTile* prevTile, const dtPoly* prevPoly,
|
||||
@@ -84,305 +79,385 @@ public:
|
||||
const dtPolyRef curRef, const dtMeshTile* curTile, const dtPoly* curPoly,
|
||||
const dtPolyRef nextRef, const dtMeshTile* nextTile, const dtPoly* nextPoly) const;
|
||||
#endif
|
||||
|
||||
// Getters and setters for the default implementation data.
|
||||
|
||||
/// @name Getters and setters for the default implementation data.
|
||||
///@{
|
||||
|
||||
/// Returns the traversal cost of the area.
|
||||
/// @param[in] i The id of the area.
|
||||
/// @returns The traversal cost of the area.
|
||||
inline float getAreaCost(const int i) const { return m_areaCost[i]; }
|
||||
|
||||
/// Sets the traversal cost of the area.
|
||||
/// @param[in] i The id of the area.
|
||||
/// @param[in] cost The new cost of traversing the area.
|
||||
inline void setAreaCost(const int i, const float cost) { m_areaCost[i] = cost; }
|
||||
|
||||
/// Returns the include flags for the filter.
|
||||
/// Any polygons that include one or more of these flags will be
|
||||
/// included in the operation.
|
||||
inline unsigned short getIncludeFlags() const { return m_includeFlags; }
|
||||
|
||||
/// Sets the include flags for the filter.
|
||||
/// @param[in] flags The new flags.
|
||||
inline void setIncludeFlags(const unsigned short flags) { m_includeFlags = flags; }
|
||||
|
||||
/// Returns the exclude flags for the filter.
|
||||
/// Any polygons that include one ore more of these flags will be
|
||||
/// excluded from the operation.
|
||||
inline unsigned short getExcludeFlags() const { return m_excludeFlags; }
|
||||
|
||||
/// Sets the exclude flags for the filter.
|
||||
/// @param[in] flags The new flags.
|
||||
inline void setExcludeFlags(const unsigned short flags) { m_excludeFlags = flags; }
|
||||
|
||||
///@}
|
||||
|
||||
};
|
||||
|
||||
/// Provides the ability to perform pathfinding related queries against
|
||||
/// a navigation mesh.
|
||||
/// @ingroup detour
|
||||
class dtNavMeshQuery
|
||||
{
|
||||
public:
|
||||
dtNavMeshQuery();
|
||||
~dtNavMeshQuery();
|
||||
|
||||
// Initializes the nav mesh query.
|
||||
// Params:
|
||||
// nav - (in) pointer to navigation mesh data.
|
||||
// maxNodes - (in) Maximum number of search nodes to use (max 65536).
|
||||
// Returns: True if succeed, else false.
|
||||
/// Initializes the query object.
|
||||
/// @param[in] nav Pointer to the dtNavMesh object to use for all queries.
|
||||
/// @param[in] maxNodes Maximum number of search nodes. [Limits: 0 < value <= 65536]
|
||||
/// @returns The status flags for the query.
|
||||
dtStatus init(const dtNavMesh* nav, const int maxNodes);
|
||||
|
||||
// Finds the nearest navigation polygon around the center location.
|
||||
// Params:
|
||||
// center[3] - (in) The center of the search box.
|
||||
// extents[3] - (in) The extents of the search box.
|
||||
// filter - (in) path polygon filter.
|
||||
// nearestRef - (out) Reference to the nearest polygon.
|
||||
// nearestPt[3] - (out, opt) The nearest point on found polygon, null if not needed.
|
||||
// Returns: Reference identifier for the polygon, or 0 if no polygons found.
|
||||
dtStatus findNearestPoly(const float* center, const float* extents,
|
||||
const dtQueryFilter* filter,
|
||||
dtPolyRef* nearestRef, float* nearestPt) const;
|
||||
|
||||
// Returns polygons which overlap the query box.
|
||||
// Params:
|
||||
// center[3] - (in) the center of the search box.
|
||||
// extents[3] - (in) the extents of the search box.
|
||||
// filter - (in) path polygon filter.
|
||||
// polys - (out) array holding the search result.
|
||||
// polyCount - (out) Number of polygons in search result array.
|
||||
// maxPolys - (in) The max number of polygons the polys array can hold.
|
||||
dtStatus queryPolygons(const float* center, const float* extents,
|
||||
const dtQueryFilter* filter,
|
||||
dtPolyRef* polys, int* polyCount, const int maxPolys) const;
|
||||
|
||||
// Finds path from start polygon to end polygon.
|
||||
// If target polygon canno be reached through the navigation graph,
|
||||
// the last node on the array is nearest node to the end polygon.
|
||||
// Start end end positions are needed to calculate more accurate
|
||||
// traversal cost at start end end polygons.
|
||||
// Params:
|
||||
// startRef - (in) ref to path start polygon.
|
||||
// endRef - (in) ref to path end polygon.
|
||||
// startPos[3] - (in) Path start location.
|
||||
// endPos[3] - (in) Path end location.
|
||||
// filter - (in) path polygon filter.
|
||||
// path - (out) array holding the search result.
|
||||
// pathCount - (out) Number of polygons in search result array.
|
||||
// maxPath - (in) The max number of polygons the path array can hold. Must be at least 1.
|
||||
/// @name Standard Pathfinding Functions
|
||||
// /@{
|
||||
|
||||
/// Finds a path from the start polygon to the end polygon.
|
||||
/// @param[in] startRef The refrence id of the start polygon.
|
||||
/// @param[in] endRef The reference id of the end polygon.
|
||||
/// @param[in] startPos A position within the start polygon. [(x, y, z)]
|
||||
/// @param[in] endPos A position within the end polygon. [(x, y, z)]
|
||||
/// @param[in] filter The polygon filter to apply to the query.
|
||||
/// @param[out] path An ordered list of polygon references representing the path. (Start to end.)
|
||||
/// [(polyRef) * @p pathCount]
|
||||
/// @param[out] pathCount The number of polygons returned in the @p path array.
|
||||
/// @param[in] maxPath The maximum number of polygons the @p path array can hold. [Limit: >= 1]
|
||||
dtStatus findPath(dtPolyRef startRef, dtPolyRef endRef,
|
||||
const float* startPos, const float* endPos,
|
||||
const dtQueryFilter* filter,
|
||||
dtPolyRef* path, int* pathCount, const int maxPath) const;
|
||||
|
||||
// Intializes sliced path find query.
|
||||
// Note 1: calling any other dtNavMeshQuery method before calling findPathEnd()
|
||||
// may results in corrupted data!
|
||||
// Note 2: The pointer to filter is store, and used in subsequent
|
||||
// calls to updateSlicedFindPath().
|
||||
// Params:
|
||||
// startRef - (in) ref to path start polygon.
|
||||
// endRef - (in) ref to path end polygon.
|
||||
// startPos[3] - (in) Path start location.
|
||||
// endPos[3] - (in) Path end location.
|
||||
// filter - (in) path polygon filter.
|
||||
/// Finds the straight path from the start to the end position within the polygon corridor.
|
||||
/// @param[in] startPos Path start position. [(x, y, z)]
|
||||
/// @param[in] endPos Path end position. [(x, y, z)]
|
||||
/// @param[in] path An array of polygon references that represent the path corridor.
|
||||
/// @param[in] pathSize The number of polygons in the @p path array.
|
||||
/// @param[out] straightPath Points describing the straight path. [(x, y, z) * @p straightPathCount].
|
||||
/// @param[out] straightPathFlags Flags describing each point. (See: #dtStraightPathFlags) [opt]
|
||||
/// @param[out] straightPathRefs The reference id of the polygon that is being entered at each point. [opt]
|
||||
/// @param[out] straightPathCount The number of points in the straight path.
|
||||
/// @param[in] maxStraightPath The maximum number of points the straight path arrays can hold. [Limit: > 0]
|
||||
/// @param[in] options Query options. (see: #dtStraightPathOptions)
|
||||
/// @returns The status flags for the query.
|
||||
dtStatus findStraightPath(const float* startPos, const float* endPos,
|
||||
const dtPolyRef* path, const int pathSize,
|
||||
float* straightPath, unsigned char* straightPathFlags, dtPolyRef* straightPathRefs,
|
||||
int* straightPathCount, const int maxStraightPath, const int options = 0) const;
|
||||
|
||||
///@}
|
||||
/// @name Sliced Pathfinding Functions
|
||||
/// Common use case:
|
||||
/// -# Call initSlicedFindPath() to initialize the sliced path query.
|
||||
/// -# Call updateSlicedFindPath() until it returns complete.
|
||||
/// -# Call finalizeSlicedFindPath() to get the path.
|
||||
///@{
|
||||
|
||||
/// Intializes a sliced path query.
|
||||
/// @param[in] startRef The refrence id of the start polygon.
|
||||
/// @param[in] endRef The reference id of the end polygon.
|
||||
/// @param[in] startPos A position within the start polygon. [(x, y, z)]
|
||||
/// @param[in] endPos A position within the end polygon. [(x, y, z)]
|
||||
/// @param[in] filter The polygon filter to apply to the query.
|
||||
/// @returns The status flags for the query.
|
||||
dtStatus initSlicedFindPath(dtPolyRef startRef, dtPolyRef endRef,
|
||||
const float* startPos, const float* endPos,
|
||||
const dtQueryFilter* filter);
|
||||
|
||||
// Updates sliced path find query.
|
||||
// Params:
|
||||
// maxIter - (in) max number of iterations to update.
|
||||
// Returns: Path query state.
|
||||
dtStatus updateSlicedFindPath(const int maxIter);
|
||||
/// Updates an in-progress sliced path query.
|
||||
/// @param[in] maxIter The maximum number of iterations to perform.
|
||||
/// @param[out] doneIters The actual number of iterations completed. [opt]
|
||||
/// @returns The status flags for the query.
|
||||
dtStatus updateSlicedFindPath(const int maxIter, int* doneIters);
|
||||
|
||||
// Finalizes sliced path find query and returns found path.
|
||||
// path - (out) array holding the search result.
|
||||
// pathCount - (out) Number of polygons in search result array.
|
||||
// maxPath - (in) The max number of polygons the path array can hold.
|
||||
/// Finalizes and returns the results of a sliced path query.
|
||||
/// @param[out] path An ordered list of polygon references representing the path. (Start to end.)
|
||||
/// [(polyRef) * @p pathCount]
|
||||
/// @param[out] pathCount The number of polygons returned in the @p path array.
|
||||
/// @param[in] maxPath The max number of polygons the path array can hold. [Limit: >= 1]
|
||||
/// @returns The status flags for the query.
|
||||
dtStatus finalizeSlicedFindPath(dtPolyRef* path, int* pathCount, const int maxPath);
|
||||
|
||||
// Finalizes partial sliced path find query and returns path to the furthest
|
||||
// polygon on the existing path that was visited during the search.
|
||||
// existing - (out) Array of polygons in the existing path.
|
||||
// existingSize - (out) Number of polygons in existing path array.
|
||||
// path - (out) array holding the search result.
|
||||
// pathCount - (out) Number of polygons in search result array.
|
||||
// maxPath - (in) The max number of polygons the path array can hold.
|
||||
/// Finalizes and returns the results of an incomplete sliced path query, returning the path to the furthest
|
||||
/// polygon on the existing path that was visited during the search.
|
||||
/// @param[out] existing An array of polygon references for the existing path.
|
||||
/// @param[out] existingSize The number of polygon in the @p existing array.
|
||||
/// @param[out] path An ordered list of polygon references representing the path. (Start to end.)
|
||||
/// [(polyRef) * @p pathCount]
|
||||
/// @param[out] pathCount The number of polygons returned in the @p path array.
|
||||
/// @param[in] maxPath The max number of polygons the @p path array can hold. [Limit: >= 1]
|
||||
/// @returns The status flags for the query.
|
||||
dtStatus finalizeSlicedFindPathPartial(const dtPolyRef* existing, const int existingSize,
|
||||
dtPolyRef* path, int* pathCount, const int maxPath);
|
||||
|
||||
// Finds a straight path from start to end locations within the corridor
|
||||
// described by the path polygons.
|
||||
// Start and end locations will be clamped on the corridor.
|
||||
// The returned polygon references are point to polygon which was entered when
|
||||
// a path point was added. For the end point, zero will be returned. This allows
|
||||
// to match for example off-mesh link points to their representative polygons.
|
||||
// Params:
|
||||
// startPos[3] - (in) Path start location.
|
||||
// endPo[3] - (in) Path end location.
|
||||
// path - (in) Array of connected polygons describing the corridor.
|
||||
// pathSize - (in) Number of polygons in path array.
|
||||
// straightPath - (out) Points describing the straight path.
|
||||
// straightPathFlags - (out, opt) Flags describing each point type, see dtStraightPathFlags.
|
||||
// straightPathRefs - (out, opt) References to polygons at point locations.
|
||||
// straightPathCount - (out) Number of points in the path.
|
||||
// maxStraightPath - (in) The max number of points the straight path array can hold. Must be at least 1.
|
||||
dtStatus findStraightPath(const float* startPos, const float* endPos,
|
||||
const dtPolyRef* path, const int pathSize,
|
||||
float* straightPath, unsigned char* straightPathFlags, dtPolyRef* straightPathRefs,
|
||||
int* straightPathCount, const int maxStraightPath) const;
|
||||
|
||||
// Moves from startPos to endPos constrained to the navmesh.
|
||||
// If the endPos is reachable, the resultPos will be endPos,
|
||||
// or else the resultPos will be the nearest point in navmesh.
|
||||
// Note: The resulting point is not projected to the ground, use getPolyHeight() to get height.
|
||||
// Note: The algorithm is optimized for small delta movement and small number of polygons.
|
||||
// Params:
|
||||
// startRef - (in) ref to the polygon where startPos lies.
|
||||
// startPos[3] - (in) start position of the mover.
|
||||
// endPos[3] - (in) desired end position of the mover.
|
||||
// filter - (in) path polygon filter.
|
||||
// resultPos[3] - (out) new position of the mover.
|
||||
// visited - (out) array of visited polygons.
|
||||
// visitedCount - (out) Number of entries in the visited array.
|
||||
// maxVisitedSize - (in) max number of polygons in the visited array.
|
||||
dtStatus moveAlongSurface(dtPolyRef startRef, const float* startPos, const float* endPos,
|
||||
const dtQueryFilter* filter,
|
||||
float* resultPos, dtPolyRef* visited, int* visitedCount, const int maxVisitedSize) const;
|
||||
|
||||
// Casts 'walkability' ray along the navmesh surface from startPos towards the endPos.
|
||||
// Params:
|
||||
// startRef - (in) ref to the polygon where the start lies.
|
||||
// startPos[3] - (in) start position of the query.
|
||||
// endPos[3] - (in) end position of the query.
|
||||
// t - (out) hit parameter along the segment, FLT_MAX if no hit.
|
||||
// hitNormal[3] - (out) normal of the nearest hit.
|
||||
// filter - (in) path polygon filter.
|
||||
// path - (out,opt) visited path polygons.
|
||||
// pathCount - (out,opt) Number of polygons visited.
|
||||
// maxPath - (in) max number of polygons in the path array.
|
||||
dtStatus raycast(dtPolyRef startRef, const float* startPos, const float* endPos,
|
||||
const dtQueryFilter* filter,
|
||||
float* t, float* hitNormal, dtPolyRef* path, int* pathCount, const int maxPath) const;
|
||||
|
||||
// Returns distance to nearest wall from the specified location.
|
||||
// Params:
|
||||
// startRef - (in) ref to the polygon where the center lies.
|
||||
// centerPos[3] - (in) center if the query circle.
|
||||
// maxRadius - (in) max search radius.
|
||||
// filter - (in) path polygon filter.
|
||||
// hitDist - (out) distance to nearest wall from the test location.
|
||||
// hitPos[3] - (out) location of the nearest hit.
|
||||
// hitNormal[3] - (out) normal of the nearest hit.
|
||||
dtStatus findDistanceToWall(dtPolyRef startRef, const float* centerPos, const float maxRadius,
|
||||
const dtQueryFilter* filter,
|
||||
float* hitDist, float* hitPos, float* hitNormal) const;
|
||||
|
||||
// Finds polygons found along the navigation graph which touch the specified circle.
|
||||
// Params:
|
||||
// startRef - (in) ref to the polygon where the search starts.
|
||||
// centerPos[3] - (in) center if the query circle.
|
||||
// radius - (in) radius of the query circle.
|
||||
// filter - (in) path polygon filter.
|
||||
// resultRef - (out, opt) refs to the polygons touched by the circle.
|
||||
// resultParent - (out, opt) parent of each result polygon.
|
||||
// resultCost - (out, opt) search cost at each result polygon.
|
||||
// resultCount - (out, opt) Number of results.
|
||||
// maxResult - (int) maximum capacity of search results.
|
||||
|
||||
///@}
|
||||
/// @name Dijkstra Search Functions
|
||||
/// @{
|
||||
|
||||
/// Finds the polygons along the navigation graph that touch the specified circle.
|
||||
/// @param[in] startRef The reference id of the polygon where the search starts.
|
||||
/// @param[in] centerPos The center of the search circle. [(x, y, z)]
|
||||
/// @param[in] radius The radius of the search circle.
|
||||
/// @param[in] filter The polygon filter to apply to the query.
|
||||
/// @param[out] resultRef The reference ids of the polygons touched by the circle. [opt]
|
||||
/// @param[out] resultParent The reference ids of the parent polygons for each result.
|
||||
/// Zero if a result polygon has no parent. [opt]
|
||||
/// @param[out] resultCost The search cost from @p centerPos to the polygon. [opt]
|
||||
/// @param[out] resultCount The number of polygons found. [opt]
|
||||
/// @param[in] maxResult The maximum number of polygons the result arrays can hold.
|
||||
/// @returns The status flags for the query.
|
||||
dtStatus findPolysAroundCircle(dtPolyRef startRef, const float* centerPos, const float radius,
|
||||
const dtQueryFilter* filter,
|
||||
dtPolyRef* resultRef, dtPolyRef* resultParent, float* resultCost,
|
||||
int* resultCount, const int maxResult) const;
|
||||
|
||||
// Finds polygons found along the navigation graph which touch the convex polygon shape.
|
||||
// Params:
|
||||
// startRef - (in) ref to the polygon where the search starts.
|
||||
// verts[3*n] - (in) vertices describing convex polygon shape (CCW).
|
||||
// nverts - (in) number of vertices in the polygon.
|
||||
// filter - (in) path polygon filter.
|
||||
// resultRef - (out, opt) refs to the polygons touched by the circle.
|
||||
// resultParent - (out, opt) parent of each result polygon.
|
||||
// resultCost - (out, opt) search cost at each result polygon.
|
||||
// resultCount - (out) number of results.
|
||||
// maxResult - (int) maximum capacity of search results.
|
||||
/// Finds the polygons along the naviation graph that touch the specified convex polygon.
|
||||
/// @param[in] startRef The reference id of the polygon where the search starts.
|
||||
/// @param[in] verts The vertices describing the convex polygon. (CCW)
|
||||
/// [(x, y, z) * @p nverts]
|
||||
/// @param[in] nverts The number of vertices in the polygon.
|
||||
/// @param[in] filter The polygon filter to apply to the query.
|
||||
/// @param[out] resultRef The reference ids of the polygons touched by the search polygon. [opt]
|
||||
/// @param[out] resultParent The reference ids of the parent polygons for each result. Zero if a
|
||||
/// result polygon has no parent. [opt]
|
||||
/// @param[out] resultCost The search cost from the centroid point to the polygon. [opt]
|
||||
/// @param[out] resultCount The number of polygons found.
|
||||
/// @param[in] maxResult The maximum number of polygons the result arrays can hold.
|
||||
/// @returns The status flags for the query.
|
||||
dtStatus findPolysAroundShape(dtPolyRef startRef, const float* verts, const int nverts,
|
||||
const dtQueryFilter* filter,
|
||||
dtPolyRef* resultRef, dtPolyRef* resultParent, float* resultCost,
|
||||
int* resultCount, const int maxResult) const;
|
||||
|
||||
// Finds non-overlapping local neighbourhood around center location.
|
||||
// Note: The algorithm is optimized for small query radius and small number of polygons.
|
||||
// Params:
|
||||
// startRef - (in) ref to the polygon where the search starts.
|
||||
// centerPos[3] - (in) center if the query circle.
|
||||
// radius - (in) radius of the query circle.
|
||||
// filter - (in) path polygon filter.
|
||||
// resultRef - (out) refs to the polygons touched by the circle.
|
||||
// resultParent - (out, opt) parent of each result polygon.
|
||||
// resultCount - (out) number of results.
|
||||
// maxResult - (int) maximum capacity of search results.
|
||||
/// @}
|
||||
/// @name Local Query Functions
|
||||
///@{
|
||||
|
||||
/// Finds the polygon nearest to the specified center point.
|
||||
/// @param[in] center The center of the search box. [(x, y, z)]
|
||||
/// @param[in] extents The search distance along each axis. [(x, y, z)]
|
||||
/// @param[in] filter The polygon filter to apply to the query.
|
||||
/// @param[out] nearestRef The reference id of the nearest polygon.
|
||||
/// @param[out] nearestPt The nearest point on the polygon. [opt] [(x, y, z)]
|
||||
/// @returns The status flags for the query.
|
||||
dtStatus findNearestPoly(const float* center, const float* extents,
|
||||
const dtQueryFilter* filter,
|
||||
dtPolyRef* nearestRef, float* nearestPt) const;
|
||||
|
||||
/// Finds polygons that overlap the search box.
|
||||
/// @param[in] center The center of the search box. [(x, y, z)]
|
||||
/// @param[in] extents The search distance along each axis. [(x, y, z)]
|
||||
/// @param[in] filter The polygon filter to apply to the query.
|
||||
/// @param[out] polys The reference ids of the polygons that overlap the query box.
|
||||
/// @param[out] polyCount The number of polygons in the search result.
|
||||
/// @param[in] maxPolys The maximum number of polygons the search result can hold.
|
||||
/// @returns The status flags for the query.
|
||||
dtStatus queryPolygons(const float* center, const float* extents,
|
||||
const dtQueryFilter* filter,
|
||||
dtPolyRef* polys, int* polyCount, const int maxPolys) const;
|
||||
|
||||
/// Finds the non-overlapping navigation polygons in the local neighbourhood around the center position.
|
||||
/// @param[in] startRef The reference id of the polygon where the search starts.
|
||||
/// @param[in] centerPos The center of the query circle. [(x, y, z)]
|
||||
/// @param[in] radius The radius of the query circle.
|
||||
/// @param[in] filter The polygon filter to apply to the query.
|
||||
/// @param[out] resultRef The reference ids of the polygons touched by the circle.
|
||||
/// @param[out] resultParent The reference ids of the parent polygons for each result.
|
||||
/// Zero if a result polygon has no parent. [opt]
|
||||
/// @param[out] resultCount The number of polygons found.
|
||||
/// @param[in] maxResult The maximum number of polygons the result arrays can hold.
|
||||
/// @returns The status flags for the query.
|
||||
dtStatus findLocalNeighbourhood(dtPolyRef startRef, const float* centerPos, const float radius,
|
||||
const dtQueryFilter* filter,
|
||||
dtPolyRef* resultRef, dtPolyRef* resultParent,
|
||||
int* resultCount, const int maxResult) const;
|
||||
|
||||
/// Moves from the start to the end position constrained to the navigation mesh.
|
||||
/// @param[in] startRef The reference id of the start polygon.
|
||||
/// @param[in] startPos A position of the mover within the start polygon. [(x, y, x)]
|
||||
/// @param[in] endPos The desired end position of the mover. [(x, y, z)]
|
||||
/// @param[in] filter The polygon filter to apply to the query.
|
||||
/// @param[out] resultPos The result position of the mover. [(x, y, z)]
|
||||
/// @param[out] visited The reference ids of the polygons visited during the move.
|
||||
/// @param[out] visitedCount The number of polygons visited during the move.
|
||||
/// @param[in] maxVisitedSize The maximum number of polygons the @p visited array can hold.
|
||||
/// @returns The status flags for the query.
|
||||
dtStatus moveAlongSurface(dtPolyRef startRef, const float* startPos, const float* endPos,
|
||||
const dtQueryFilter* filter,
|
||||
float* resultPos, dtPolyRef* visited, int* visitedCount, const int maxVisitedSize) const;
|
||||
|
||||
// Returns wall segments of specified polygon.
|
||||
// Params:
|
||||
// ref - (in) ref to the polygon.
|
||||
// filter - (in) path polygon filter.
|
||||
// segments[6*maxSegments] - (out) wall segments (2 endpoints per segment).
|
||||
// segmentCount - (out) number of wall segments.
|
||||
// maxSegments - (in) max number of segments that can be stored in 'segments'.
|
||||
/// Casts a 'walkability' ray along the surface of the navigation mesh from
|
||||
/// the start position toward the end position.
|
||||
/// @param[in] startRef The reference id of the start polygon.
|
||||
/// @param[in] startPos A position within the start polygon representing
|
||||
/// the start of the ray. [(x, y, z)]
|
||||
/// @param[in] endPos The position to cast the ray toward. [(x, y, z)]
|
||||
/// @param[out] t The hit parameter. (FLT_MAX if no wall hit.)
|
||||
/// @param[out] hitNormal The normal of the nearest wall hit. [(x, y, z)]
|
||||
/// @param[in] filter The polygon filter to apply to the query.
|
||||
/// @param[out] path The reference ids of the visited polygons. [opt]
|
||||
/// @param[out] pathCount The number of visited polygons. [opt]
|
||||
/// @param[in] maxPath The maximum number of polygons the @p path array can hold.
|
||||
/// @returns The status flags for the query.
|
||||
dtStatus raycast(dtPolyRef startRef, const float* startPos, const float* endPos,
|
||||
const dtQueryFilter* filter,
|
||||
float* t, float* hitNormal, dtPolyRef* path, int* pathCount, const int maxPath) const;
|
||||
|
||||
/// Finds the distance from the specified position to the nearest polygon wall.
|
||||
/// @param[in] startRef The reference id of the polygon containing @p centerPos.
|
||||
/// @param[in] centerPos The center of the search circle. [(x, y, z)]
|
||||
/// @param[in] maxRadius The radius of the search circle.
|
||||
/// @param[in] filter The polygon filter to apply to the query.
|
||||
/// @param[out] hitDist The distance to the nearest wall from @p centerPos.
|
||||
/// @param[out] hitPos The nearest position on the wall that was hit. [(x, y, z)]
|
||||
/// @param[out] hitNormal The normalized ray formed from the wall point to the
|
||||
/// source point. [(x, y, z)]
|
||||
/// @returns The status flags for the query.
|
||||
dtStatus findDistanceToWall(dtPolyRef startRef, const float* centerPos, const float maxRadius,
|
||||
const dtQueryFilter* filter,
|
||||
float* hitDist, float* hitPos, float* hitNormal) const;
|
||||
|
||||
/// Returns the segments for the specified polygon, optionally including portals.
|
||||
/// @param[in] ref The reference id of the polygon.
|
||||
/// @param[in] filter The polygon filter to apply to the query.
|
||||
/// @param[out] segmentVerts The segments. [(ax, ay, az, bx, by, bz) * segmentCount]
|
||||
/// @param[out] segmentRefs The reference ids of each segment's neighbor polygon.
|
||||
/// Or zero if the segment is a wall. [opt] [(parentRef) * @p segmentCount]
|
||||
/// @param[out] segmentCount The number of segments returned.
|
||||
/// @param[in] maxSegments The maximum number of segments the result arrays can hold.
|
||||
/// @returns The status flags for the query.
|
||||
dtStatus getPolyWallSegments(dtPolyRef ref, const dtQueryFilter* filter,
|
||||
float* segments, int* segmentCount, const int maxSegments) const;
|
||||
float* segmentVerts, dtPolyRef* segmentRefs, int* segmentCount,
|
||||
const int maxSegments) const;
|
||||
|
||||
/// Returns random location on navmesh.
|
||||
/// Polygons are chosen weighted by area. The search runs in linear related to number of polygon.
|
||||
/// @param[in] filter The polygon filter to apply to the query.
|
||||
/// @param[in] frand Function returning a random number [0..1).
|
||||
/// @param[out] randomRef The reference id of the random location.
|
||||
/// @param[out] randomPt The random location.
|
||||
/// @returns The status flags for the query.
|
||||
dtStatus findRandomPoint(const dtQueryFilter* filter, float (*frand)(),
|
||||
dtPolyRef* randomRef, float* randomPt) const;
|
||||
|
||||
/// Returns random location on navmesh within the reach of specified location.
|
||||
/// Polygons are chosen weighted by area. The search runs in linear related to number of polygon.
|
||||
/// The location is not exactly constrained by the circle, but it limits the visited polygons.
|
||||
/// @param[in] startRef The reference id of the polygon where the search starts.
|
||||
/// @param[in] centerPos The center of the search circle. [(x, y, z)]
|
||||
/// @param[in] filter The polygon filter to apply to the query.
|
||||
/// @param[in] frand Function returning a random number [0..1).
|
||||
/// @param[out] randomRef The reference id of the random location.
|
||||
/// @param[out] randomPt The random location. [(x, y, z)]
|
||||
/// @returns The status flags for the query.
|
||||
dtStatus findRandomPointAroundCircle(dtPolyRef startRef, const float* centerPos, const float maxRadius,
|
||||
const dtQueryFilter* filter, float (*frand)(),
|
||||
dtPolyRef* randomRef, float* randomPt) const;
|
||||
|
||||
// Returns closest point on navigation polygon.
|
||||
// Uses detail polygons to find the closest point to the navigation polygon surface.
|
||||
// Params:
|
||||
// ref - (in) ref to the polygon.
|
||||
// pos[3] - (in) the point to check.
|
||||
// closest[3] - (out) closest point.
|
||||
// Returns: true if closest point found.
|
||||
/// Finds the closest point on the specified polygon.
|
||||
/// @param[in] ref The reference id of the polygon.
|
||||
/// @param[in] pos The position to check. [(x, y, z)]
|
||||
/// @param[out] closest The closest point on the polygon. [(x, y, z)]
|
||||
/// @returns The status flags for the query.
|
||||
dtStatus closestPointOnPoly(dtPolyRef ref, const float* pos, float* closest) const;
|
||||
|
||||
// Returns closest point on navigation polygon boundary.
|
||||
// Uses the navigation polygon boundary to snap the point to poly boundary
|
||||
// if it is outside the polygon. Much faster than closestPointToPoly. Does not affect height.
|
||||
// Params:
|
||||
// ref - (in) ref to the polygon.
|
||||
// pos[3] - (in) the point to check.
|
||||
// closest[3] - (out) closest point.
|
||||
// Returns: true if closest point found.
|
||||
/// Returns a point on the boundary closest to the source point if the source point is outside the
|
||||
/// polygon's xz-bounds.
|
||||
/// @param[in] ref The reference id to the polygon.
|
||||
/// @param[in] pos The position to check. [(x, y, z)]
|
||||
/// @param[out] closest The closest point. [(x, y, z)]
|
||||
/// @returns The status flags for the query.
|
||||
dtStatus closestPointOnPolyBoundary(dtPolyRef ref, const float* pos, float* closest) const;
|
||||
|
||||
// Returns start and end location of an off-mesh link polygon.
|
||||
// Params:
|
||||
// prevRef - (in) ref to the polygon before the link (used to select direction).
|
||||
// polyRef - (in) ref to the off-mesh link polygon.
|
||||
// startPos[3] - (out) start point of the link.
|
||||
// endPos[3] - (out) end point of the link.
|
||||
// Returns: true if link is found.
|
||||
dtStatus getOffMeshConnectionPolyEndPoints(dtPolyRef prevRef, dtPolyRef polyRef, float* startPos, float* endPos) const;
|
||||
|
||||
// Returns height of the polygon at specified location.
|
||||
// Params:
|
||||
// ref - (in) ref to the polygon.
|
||||
// pos[3] - (in) the point where to locate the height.
|
||||
// height - (out) height at the location.
|
||||
// Returns: true if over polygon.
|
||||
/// Gets the height of the polygon at the provided position using the height detail. (Most accurate.)
|
||||
/// @param[in] ref The reference id of the polygon.
|
||||
/// @param[in] pos A position within the xz-bounds of the polygon. [(x, y, z)]
|
||||
/// @param[out] height The height at the surface of the polygon.
|
||||
/// @returns The status flags for the query.
|
||||
dtStatus getPolyHeight(dtPolyRef ref, const float* pos, float* height) const;
|
||||
|
||||
// Returns true if poly reference ins in closed list.
|
||||
|
||||
/// @}
|
||||
/// @name Miscellaneous Functions
|
||||
/// @{
|
||||
|
||||
/// Returns true if the polygon reference is valid and passes the filter restrictions.
|
||||
/// @param[in] ref The polygon reference to check.
|
||||
/// @param[in] filter The filter to apply.
|
||||
bool isValidPolyRef(dtPolyRef ref, const dtQueryFilter* filter) const;
|
||||
|
||||
/// Returns true if the polygon reference is in the closed list.
|
||||
/// @param[in] ref The reference id of the polygon to check.
|
||||
/// @returns True if the polygon is in closed list.
|
||||
bool isInClosedList(dtPolyRef ref) const;
|
||||
|
||||
/// Gets the node pool.
|
||||
/// @returns The node pool.
|
||||
class dtNodePool* getNodePool() const { return m_nodePool; }
|
||||
|
||||
/// Gets the navigation mesh the query object is using.
|
||||
/// @return The navigation mesh the query object is using.
|
||||
const dtNavMesh* getAttachedNavMesh() const { return m_nav; }
|
||||
|
||||
/// @}
|
||||
|
||||
private:
|
||||
|
||||
// Returns neighbour tile based on side.
|
||||
/// Returns neighbour tile based on side.
|
||||
dtMeshTile* getNeighbourTileAt(int x, int y, int side) const;
|
||||
|
||||
// Queries polygons within a tile.
|
||||
/// Queries polygons within a tile.
|
||||
int queryPolygonsInTile(const dtMeshTile* tile, const float* qmin, const float* qmax, const dtQueryFilter* filter,
|
||||
dtPolyRef* polys, const int maxPolys) const;
|
||||
// Find nearest polygon within a tile.
|
||||
/// Find nearest polygon within a tile.
|
||||
dtPolyRef findNearestPolyInTile(const dtMeshTile* tile, const float* center, const float* extents,
|
||||
const dtQueryFilter* filter, float* nearestPt) const;
|
||||
// Returns closest point on polygon.
|
||||
dtStatus closestPointOnPolyInTile(const dtMeshTile* tile, const dtPoly* poly, const float* pos, float* closest) const;
|
||||
/// Returns closest point on polygon.
|
||||
void closestPointOnPolyInTile(const dtMeshTile* tile, const dtPoly* poly, const float* pos, float* closest) const;
|
||||
|
||||
// Returns portal points between two polygons.
|
||||
/// Returns portal points between two polygons.
|
||||
dtStatus getPortalPoints(dtPolyRef from, dtPolyRef to, float* left, float* right,
|
||||
unsigned char& fromType, unsigned char& toType) const;
|
||||
dtStatus getPortalPoints(dtPolyRef from, const dtPoly* fromPoly, const dtMeshTile* fromTile,
|
||||
dtPolyRef to, const dtPoly* toPoly, const dtMeshTile* toTile,
|
||||
float* left, float* right) const;
|
||||
|
||||
// Returns edge mid point between two polygons.
|
||||
/// Returns edge mid point between two polygons.
|
||||
dtStatus getEdgeMidPoint(dtPolyRef from, dtPolyRef to, float* mid) const;
|
||||
dtStatus getEdgeMidPoint(dtPolyRef from, const dtPoly* fromPoly, const dtMeshTile* fromTile,
|
||||
dtPolyRef to, const dtPoly* toPoly, const dtMeshTile* toTile,
|
||||
float* mid) const;
|
||||
|
||||
const dtNavMesh* m_nav; // Pointer to navmesh data.
|
||||
// Appends vertex to a straight path
|
||||
dtStatus appendVertex(const float* pos, const unsigned char flags, const dtPolyRef ref,
|
||||
float* straightPath, unsigned char* straightPathFlags, dtPolyRef* straightPathRefs,
|
||||
int* straightPathCount, const int maxStraightPath) const;
|
||||
|
||||
// Appends intermediate portal points to a straight path.
|
||||
dtStatus appendPortals(const int startIdx, const int endIdx, const float* endPos, const dtPolyRef* path,
|
||||
float* straightPath, unsigned char* straightPathFlags, dtPolyRef* straightPathRefs,
|
||||
int* straightPathCount, const int maxStraightPath, const int options) const;
|
||||
|
||||
const dtNavMesh* m_nav; ///< Pointer to navmesh data.
|
||||
|
||||
struct dtQueryData
|
||||
{
|
||||
@@ -393,15 +468,21 @@ private:
|
||||
float startPos[3], endPos[3];
|
||||
const dtQueryFilter* filter;
|
||||
};
|
||||
dtQueryData m_query; // Sliced query state.
|
||||
dtQueryData m_query; ///< Sliced query state.
|
||||
|
||||
class dtNodePool* m_tinyNodePool; // Pointer to small node pool.
|
||||
class dtNodePool* m_nodePool; // Pointer to node pool.
|
||||
class dtNodeQueue* m_openList; // Pointer to open list queue.
|
||||
class dtNodePool* m_tinyNodePool; ///< Pointer to small node pool.
|
||||
class dtNodePool* m_nodePool; ///< Pointer to node pool.
|
||||
class dtNodeQueue* m_openList; ///< Pointer to open list queue.
|
||||
};
|
||||
|
||||
// Helper function to allocate navmesh query class using Detour allocator.
|
||||
/// Allocates a query object using the Detour allocator.
|
||||
/// @return An allocated query object, or null on failure.
|
||||
/// @ingroup detour
|
||||
dtNavMeshQuery* dtAllocNavMeshQuery();
|
||||
|
||||
/// Frees the specified query object using the Detour allocator.
|
||||
/// @param[in] query A query object allocated using #dtAllocNavMeshQuery
|
||||
/// @ingroup detour
|
||||
void dtFreeNavMeshQuery(dtNavMeshQuery* query);
|
||||
|
||||
#endif // DETOURNAVMESHQUERY_H
|
||||
|
||||
@@ -24,6 +24,7 @@
|
||||
|
||||
inline unsigned int dtHashRef(dtPolyRef a)
|
||||
{
|
||||
// Edited by TC
|
||||
a = (~a) + (a << 18);
|
||||
a = a ^ (a >> 31);
|
||||
a = a * 21;
|
||||
@@ -46,15 +47,15 @@ dtNodePool::dtNodePool(int maxNodes, int hashSize) :
|
||||
dtAssert(m_maxNodes > 0);
|
||||
|
||||
m_nodes = (dtNode*)dtAlloc(sizeof(dtNode)*m_maxNodes, DT_ALLOC_PERM);
|
||||
m_next = (unsigned short*)dtAlloc(sizeof(unsigned short)*m_maxNodes, DT_ALLOC_PERM);
|
||||
m_first = (unsigned short*)dtAlloc(sizeof(unsigned short)*hashSize, DT_ALLOC_PERM);
|
||||
m_next = (dtNodeIndex*)dtAlloc(sizeof(dtNodeIndex)*m_maxNodes, DT_ALLOC_PERM);
|
||||
m_first = (dtNodeIndex*)dtAlloc(sizeof(dtNodeIndex)*hashSize, DT_ALLOC_PERM);
|
||||
|
||||
dtAssert(m_nodes);
|
||||
dtAssert(m_next);
|
||||
dtAssert(m_first);
|
||||
|
||||
memset(m_first, 0xff, sizeof(unsigned short)*m_hashSize);
|
||||
memset(m_next, 0xff, sizeof(unsigned short)*m_maxNodes);
|
||||
memset(m_first, 0xff, sizeof(dtNodeIndex)*m_hashSize);
|
||||
memset(m_next, 0xff, sizeof(dtNodeIndex)*m_maxNodes);
|
||||
}
|
||||
|
||||
dtNodePool::~dtNodePool()
|
||||
@@ -66,14 +67,14 @@ dtNodePool::~dtNodePool()
|
||||
|
||||
void dtNodePool::clear()
|
||||
{
|
||||
memset(m_first, 0xff, sizeof(unsigned short)*m_hashSize);
|
||||
memset(m_first, 0xff, sizeof(dtNodeIndex)*m_hashSize);
|
||||
m_nodeCount = 0;
|
||||
}
|
||||
|
||||
dtNode* dtNodePool::findNode(dtPolyRef id)
|
||||
{
|
||||
unsigned int bucket = dtHashRef(id) & (m_hashSize-1);
|
||||
unsigned short i = m_first[bucket];
|
||||
dtNodeIndex i = m_first[bucket];
|
||||
while (i != DT_NULL_IDX)
|
||||
{
|
||||
if (m_nodes[i].id == id)
|
||||
@@ -86,7 +87,7 @@ dtNode* dtNodePool::findNode(dtPolyRef id)
|
||||
dtNode* dtNodePool::getNode(dtPolyRef id)
|
||||
{
|
||||
unsigned int bucket = dtHashRef(id) & (m_hashSize-1);
|
||||
unsigned short i = m_first[bucket];
|
||||
dtNodeIndex i = m_first[bucket];
|
||||
dtNode* node = 0;
|
||||
while (i != DT_NULL_IDX)
|
||||
{
|
||||
@@ -98,7 +99,7 @@ dtNode* dtNodePool::getNode(dtPolyRef id)
|
||||
if (m_nodeCount >= m_maxNodes)
|
||||
return 0;
|
||||
|
||||
i = (unsigned short)m_nodeCount;
|
||||
i = (dtNodeIndex)m_nodeCount;
|
||||
m_nodeCount++;
|
||||
|
||||
// Init node
|
||||
|
||||
@@ -27,18 +27,20 @@ enum dtNodeFlags
|
||||
DT_NODE_CLOSED = 0x02,
|
||||
};
|
||||
|
||||
static const unsigned short DT_NULL_IDX = 0xffff;
|
||||
typedef unsigned short dtNodeIndex;
|
||||
static const dtNodeIndex DT_NULL_IDX = (dtNodeIndex)~0;
|
||||
|
||||
struct dtNode
|
||||
{
|
||||
float pos[3]; // Position of the node.
|
||||
float cost; // Cost from previous node to current node.
|
||||
float total; // Cost up to the node.
|
||||
unsigned int pidx : 30; // Index to parent node.
|
||||
unsigned int flags : 2; // Node flags 0/open/closed.
|
||||
dtPolyRef id; // Polygon ref the node corresponds to.
|
||||
float pos[3]; ///< Position of the node.
|
||||
float cost; ///< Cost from previous node to current node.
|
||||
float total; ///< Cost up to the node.
|
||||
unsigned int pidx : 30; ///< Index to parent node.
|
||||
unsigned int flags : 2; ///< Node flags 0/open/closed.
|
||||
dtPolyRef id; ///< Polygon ref the node corresponds to.
|
||||
};
|
||||
|
||||
|
||||
class dtNodePool
|
||||
{
|
||||
public:
|
||||
@@ -70,22 +72,22 @@ public:
|
||||
inline int getMemUsed() const
|
||||
{
|
||||
return sizeof(*this) +
|
||||
sizeof(dtNode)*m_maxNodes +
|
||||
sizeof(unsigned short)*m_maxNodes +
|
||||
sizeof(unsigned short)*m_hashSize;
|
||||
sizeof(dtNode)*m_maxNodes +
|
||||
sizeof(dtNodeIndex)*m_maxNodes +
|
||||
sizeof(dtNodeIndex)*m_hashSize;
|
||||
}
|
||||
|
||||
inline int getMaxNodes() const { return m_maxNodes; }
|
||||
|
||||
inline int getHashSize() const { return m_hashSize; }
|
||||
inline unsigned short getFirst(int bucket) const { return m_first[bucket]; }
|
||||
inline unsigned short getNext(int i) const { return m_next[i]; }
|
||||
inline dtNodeIndex getFirst(int bucket) const { return m_first[bucket]; }
|
||||
inline dtNodeIndex getNext(int i) const { return m_next[i]; }
|
||||
|
||||
private:
|
||||
|
||||
dtNode* m_nodes;
|
||||
unsigned short* m_first;
|
||||
unsigned short* m_next;
|
||||
dtNodeIndex* m_first;
|
||||
dtNodeIndex* m_next;
|
||||
const int m_maxNodes;
|
||||
const int m_hashSize;
|
||||
int m_nodeCount;
|
||||
@@ -154,4 +156,4 @@ private:
|
||||
};
|
||||
|
||||
|
||||
#endif // DETOURNODE_H
|
||||
#endif // DETOURNODE_H
|
||||
|
||||
64
dep/recastnavigation/Detour/DetourStatus.h
Normal file
64
dep/recastnavigation/Detour/DetourStatus.h
Normal file
@@ -0,0 +1,64 @@
|
||||
//
|
||||
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
|
||||
//
|
||||
// This software is provided 'as-is', without any express or implied
|
||||
// warranty. In no event will the authors be held liable for any damages
|
||||
// arising from the use of this software.
|
||||
// Permission is granted to anyone to use this software for any purpose,
|
||||
// including commercial applications, and to alter it and redistribute it
|
||||
// freely, subject to the following restrictions:
|
||||
// 1. The origin of this software must not be misrepresented; you must not
|
||||
// claim that you wrote the original software. If you use this software
|
||||
// in a product, an acknowledgment in the product documentation would be
|
||||
// appreciated but is not required.
|
||||
// 2. Altered source versions must be plainly marked as such, and must not be
|
||||
// misrepresented as being the original software.
|
||||
// 3. This notice may not be removed or altered from any source distribution.
|
||||
//
|
||||
|
||||
#ifndef DETOURSTATUS_H
|
||||
#define DETOURSTATUS_H
|
||||
|
||||
typedef unsigned int dtStatus;
|
||||
|
||||
// High level status.
|
||||
static const unsigned int DT_FAILURE = 1u << 31; // Operation failed.
|
||||
static const unsigned int DT_SUCCESS = 1u << 30; // Operation succeed.
|
||||
static const unsigned int DT_IN_PROGRESS = 1u << 29; // Operation still in progress.
|
||||
|
||||
// Detail information for status.
|
||||
static const unsigned int DT_STATUS_DETAIL_MASK = 0x0ffffff;
|
||||
static const unsigned int DT_WRONG_MAGIC = 1 << 0; // Input data is not recognized.
|
||||
static const unsigned int DT_WRONG_VERSION = 1 << 1; // Input data is in wrong version.
|
||||
static const unsigned int DT_OUT_OF_MEMORY = 1 << 2; // Operation ran out of memory.
|
||||
static const unsigned int DT_INVALID_PARAM = 1 << 3; // An input parameter was invalid.
|
||||
static const unsigned int DT_BUFFER_TOO_SMALL = 1 << 4; // Result buffer for the query was too small to store all results.
|
||||
static const unsigned int DT_OUT_OF_NODES = 1 << 5; // Query ran out of nodes during search.
|
||||
static const unsigned int DT_PARTIAL_RESULT = 1 << 6; // Query did not reach the end location, returning best guess.
|
||||
|
||||
|
||||
// Returns true of status is success.
|
||||
inline bool dtStatusSucceed(dtStatus status)
|
||||
{
|
||||
return (status & DT_SUCCESS) != 0;
|
||||
}
|
||||
|
||||
// Returns true of status is failure.
|
||||
inline bool dtStatusFailed(dtStatus status)
|
||||
{
|
||||
return (status & DT_FAILURE) != 0;
|
||||
}
|
||||
|
||||
// Returns true of status is in progress.
|
||||
inline bool dtStatusInProgress(dtStatus status)
|
||||
{
|
||||
return (status & DT_IN_PROGRESS) != 0;
|
||||
}
|
||||
|
||||
// Returns true if specific detail is set.
|
||||
inline bool dtStatusDetail(dtStatus status, unsigned int detail)
|
||||
{
|
||||
return (status & detail) != 0;
|
||||
}
|
||||
|
||||
#endif // DETOURSTATUS_H
|
||||
@@ -14,6 +14,7 @@ set(Recast_STAT_SRCS
|
||||
RecastArea.cpp
|
||||
RecastContour.cpp
|
||||
RecastFilter.cpp
|
||||
RecastLayers.cpp
|
||||
RecastMesh.cpp
|
||||
RecastMeshDetail.cpp
|
||||
RecastRasterization.cpp
|
||||
|
||||
@@ -32,7 +32,26 @@ float rcSqrt(float x)
|
||||
return sqrtf(x);
|
||||
}
|
||||
|
||||
/// @class rcContext
|
||||
/// @par
|
||||
///
|
||||
/// This class does not provide logging or timer functionality on its
|
||||
/// own. Both must be provided by a concrete implementation
|
||||
/// by overriding the protected member functions. Also, this class does not
|
||||
/// provide an interface for extracting log messages. (Only adding them.)
|
||||
/// So concrete implementations must provide one.
|
||||
///
|
||||
/// If no logging or timers are required, just pass an instance of this
|
||||
/// class through the Recast build process.
|
||||
///
|
||||
|
||||
/// @par
|
||||
///
|
||||
/// Example:
|
||||
/// @code
|
||||
/// // Where ctx is an instance of rcContext and filepath is a char array.
|
||||
/// ctx->log(RC_LOG_ERROR, "buildTiledNavigation: Could not load '%s'", filepath);
|
||||
/// @endcode
|
||||
void rcContext::log(const rcLogCategory category, const char* format, ...)
|
||||
{
|
||||
if (!m_logEnabled)
|
||||
@@ -90,6 +109,28 @@ void rcFreeCompactHeightfield(rcCompactHeightfield* chf)
|
||||
rcFree(chf);
|
||||
}
|
||||
|
||||
|
||||
rcHeightfieldLayerSet* rcAllocHeightfieldLayerSet()
|
||||
{
|
||||
rcHeightfieldLayerSet* lset = (rcHeightfieldLayerSet*)rcAlloc(sizeof(rcHeightfieldLayerSet), RC_ALLOC_PERM);
|
||||
memset(lset, 0, sizeof(rcHeightfieldLayerSet));
|
||||
return lset;
|
||||
}
|
||||
|
||||
void rcFreeHeightfieldLayerSet(rcHeightfieldLayerSet* lset)
|
||||
{
|
||||
if (!lset) return;
|
||||
for (int i = 0; i < lset->nlayers; ++i)
|
||||
{
|
||||
rcFree(lset->layers[i].heights);
|
||||
rcFree(lset->layers[i].areas);
|
||||
rcFree(lset->layers[i].cons);
|
||||
}
|
||||
rcFree(lset->layers);
|
||||
rcFree(lset);
|
||||
}
|
||||
|
||||
|
||||
rcContourSet* rcAllocContourSet()
|
||||
{
|
||||
rcContourSet* cset = (rcContourSet*)rcAlloc(sizeof(rcContourSet), RC_ALLOC_PERM);
|
||||
@@ -143,7 +184,6 @@ void rcFreePolyMeshDetail(rcPolyMeshDetail* dmesh)
|
||||
rcFree(dmesh);
|
||||
}
|
||||
|
||||
|
||||
void rcCalcBounds(const float* verts, int nv, float* bmin, float* bmax)
|
||||
{
|
||||
// Calculate bounding box.
|
||||
@@ -163,6 +203,11 @@ void rcCalcGridSize(const float* bmin, const float* bmax, float cs, int* w, int*
|
||||
*h = (int)((bmax[2] - bmin[2])/cs+0.5f);
|
||||
}
|
||||
|
||||
/// @par
|
||||
///
|
||||
/// See the #rcConfig documentation for more information on the configuration parameters.
|
||||
///
|
||||
/// @see rcAllocHeightfield, rcHeightfield
|
||||
bool rcCreateHeightfield(rcContext* /*ctx*/, rcHeightfield& hf, int width, int height,
|
||||
const float* bmin, const float* bmax,
|
||||
float cs, float ch)
|
||||
@@ -192,6 +237,14 @@ static void calcTriNormal(const float* v0, const float* v1, const float* v2, flo
|
||||
rcVnormalize(norm);
|
||||
}
|
||||
|
||||
/// @par
|
||||
///
|
||||
/// Only sets the aread id's for the walkable triangles. Does not alter the
|
||||
/// area id's for unwalkable triangles.
|
||||
///
|
||||
/// See the #rcConfig documentation for more information on the configuration parameters.
|
||||
///
|
||||
/// @see rcHeightfield, rcClearUnwalkableTriangles, rcRasterizeTriangles
|
||||
void rcMarkWalkableTriangles(rcContext* /*ctx*/, const float walkableSlopeAngle,
|
||||
const float* verts, int /*nv*/,
|
||||
const int* tris, int nt,
|
||||
@@ -214,6 +267,14 @@ void rcMarkWalkableTriangles(rcContext* /*ctx*/, const float walkableSlopeAngle,
|
||||
}
|
||||
}
|
||||
|
||||
/// @par
|
||||
///
|
||||
/// Only sets the aread id's for the unwalkable triangles. Does not alter the
|
||||
/// area id's for walkable triangles.
|
||||
///
|
||||
/// See the #rcConfig documentation for more information on the configuration parameters.
|
||||
///
|
||||
/// @see rcHeightfield, rcClearUnwalkableTriangles, rcRasterizeTriangles
|
||||
void rcClearUnwalkableTriangles(rcContext* /*ctx*/, const float walkableSlopeAngle,
|
||||
const float* verts, int /*nv*/,
|
||||
const int* tris, int nt,
|
||||
@@ -258,6 +319,15 @@ int rcGetHeightFieldSpanCount(rcContext* /*ctx*/, rcHeightfield& hf)
|
||||
return spanCount;
|
||||
}
|
||||
|
||||
/// @par
|
||||
///
|
||||
/// This is just the beginning of the process of fully building a compact heightfield.
|
||||
/// Various filters may be applied applied, then the distance field and regions built.
|
||||
/// E.g: #rcBuildDistanceField and #rcBuildRegions
|
||||
///
|
||||
/// See the #rcConfig documentation for more information on the configuration parameters.
|
||||
///
|
||||
/// @see rcAllocCompactHeightfield, rcHeightfield, rcCompactHeightfield, rcConfig
|
||||
bool rcBuildCompactHeightfield(rcContext* ctx, const int walkableHeight, const int walkableClimb,
|
||||
rcHeightfield& hf, rcCompactHeightfield& chf)
|
||||
{
|
||||
@@ -369,13 +439,13 @@ bool rcBuildCompactHeightfield(rcContext* ctx, const int walkableHeight, const i
|
||||
if ((top - bot) >= walkableHeight && rcAbs((int)ns.y - (int)s.y) <= walkableClimb)
|
||||
{
|
||||
// Mark direction as walkable.
|
||||
const int idx = k - (int)nc.index;
|
||||
if (idx < 0 || idx > MAX_LAYERS)
|
||||
const int lidx = k - (int)nc.index;
|
||||
if (lidx < 0 || lidx > MAX_LAYERS)
|
||||
{
|
||||
tooHighNeighbour = rcMax(tooHighNeighbour, idx);
|
||||
tooHighNeighbour = rcMax(tooHighNeighbour, lidx);
|
||||
continue;
|
||||
}
|
||||
rcSetCon(s, dir, idx);
|
||||
rcSetCon(s, dir, lidx);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -33,24 +33,45 @@ static void rcFreeDefault(void *ptr)
|
||||
static rcAllocFunc* sRecastAllocFunc = rcAllocDefault;
|
||||
static rcFreeFunc* sRecastFreeFunc = rcFreeDefault;
|
||||
|
||||
/// @see rcAlloc, rcFree
|
||||
void rcAllocSetCustom(rcAllocFunc *allocFunc, rcFreeFunc *freeFunc)
|
||||
{
|
||||
sRecastAllocFunc = allocFunc ? allocFunc : rcAllocDefault;
|
||||
sRecastFreeFunc = freeFunc ? freeFunc : rcFreeDefault;
|
||||
}
|
||||
|
||||
/// @see rcAllocSetCustom
|
||||
void* rcAlloc(int size, rcAllocHint hint)
|
||||
{
|
||||
return sRecastAllocFunc(size, hint);
|
||||
}
|
||||
|
||||
/// @par
|
||||
///
|
||||
/// @warning This function leaves the value of @p ptr unchanged. So it still
|
||||
/// points to the same (now invalid) location, and not to null.
|
||||
///
|
||||
/// @see rcAllocSetCustom
|
||||
void rcFree(void* ptr)
|
||||
{
|
||||
if (ptr)
|
||||
sRecastFreeFunc(ptr);
|
||||
}
|
||||
|
||||
/// @class rcIntArray
|
||||
///
|
||||
/// While it is possible to pre-allocate a specific array size during
|
||||
/// construction or by using the #resize method, certain methods will
|
||||
/// automatically resize the array as needed.
|
||||
///
|
||||
/// @warning The array memory is not initialized to zero when the size is
|
||||
/// manually set during construction or when using #resize.
|
||||
|
||||
/// @par
|
||||
///
|
||||
/// Using this method ensures the array is at least large enough to hold
|
||||
/// the specified number of elements. This can improve performance by
|
||||
/// avoiding auto-resizing during use.
|
||||
void rcIntArray::resize(int n)
|
||||
{
|
||||
if (n > m_cap)
|
||||
|
||||
@@ -19,23 +19,45 @@
|
||||
#ifndef RECASTALLOC_H
|
||||
#define RECASTALLOC_H
|
||||
|
||||
/// Provides hint values to the memory allocator on how long the
|
||||
/// memory is expected to be used.
|
||||
enum rcAllocHint
|
||||
{
|
||||
RC_ALLOC_PERM, // Memory persist after a function call.
|
||||
RC_ALLOC_TEMP // Memory used temporarily within a function.
|
||||
RC_ALLOC_PERM, ///< Memory will persist after a function call.
|
||||
RC_ALLOC_TEMP ///< Memory used temporarily within a function.
|
||||
};
|
||||
|
||||
/// A memory allocation function.
|
||||
// @param[in] size The size, in bytes of memory, to allocate.
|
||||
// @param[in] rcAllocHint A hint to the allocator on how long the memory is expected to be in use.
|
||||
// @return A pointer to the beginning of the allocated memory block, or null if the allocation failed.
|
||||
/// @see rcAllocSetCustom
|
||||
typedef void* (rcAllocFunc)(int size, rcAllocHint hint);
|
||||
|
||||
/// A memory deallocation function.
|
||||
/// @param[in] ptr A pointer to a memory block previously allocated using #rcAllocFunc.
|
||||
/// @see rcAllocSetCustom
|
||||
typedef void (rcFreeFunc)(void* ptr);
|
||||
|
||||
/// Sets the base custom allocation functions to be used by Recast.
|
||||
/// @param[in] allocFunc The memory allocation function to be used by #rcAlloc
|
||||
/// @param[in] freeFunc The memory de-allocation function to be used by #rcFree
|
||||
void rcAllocSetCustom(rcAllocFunc *allocFunc, rcFreeFunc *freeFunc);
|
||||
|
||||
/// Allocates a memory block.
|
||||
/// @param[in] size The size, in bytes of memory, to allocate.
|
||||
/// @param[in] hint A hint to the allocator on how long the memory is expected to be in use.
|
||||
/// @return A pointer to the beginning of the allocated memory block, or null if the allocation failed.
|
||||
/// @see rcFree
|
||||
void* rcAlloc(int size, rcAllocHint hint);
|
||||
|
||||
/// Deallocates a memory block.
|
||||
/// @param[in] ptr A pointer to a memory block previously allocated using #rcAlloc.
|
||||
/// @see rcAlloc
|
||||
void rcFree(void* ptr);
|
||||
|
||||
|
||||
|
||||
// Simple dynamic array ints.
|
||||
/// A simple dynamic array of integers.
|
||||
class rcIntArray
|
||||
{
|
||||
int* m_data;
|
||||
@@ -43,26 +65,59 @@ class rcIntArray
|
||||
inline rcIntArray(const rcIntArray&);
|
||||
inline rcIntArray& operator=(const rcIntArray&);
|
||||
public:
|
||||
|
||||
/// Constructs an instance with an initial array size of zero.
|
||||
inline rcIntArray() : m_data(0), m_size(0), m_cap(0) {}
|
||||
|
||||
/// Constructs an instance initialized to the specified size.
|
||||
/// @param[in] n The initial size of the integer array.
|
||||
inline rcIntArray(int n) : m_data(0), m_size(0), m_cap(0) { resize(n); }
|
||||
inline ~rcIntArray() { rcFree(m_data); }
|
||||
|
||||
/// Specifies the new size of the integer array.
|
||||
/// @param[in] n The new size of the integer array.
|
||||
void resize(int n);
|
||||
|
||||
/// Push the specified integer onto the end of the array and increases the size by one.
|
||||
/// @param[in] item The new value.
|
||||
inline void push(int item) { resize(m_size+1); m_data[m_size-1] = item; }
|
||||
|
||||
/// Returns the value at the end of the array and reduces the size by one.
|
||||
/// @return The value at the end of the array.
|
||||
inline int pop() { if (m_size > 0) m_size--; return m_data[m_size]; }
|
||||
|
||||
/// The value at the specified array index.
|
||||
/// @warning Does not provide overflow protection.
|
||||
/// @param[in] i The index of the value.
|
||||
inline const int& operator[](int i) const { return m_data[i]; }
|
||||
|
||||
/// The value at the specified array index.
|
||||
/// @warning Does not provide overflow protection.
|
||||
/// @param[in] i The index of the value.
|
||||
inline int& operator[](int i) { return m_data[i]; }
|
||||
|
||||
/// The current size of the integer array.
|
||||
inline int size() const { return m_size; }
|
||||
};
|
||||
|
||||
// Simple internal helper class to delete array in scope
|
||||
/// A simple helper class used to delete an array when it goes out of scope.
|
||||
/// @note This class is rarely if ever used by the end user.
|
||||
template<class T> class rcScopedDelete
|
||||
{
|
||||
T* ptr;
|
||||
inline T* operator=(T* p);
|
||||
public:
|
||||
|
||||
/// Constructs an instance with a null pointer.
|
||||
inline rcScopedDelete() : ptr(0) {}
|
||||
|
||||
/// Constructs an instance with the specified pointer.
|
||||
/// @param[in] p An pointer to an allocated array.
|
||||
inline rcScopedDelete(T* p) : ptr(p) {}
|
||||
inline ~rcScopedDelete() { rcFree(ptr); }
|
||||
|
||||
/// The root array pointer.
|
||||
/// @return The root array pointer.
|
||||
inline operator T*() { return ptr; }
|
||||
};
|
||||
|
||||
|
||||
@@ -26,7 +26,14 @@
|
||||
#include "RecastAlloc.h"
|
||||
#include "RecastAssert.h"
|
||||
|
||||
|
||||
/// @par
|
||||
///
|
||||
/// Basically, any spans that are closer to a boundary or obstruction than the specified radius
|
||||
/// are marked as unwalkable.
|
||||
///
|
||||
/// This method is usually called immediately after the heightfield has been built.
|
||||
///
|
||||
/// @see rcCompactHeightfield, rcBuildCompactHeightfield, rcConfig::walkableRadius
|
||||
bool rcErodeWalkableArea(rcContext* ctx, int radius, rcCompactHeightfield& chf)
|
||||
{
|
||||
rcAssert(ctx);
|
||||
@@ -54,14 +61,26 @@ bool rcErodeWalkableArea(rcContext* ctx, int radius, rcCompactHeightfield& chf)
|
||||
const rcCompactCell& c = chf.cells[x+y*w];
|
||||
for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
|
||||
{
|
||||
if (chf.areas[i] != RC_NULL_AREA)
|
||||
if (chf.areas[i] == RC_NULL_AREA)
|
||||
{
|
||||
dist[i] = 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
const rcCompactSpan& s = chf.spans[i];
|
||||
int nc = 0;
|
||||
for (int dir = 0; dir < 4; ++dir)
|
||||
{
|
||||
if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
|
||||
nc++;
|
||||
{
|
||||
const int nx = x + rcGetDirOffsetX(dir);
|
||||
const int ny = y + rcGetDirOffsetY(dir);
|
||||
const int nidx = (int)chf.cells[nx+ny*w].index + rcGetCon(s, dir);
|
||||
if (chf.areas[nidx] != RC_NULL_AREA)
|
||||
{
|
||||
nc++;
|
||||
}
|
||||
}
|
||||
}
|
||||
// At least one missing neighbour.
|
||||
if (nc != 4)
|
||||
@@ -213,7 +232,12 @@ static void insertSort(unsigned char* a, const int n)
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/// @par
|
||||
///
|
||||
/// This filter is usually applied after applying area id's using functions
|
||||
/// such as #rcMarkBoxArea, #rcMarkConvexPolyArea, and #rcMarkCylinderArea.
|
||||
///
|
||||
/// @see rcCompactHeightfield
|
||||
bool rcMedianFilterWalkableArea(rcContext* ctx, rcCompactHeightfield& chf)
|
||||
{
|
||||
rcAssert(ctx);
|
||||
@@ -288,6 +312,11 @@ bool rcMedianFilterWalkableArea(rcContext* ctx, rcCompactHeightfield& chf)
|
||||
return true;
|
||||
}
|
||||
|
||||
/// @par
|
||||
///
|
||||
/// The value of spacial parameters are in world units.
|
||||
///
|
||||
/// @see rcCompactHeightfield, rcMedianFilterWalkableArea
|
||||
void rcMarkBoxArea(rcContext* ctx, const float* bmin, const float* bmax, unsigned char areaId,
|
||||
rcCompactHeightfield& chf)
|
||||
{
|
||||
@@ -322,7 +351,8 @@ void rcMarkBoxArea(rcContext* ctx, const float* bmin, const float* bmax, unsigne
|
||||
rcCompactSpan& s = chf.spans[i];
|
||||
if ((int)s.y >= miny && (int)s.y <= maxy)
|
||||
{
|
||||
chf.areas[i] = areaId;
|
||||
if (chf.areas[i] != RC_NULL_AREA)
|
||||
chf.areas[i] = areaId;
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -347,6 +377,14 @@ static int pointInPoly(int nvert, const float* verts, const float* p)
|
||||
return c;
|
||||
}
|
||||
|
||||
/// @par
|
||||
///
|
||||
/// The value of spacial parameters are in world units.
|
||||
///
|
||||
/// The y-values of the polygon vertices are ignored. So the polygon is effectively
|
||||
/// projected onto the xz-plane at @p hmin, then extruded to @p hmax.
|
||||
///
|
||||
/// @see rcCompactHeightfield, rcMedianFilterWalkableArea
|
||||
void rcMarkConvexPolyArea(rcContext* ctx, const float* verts, const int nverts,
|
||||
const float hmin, const float hmax, unsigned char areaId,
|
||||
rcCompactHeightfield& chf)
|
||||
@@ -393,6 +431,8 @@ void rcMarkConvexPolyArea(rcContext* ctx, const float* verts, const int nverts,
|
||||
for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
|
||||
{
|
||||
rcCompactSpan& s = chf.spans[i];
|
||||
if (chf.areas[i] == RC_NULL_AREA)
|
||||
continue;
|
||||
if ((int)s.y >= miny && (int)s.y <= maxy)
|
||||
{
|
||||
float p[3];
|
||||
@@ -411,3 +451,152 @@ void rcMarkConvexPolyArea(rcContext* ctx, const float* verts, const int nverts,
|
||||
|
||||
ctx->stopTimer(RC_TIMER_MARK_CONVEXPOLY_AREA);
|
||||
}
|
||||
|
||||
int rcOffsetPoly(const float* verts, const int nverts, const float offset,
|
||||
float* outVerts, const int maxOutVerts)
|
||||
{
|
||||
const float MITER_LIMIT = 1.20f;
|
||||
|
||||
int n = 0;
|
||||
|
||||
for (int i = 0; i < nverts; i++)
|
||||
{
|
||||
const int a = (i+nverts-1) % nverts;
|
||||
const int b = i;
|
||||
const int c = (i+1) % nverts;
|
||||
const float* va = &verts[a*3];
|
||||
const float* vb = &verts[b*3];
|
||||
const float* vc = &verts[c*3];
|
||||
float dx0 = vb[0] - va[0];
|
||||
float dy0 = vb[2] - va[2];
|
||||
float d0 = dx0*dx0 + dy0*dy0;
|
||||
if (d0 > 1e-6f)
|
||||
{
|
||||
d0 = 1.0f/rcSqrt(d0);
|
||||
dx0 *= d0;
|
||||
dy0 *= d0;
|
||||
}
|
||||
float dx1 = vc[0] - vb[0];
|
||||
float dy1 = vc[2] - vb[2];
|
||||
float d1 = dx1*dx1 + dy1*dy1;
|
||||
if (d1 > 1e-6f)
|
||||
{
|
||||
d1 = 1.0f/rcSqrt(d1);
|
||||
dx1 *= d1;
|
||||
dy1 *= d1;
|
||||
}
|
||||
const float dlx0 = -dy0;
|
||||
const float dly0 = dx0;
|
||||
const float dlx1 = -dy1;
|
||||
const float dly1 = dx1;
|
||||
float cross = dx1*dy0 - dx0*dy1;
|
||||
float dmx = (dlx0 + dlx1) * 0.5f;
|
||||
float dmy = (dly0 + dly1) * 0.5f;
|
||||
float dmr2 = dmx*dmx + dmy*dmy;
|
||||
bool bevel = dmr2 * MITER_LIMIT*MITER_LIMIT < 1.0f;
|
||||
if (dmr2 > 1e-6f)
|
||||
{
|
||||
const float scale = 1.0f / dmr2;
|
||||
dmx *= scale;
|
||||
dmy *= scale;
|
||||
}
|
||||
|
||||
if (bevel && cross < 0.0f)
|
||||
{
|
||||
if (n+2 >= maxOutVerts)
|
||||
return 0;
|
||||
float d = (1.0f - (dx0*dx1 + dy0*dy1))*0.5f;
|
||||
outVerts[n*3+0] = vb[0] + (-dlx0+dx0*d)*offset;
|
||||
outVerts[n*3+1] = vb[1];
|
||||
outVerts[n*3+2] = vb[2] + (-dly0+dy0*d)*offset;
|
||||
n++;
|
||||
outVerts[n*3+0] = vb[0] + (-dlx1-dx1*d)*offset;
|
||||
outVerts[n*3+1] = vb[1];
|
||||
outVerts[n*3+2] = vb[2] + (-dly1-dy1*d)*offset;
|
||||
n++;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (n+1 >= maxOutVerts)
|
||||
return 0;
|
||||
outVerts[n*3+0] = vb[0] - dmx*offset;
|
||||
outVerts[n*3+1] = vb[1];
|
||||
outVerts[n*3+2] = vb[2] - dmy*offset;
|
||||
n++;
|
||||
}
|
||||
}
|
||||
|
||||
return n;
|
||||
}
|
||||
|
||||
|
||||
/// @par
|
||||
///
|
||||
/// The value of spacial parameters are in world units.
|
||||
///
|
||||
/// @see rcCompactHeightfield, rcMedianFilterWalkableArea
|
||||
void rcMarkCylinderArea(rcContext* ctx, const float* pos,
|
||||
const float r, const float h, unsigned char areaId,
|
||||
rcCompactHeightfield& chf)
|
||||
{
|
||||
rcAssert(ctx);
|
||||
|
||||
ctx->startTimer(RC_TIMER_MARK_CYLINDER_AREA);
|
||||
|
||||
float bmin[3], bmax[3];
|
||||
bmin[0] = pos[0] - r;
|
||||
bmin[1] = pos[1];
|
||||
bmin[2] = pos[2] - r;
|
||||
bmax[0] = pos[0] + r;
|
||||
bmax[1] = pos[1] + h;
|
||||
bmax[2] = pos[2] + r;
|
||||
const float r2 = r*r;
|
||||
|
||||
int minx = (int)((bmin[0]-chf.bmin[0])/chf.cs);
|
||||
int miny = (int)((bmin[1]-chf.bmin[1])/chf.ch);
|
||||
int minz = (int)((bmin[2]-chf.bmin[2])/chf.cs);
|
||||
int maxx = (int)((bmax[0]-chf.bmin[0])/chf.cs);
|
||||
int maxy = (int)((bmax[1]-chf.bmin[1])/chf.ch);
|
||||
int maxz = (int)((bmax[2]-chf.bmin[2])/chf.cs);
|
||||
|
||||
if (maxx < 0) return;
|
||||
if (minx >= chf.width) return;
|
||||
if (maxz < 0) return;
|
||||
if (minz >= chf.height) return;
|
||||
|
||||
if (minx < 0) minx = 0;
|
||||
if (maxx >= chf.width) maxx = chf.width-1;
|
||||
if (minz < 0) minz = 0;
|
||||
if (maxz >= chf.height) maxz = chf.height-1;
|
||||
|
||||
|
||||
for (int z = minz; z <= maxz; ++z)
|
||||
{
|
||||
for (int x = minx; x <= maxx; ++x)
|
||||
{
|
||||
const rcCompactCell& c = chf.cells[x+z*chf.width];
|
||||
for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
|
||||
{
|
||||
rcCompactSpan& s = chf.spans[i];
|
||||
|
||||
if (chf.areas[i] == RC_NULL_AREA)
|
||||
continue;
|
||||
|
||||
if ((int)s.y >= miny && (int)s.y <= maxy)
|
||||
{
|
||||
const float sx = chf.bmin[0] + (x+0.5f)*chf.cs;
|
||||
const float sz = chf.bmin[2] + (z+0.5f)*chf.cs;
|
||||
const float dx = sx - pos[0];
|
||||
const float dz = sz - pos[2];
|
||||
|
||||
if (dx*dx + dz*dz < r2)
|
||||
{
|
||||
chf.areas[i] = areaId;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
ctx->stopTimer(RC_TIMER_MARK_CYLINDER_AREA);
|
||||
}
|
||||
|
||||
@@ -24,7 +24,7 @@
|
||||
|
||||
#ifdef NDEBUG
|
||||
// From http://cnicholson.net/2009/02/stupid-c-tricks-adventures-in-assert/
|
||||
# define rcAssert(x) do { (void)sizeof(x); } while(__LINE__==-1,false)
|
||||
# define rcAssert(x) do { (void)sizeof(x); } while((void)(__LINE__==-1),false)
|
||||
#else
|
||||
# include <assert.h>
|
||||
# define rcAssert assert
|
||||
|
||||
@@ -340,7 +340,7 @@ static void simplifyContour(rcIntArray& points, rcIntArray& simplified,
|
||||
endi = ai;
|
||||
}
|
||||
|
||||
// Tessellate only outer edges oredges between areas.
|
||||
// Tessellate only outer edges or edges between areas.
|
||||
if ((points[ci*4+3] & RC_CONTOUR_REG_MASK) == 0 ||
|
||||
(points[ci*4+3] & RC_AREA_BORDER))
|
||||
{
|
||||
@@ -420,15 +420,13 @@ static void simplifyContour(rcIntArray& points, rcIntArray& simplified,
|
||||
// Round based on the segments in lexilogical order so that the
|
||||
// max tesselation is consistent regardles in which direction
|
||||
// segments are traversed.
|
||||
if (bx > ax || (bx == ax && bz > az))
|
||||
const int n = bi < ai ? (bi+pn - ai) : (bi - ai);
|
||||
if (n > 1)
|
||||
{
|
||||
const int n = bi < ai ? (bi+pn - ai) : (bi - ai);
|
||||
maxi = (ai + n/2) % pn;
|
||||
}
|
||||
else
|
||||
{
|
||||
const int n = bi < ai ? (bi+pn - ai) : (bi - ai);
|
||||
maxi = (ai + (n+1)/2) % pn;
|
||||
if (bx > ax || (bx == ax && bz > az))
|
||||
maxi = (ai + n/2) % pn;
|
||||
else
|
||||
maxi = (ai + (n+1)/2) % pn;
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -466,7 +464,7 @@ static void simplifyContour(rcIntArray& points, rcIntArray& simplified,
|
||||
// and the neighbour region is take from the next raw point.
|
||||
const int ai = (simplified[i*4+3]+1) % pn;
|
||||
const int bi = simplified[i*4+3];
|
||||
simplified[i*4+3] = (points[ai*4+3] & RC_CONTOUR_REG_MASK) | (points[bi*4+3] & RC_BORDER_VERTEX);
|
||||
simplified[i*4+3] = (points[ai*4+3] & (RC_CONTOUR_REG_MASK|RC_AREA_BORDER)) | (points[bi*4+3] & RC_BORDER_VERTEX);
|
||||
}
|
||||
|
||||
}
|
||||
@@ -592,6 +590,19 @@ static bool mergeContours(rcContour& ca, rcContour& cb, int ia, int ib)
|
||||
return true;
|
||||
}
|
||||
|
||||
/// @par
|
||||
///
|
||||
/// The raw contours will match the region outlines exactly. The @p maxError and @p maxEdgeLen
|
||||
/// parameters control how closely the simplified contours will match the raw contours.
|
||||
///
|
||||
/// Simplified contours are generated such that the vertices for portals between areas match up.
|
||||
/// (They are considered mandatory vertices.)
|
||||
///
|
||||
/// Setting @p maxEdgeLength to zero will disabled the edge length feature.
|
||||
///
|
||||
/// See the #rcConfig documentation for more information on the configuration parameters.
|
||||
///
|
||||
/// @see rcAllocContourSet, rcCompactHeightfield, rcContourSet, rcConfig
|
||||
bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf,
|
||||
const float maxError, const int maxEdgeLen,
|
||||
rcContourSet& cset, const int buildFlags)
|
||||
@@ -600,13 +611,26 @@ bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf,
|
||||
|
||||
const int w = chf.width;
|
||||
const int h = chf.height;
|
||||
const int borderSize = chf.borderSize;
|
||||
|
||||
ctx->startTimer(RC_TIMER_BUILD_CONTOURS);
|
||||
|
||||
rcVcopy(cset.bmin, chf.bmin);
|
||||
rcVcopy(cset.bmax, chf.bmax);
|
||||
if (borderSize > 0)
|
||||
{
|
||||
// If the heightfield was build with bordersize, remove the offset.
|
||||
const float pad = borderSize*chf.cs;
|
||||
cset.bmin[0] += pad;
|
||||
cset.bmin[2] += pad;
|
||||
cset.bmax[0] -= pad;
|
||||
cset.bmax[2] -= pad;
|
||||
}
|
||||
cset.cs = chf.cs;
|
||||
cset.ch = chf.ch;
|
||||
cset.width = chf.width - chf.borderSize*2;
|
||||
cset.height = chf.height - chf.borderSize*2;
|
||||
cset.borderSize = chf.borderSize;
|
||||
|
||||
int maxContours = rcMax((int)chf.maxRegions, 8);
|
||||
cset.conts = (rcContour*)rcAlloc(sizeof(rcContour)*maxContours, RC_ALLOC_PERM);
|
||||
@@ -658,8 +682,6 @@ bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf,
|
||||
|
||||
ctx->stopTimer(RC_TIMER_BUILD_CONTOURS_TRACE);
|
||||
|
||||
ctx->startTimer(RC_TIMER_BUILD_CONTOURS_SIMPLIFY);
|
||||
|
||||
rcIntArray verts(256);
|
||||
rcIntArray simplified(64);
|
||||
|
||||
@@ -682,10 +704,17 @@ bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf,
|
||||
|
||||
verts.resize(0);
|
||||
simplified.resize(0);
|
||||
|
||||
ctx->startTimer(RC_TIMER_BUILD_CONTOURS_TRACE);
|
||||
walkContour(x, y, i, chf, flags, verts);
|
||||
ctx->stopTimer(RC_TIMER_BUILD_CONTOURS_TRACE);
|
||||
|
||||
ctx->startTimer(RC_TIMER_BUILD_CONTOURS_SIMPLIFY);
|
||||
simplifyContour(verts, simplified, maxError, maxEdgeLen, buildFlags);
|
||||
removeDegenerateSegments(simplified);
|
||||
ctx->stopTimer(RC_TIMER_BUILD_CONTOURS_SIMPLIFY);
|
||||
|
||||
|
||||
// Store region->contour remap info.
|
||||
// Create contour.
|
||||
if (simplified.size()/4 >= 3)
|
||||
@@ -720,6 +749,16 @@ bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf,
|
||||
return false;
|
||||
}
|
||||
memcpy(cont->verts, &simplified[0], sizeof(int)*cont->nverts*4);
|
||||
if (borderSize > 0)
|
||||
{
|
||||
// If the heightfield was build with bordersize, remove the offset.
|
||||
for (int j = 0; j < cont->nverts; ++j)
|
||||
{
|
||||
int* v = &cont->verts[j*4];
|
||||
v[0] -= borderSize;
|
||||
v[2] -= borderSize;
|
||||
}
|
||||
}
|
||||
|
||||
cont->nrverts = verts.size()/4;
|
||||
cont->rverts = (int*)rcAlloc(sizeof(int)*cont->nrverts*4, RC_ALLOC_PERM);
|
||||
@@ -729,6 +768,16 @@ bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf,
|
||||
return false;
|
||||
}
|
||||
memcpy(cont->rverts, &verts[0], sizeof(int)*cont->nrverts*4);
|
||||
if (borderSize > 0)
|
||||
{
|
||||
// If the heightfield was build with bordersize, remove the offset.
|
||||
for (int j = 0; j < cont->nrverts; ++j)
|
||||
{
|
||||
int* v = &cont->rverts[j*4];
|
||||
v[0] -= borderSize;
|
||||
v[2] -= borderSize;
|
||||
}
|
||||
}
|
||||
|
||||
/* cont->cx = cont->cy = cont->cz = 0;
|
||||
for (int i = 0; i < cont->nverts; ++i)
|
||||
@@ -796,8 +845,6 @@ bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf,
|
||||
}
|
||||
}
|
||||
|
||||
ctx->stopTimer(RC_TIMER_BUILD_CONTOURS_SIMPLIFY);
|
||||
|
||||
ctx->stopTimer(RC_TIMER_BUILD_CONTOURS);
|
||||
|
||||
return true;
|
||||
|
||||
@@ -22,7 +22,17 @@
|
||||
#include "Recast.h"
|
||||
#include "RecastAssert.h"
|
||||
|
||||
|
||||
/// @par
|
||||
///
|
||||
/// Allows the formation of walkable regions that will flow over low lying
|
||||
/// objects such as curbs, and up structures such as stairways.
|
||||
///
|
||||
/// Two neighboring spans are walkable if: <tt>rcAbs(currentSpan.smax - neighborSpan.smax) < waklableClimb</tt>
|
||||
///
|
||||
/// @warning Will override the effect of #rcFilterLedgeSpans. So if both filters are used, call
|
||||
/// #rcFilterLedgeSpans after calling this filter.
|
||||
///
|
||||
/// @see rcHeightfield, rcConfig
|
||||
void rcFilterLowHangingWalkableObstacles(rcContext* ctx, const int walkableClimb, rcHeightfield& solid)
|
||||
{
|
||||
rcAssert(ctx);
|
||||
@@ -38,6 +48,7 @@ void rcFilterLowHangingWalkableObstacles(rcContext* ctx, const int walkableClimb
|
||||
{
|
||||
rcSpan* ps = 0;
|
||||
bool previousWalkable = false;
|
||||
unsigned char previousArea = RC_NULL_AREA;
|
||||
|
||||
for (rcSpan* s = solid.spans[x + y*w]; s; ps = s, s = s->next)
|
||||
{
|
||||
@@ -47,18 +58,29 @@ void rcFilterLowHangingWalkableObstacles(rcContext* ctx, const int walkableClimb
|
||||
if (!walkable && previousWalkable)
|
||||
{
|
||||
if (rcAbs((int)s->smax - (int)ps->smax) <= walkableClimb)
|
||||
s->area = RC_NULL_AREA;
|
||||
s->area = previousArea;
|
||||
}
|
||||
// Copy walkable flag so that it cannot propagate
|
||||
// past multiple non-walkable objects.
|
||||
previousWalkable = walkable;
|
||||
previousArea = s->area;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
ctx->stopTimer(RC_TIMER_FILTER_LOW_OBSTACLES);
|
||||
}
|
||||
|
||||
|
||||
/// @par
|
||||
///
|
||||
/// A ledge is a span with one or more neighbors whose maximum is further away than @p walkableClimb
|
||||
/// from the current span's maximum.
|
||||
/// This method removes the impact of the overestimation of conservative voxelization
|
||||
/// so the resulting mesh will not have regions hanging in the air over ledges.
|
||||
///
|
||||
/// A span is a ledge if: <tt>rcAbs(currentSpan.smax - neighborSpan.smax) > walkableClimb</tt>
|
||||
///
|
||||
/// @see rcHeightfield, rcConfig
|
||||
void rcFilterLedgeSpans(rcContext* ctx, const int walkableHeight, const int walkableClimb,
|
||||
rcHeightfield& solid)
|
||||
{
|
||||
@@ -149,6 +171,12 @@ void rcFilterLedgeSpans(rcContext* ctx, const int walkableHeight, const int walk
|
||||
ctx->stopTimer(RC_TIMER_FILTER_BORDER);
|
||||
}
|
||||
|
||||
/// @par
|
||||
///
|
||||
/// For this filter, the clearance above the span is the distance from the span's
|
||||
/// maximum to the next higher span's minimum. (Same grid column.)
|
||||
///
|
||||
/// @see rcHeightfield, rcConfig
|
||||
void rcFilterWalkableLowHeightSpans(rcContext* ctx, int walkableHeight, rcHeightfield& solid)
|
||||
{
|
||||
rcAssert(ctx);
|
||||
|
||||
620
dep/recastnavigation/Recast/RecastLayers.cpp
Normal file
620
dep/recastnavigation/Recast/RecastLayers.cpp
Normal file
@@ -0,0 +1,620 @@
|
||||
//
|
||||
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
|
||||
//
|
||||
// This software is provided 'as-is', without any express or implied
|
||||
// warranty. In no event will the authors be held liable for any damages
|
||||
// arising from the use of this software.
|
||||
// Permission is granted to anyone to use this software for any purpose,
|
||||
// including commercial applications, and to alter it and redistribute it
|
||||
// freely, subject to the following restrictions:
|
||||
// 1. The origin of this software must not be misrepresented; you must not
|
||||
// claim that you wrote the original software. If you use this software
|
||||
// in a product, an acknowledgment in the product documentation would be
|
||||
// appreciated but is not required.
|
||||
// 2. Altered source versions must be plainly marked as such, and must not be
|
||||
// misrepresented as being the original software.
|
||||
// 3. This notice may not be removed or altered from any source distribution.
|
||||
//
|
||||
|
||||
#include <float.h>
|
||||
#define _USE_MATH_DEFINES
|
||||
#include <math.h>
|
||||
#include <string.h>
|
||||
#include <stdlib.h>
|
||||
#include <stdio.h>
|
||||
#include "Recast.h"
|
||||
#include "RecastAlloc.h"
|
||||
#include "RecastAssert.h"
|
||||
|
||||
|
||||
static const int RC_MAX_LAYERS = RC_NOT_CONNECTED;
|
||||
static const int RC_MAX_NEIS = 16;
|
||||
|
||||
struct rcLayerRegion
|
||||
{
|
||||
unsigned char layers[RC_MAX_LAYERS];
|
||||
unsigned char neis[RC_MAX_NEIS];
|
||||
unsigned short ymin, ymax;
|
||||
unsigned char layerId; // Layer ID
|
||||
unsigned char nlayers; // Layer count
|
||||
unsigned char nneis; // Neighbour count
|
||||
unsigned char base; // Flag indicating if the region is hte base of merged regions.
|
||||
};
|
||||
|
||||
|
||||
static void addUnique(unsigned char* a, unsigned char& an, unsigned char v)
|
||||
{
|
||||
const int n = (int)an;
|
||||
for (int i = 0; i < n; ++i)
|
||||
if (a[i] == v)
|
||||
return;
|
||||
a[an] = v;
|
||||
an++;
|
||||
}
|
||||
|
||||
static bool contains(const unsigned char* a, const unsigned char an, const unsigned char v)
|
||||
{
|
||||
const int n = (int)an;
|
||||
for (int i = 0; i < n; ++i)
|
||||
if (a[i] == v)
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
inline bool overlapRange(const unsigned short amin, const unsigned short amax,
|
||||
const unsigned short bmin, const unsigned short bmax)
|
||||
{
|
||||
return (amin > bmax || amax < bmin) ? false : true;
|
||||
}
|
||||
|
||||
|
||||
|
||||
struct rcLayerSweepSpan
|
||||
{
|
||||
unsigned short ns; // number samples
|
||||
unsigned char id; // region id
|
||||
unsigned char nei; // neighbour id
|
||||
};
|
||||
|
||||
/// @par
|
||||
///
|
||||
/// See the #rcConfig documentation for more information on the configuration parameters.
|
||||
///
|
||||
/// @see rcAllocHeightfieldLayerSet, rcCompactHeightfield, rcHeightfieldLayerSet, rcConfig
|
||||
bool rcBuildHeightfieldLayers(rcContext* ctx, rcCompactHeightfield& chf,
|
||||
const int borderSize, const int walkableHeight,
|
||||
rcHeightfieldLayerSet& lset)
|
||||
{
|
||||
rcAssert(ctx);
|
||||
|
||||
ctx->startTimer(RC_TIMER_BUILD_LAYERS);
|
||||
|
||||
const int w = chf.width;
|
||||
const int h = chf.height;
|
||||
|
||||
rcScopedDelete<unsigned char> srcReg = (unsigned char*)rcAlloc(sizeof(unsigned char)*chf.spanCount, RC_ALLOC_TEMP);
|
||||
if (!srcReg)
|
||||
{
|
||||
ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'srcReg' (%d).", chf.spanCount);
|
||||
return false;
|
||||
}
|
||||
memset(srcReg,0xff,sizeof(unsigned char)*chf.spanCount);
|
||||
|
||||
const int nsweeps = chf.width;
|
||||
rcScopedDelete<rcLayerSweepSpan> sweeps = (rcLayerSweepSpan*)rcAlloc(sizeof(rcLayerSweepSpan)*nsweeps, RC_ALLOC_TEMP);
|
||||
if (!sweeps)
|
||||
{
|
||||
ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'sweeps' (%d).", nsweeps);
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
// Partition walkable area into monotone regions.
|
||||
int prevCount[256];
|
||||
unsigned char regId = 0;
|
||||
|
||||
for (int y = borderSize; y < h-borderSize; ++y)
|
||||
{
|
||||
memset(prevCount,0,sizeof(int)*regId);
|
||||
unsigned char sweepId = 0;
|
||||
|
||||
for (int x = borderSize; x < w-borderSize; ++x)
|
||||
{
|
||||
const rcCompactCell& c = chf.cells[x+y*w];
|
||||
|
||||
for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
|
||||
{
|
||||
const rcCompactSpan& s = chf.spans[i];
|
||||
if (chf.areas[i] == RC_NULL_AREA) continue;
|
||||
|
||||
unsigned char sid = 0xff;
|
||||
|
||||
// -x
|
||||
if (rcGetCon(s, 0) != RC_NOT_CONNECTED)
|
||||
{
|
||||
const int ax = x + rcGetDirOffsetX(0);
|
||||
const int ay = y + rcGetDirOffsetY(0);
|
||||
const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 0);
|
||||
if (chf.areas[ai] != RC_NULL_AREA && srcReg[ai] != 0xff)
|
||||
sid = srcReg[ai];
|
||||
}
|
||||
|
||||
if (sid == 0xff)
|
||||
{
|
||||
sid = sweepId++;
|
||||
sweeps[sid].nei = 0xff;
|
||||
sweeps[sid].ns = 0;
|
||||
}
|
||||
|
||||
// -y
|
||||
if (rcGetCon(s,3) != RC_NOT_CONNECTED)
|
||||
{
|
||||
const int ax = x + rcGetDirOffsetX(3);
|
||||
const int ay = y + rcGetDirOffsetY(3);
|
||||
const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 3);
|
||||
const unsigned char nr = srcReg[ai];
|
||||
if (nr != 0xff)
|
||||
{
|
||||
// Set neighbour when first valid neighbour is encoutered.
|
||||
if (sweeps[sid].ns == 0)
|
||||
sweeps[sid].nei = nr;
|
||||
|
||||
if (sweeps[sid].nei == nr)
|
||||
{
|
||||
// Update existing neighbour
|
||||
sweeps[sid].ns++;
|
||||
prevCount[nr]++;
|
||||
}
|
||||
else
|
||||
{
|
||||
// This is hit if there is nore than one neighbour.
|
||||
// Invalidate the neighbour.
|
||||
sweeps[sid].nei = 0xff;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
srcReg[i] = sid;
|
||||
}
|
||||
}
|
||||
|
||||
// Create unique ID.
|
||||
for (int i = 0; i < sweepId; ++i)
|
||||
{
|
||||
// If the neighbour is set and there is only one continuous connection to it,
|
||||
// the sweep will be merged with the previous one, else new region is created.
|
||||
if (sweeps[i].nei != 0xff && prevCount[sweeps[i].nei] == (int)sweeps[i].ns)
|
||||
{
|
||||
sweeps[i].id = sweeps[i].nei;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (regId == 255)
|
||||
{
|
||||
ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Region ID overflow.");
|
||||
return false;
|
||||
}
|
||||
sweeps[i].id = regId++;
|
||||
}
|
||||
}
|
||||
|
||||
// Remap local sweep ids to region ids.
|
||||
for (int x = borderSize; x < w-borderSize; ++x)
|
||||
{
|
||||
const rcCompactCell& c = chf.cells[x+y*w];
|
||||
for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
|
||||
{
|
||||
if (srcReg[i] != 0xff)
|
||||
srcReg[i] = sweeps[srcReg[i]].id;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Allocate and init layer regions.
|
||||
const int nregs = (int)regId;
|
||||
rcScopedDelete<rcLayerRegion> regs = (rcLayerRegion*)rcAlloc(sizeof(rcLayerRegion)*nregs, RC_ALLOC_TEMP);
|
||||
if (!regs)
|
||||
{
|
||||
ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'regs' (%d).", nregs);
|
||||
return false;
|
||||
}
|
||||
memset(regs, 0, sizeof(rcLayerRegion)*nregs);
|
||||
for (int i = 0; i < nregs; ++i)
|
||||
{
|
||||
regs[i].layerId = 0xff;
|
||||
regs[i].ymin = 0xffff;
|
||||
regs[i].ymax = 0;
|
||||
}
|
||||
|
||||
// Find region neighbours and overlapping regions.
|
||||
for (int y = 0; y < h; ++y)
|
||||
{
|
||||
for (int x = 0; x < w; ++x)
|
||||
{
|
||||
const rcCompactCell& c = chf.cells[x+y*w];
|
||||
|
||||
unsigned char lregs[RC_MAX_LAYERS];
|
||||
int nlregs = 0;
|
||||
|
||||
for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
|
||||
{
|
||||
const rcCompactSpan& s = chf.spans[i];
|
||||
const unsigned char ri = srcReg[i];
|
||||
if (ri == 0xff) continue;
|
||||
|
||||
regs[ri].ymin = rcMin(regs[ri].ymin, s.y);
|
||||
regs[ri].ymax = rcMax(regs[ri].ymax, s.y);
|
||||
|
||||
// Collect all region layers.
|
||||
if (nlregs < RC_MAX_LAYERS)
|
||||
lregs[nlregs++] = ri;
|
||||
|
||||
// Update neighbours
|
||||
for (int dir = 0; dir < 4; ++dir)
|
||||
{
|
||||
if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
|
||||
{
|
||||
const int ax = x + rcGetDirOffsetX(dir);
|
||||
const int ay = y + rcGetDirOffsetY(dir);
|
||||
const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, dir);
|
||||
const unsigned char rai = srcReg[ai];
|
||||
if (rai != 0xff && rai != ri)
|
||||
addUnique(regs[ri].neis, regs[ri].nneis, rai);
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
// Update overlapping regions.
|
||||
for (int i = 0; i < nlregs-1; ++i)
|
||||
{
|
||||
for (int j = i+1; j < nlregs; ++j)
|
||||
{
|
||||
if (lregs[i] != lregs[j])
|
||||
{
|
||||
rcLayerRegion& ri = regs[lregs[i]];
|
||||
rcLayerRegion& rj = regs[lregs[j]];
|
||||
addUnique(ri.layers, ri.nlayers, lregs[j]);
|
||||
addUnique(rj.layers, rj.nlayers, lregs[i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
// Create 2D layers from regions.
|
||||
unsigned char layerId = 0;
|
||||
|
||||
static const int MAX_STACK = 64;
|
||||
unsigned char stack[MAX_STACK];
|
||||
int nstack = 0;
|
||||
|
||||
for (int i = 0; i < nregs; ++i)
|
||||
{
|
||||
rcLayerRegion& root = regs[i];
|
||||
// Skip alreadu visited.
|
||||
if (root.layerId != 0xff)
|
||||
continue;
|
||||
|
||||
// Start search.
|
||||
root.layerId = layerId;
|
||||
root.base = 1;
|
||||
|
||||
nstack = 0;
|
||||
stack[nstack++] = (unsigned char)i;
|
||||
|
||||
while (nstack)
|
||||
{
|
||||
// Pop front
|
||||
rcLayerRegion& reg = regs[stack[0]];
|
||||
nstack--;
|
||||
for (int j = 0; j < nstack; ++j)
|
||||
stack[j] = stack[j+1];
|
||||
|
||||
const int nneis = (int)reg.nneis;
|
||||
for (int j = 0; j < nneis; ++j)
|
||||
{
|
||||
const unsigned char nei = reg.neis[j];
|
||||
rcLayerRegion& regn = regs[nei];
|
||||
// Skip already visited.
|
||||
if (regn.layerId != 0xff)
|
||||
continue;
|
||||
// Skip if the neighbour is overlapping root region.
|
||||
if (contains(root.layers, root.nlayers, nei))
|
||||
continue;
|
||||
// Skip if the height range would become too large.
|
||||
const int ymin = rcMin(root.ymin, regn.ymin);
|
||||
const int ymax = rcMax(root.ymax, regn.ymax); // Edited by TC
|
||||
if ((ymax - ymin) >= 255)
|
||||
continue;
|
||||
|
||||
if (nstack < MAX_STACK)
|
||||
{
|
||||
// Deepen
|
||||
stack[nstack++] = (unsigned char)nei;
|
||||
|
||||
// Mark layer id
|
||||
regn.layerId = layerId;
|
||||
// Merge current layers to root.
|
||||
for (int k = 0; k < regn.nlayers; ++k)
|
||||
addUnique(root.layers, root.nlayers, regn.layers[k]);
|
||||
root.ymin = rcMin(root.ymin, regn.ymin);
|
||||
root.ymax = rcMax(root.ymax, regn.ymax);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
layerId++;
|
||||
}
|
||||
|
||||
// Merge non-overlapping regions that are close in height.
|
||||
const unsigned short mergeHeight = (unsigned short)walkableHeight * 4;
|
||||
|
||||
for (int i = 0; i < nregs; ++i)
|
||||
{
|
||||
rcLayerRegion& ri = regs[i];
|
||||
if (!ri.base) continue;
|
||||
|
||||
unsigned char newId = ri.layerId;
|
||||
|
||||
for (;;)
|
||||
{
|
||||
unsigned char oldId = 0xff;
|
||||
|
||||
for (int j = 0; j < nregs; ++j)
|
||||
{
|
||||
if (i == j) continue;
|
||||
rcLayerRegion& rj = regs[j];
|
||||
if (!rj.base) continue;
|
||||
|
||||
// Skip if teh regions are not close to each other.
|
||||
if (!overlapRange(ri.ymin,ri.ymax+mergeHeight, rj.ymin,rj.ymax+mergeHeight))
|
||||
continue;
|
||||
// Skip if the height range would become too large.
|
||||
const int ymin = rcMin(ri.ymin, rj.ymin);
|
||||
const int ymax = rcMax(ri.ymax, rj.ymax); // Edited by TC
|
||||
if ((ymax - ymin) >= 255)
|
||||
continue;
|
||||
|
||||
// Make sure that there is no overlap when mergin 'ri' and 'rj'.
|
||||
bool overlap = false;
|
||||
// Iterate over all regions which have the same layerId as 'rj'
|
||||
for (int k = 0; k < nregs; ++k)
|
||||
{
|
||||
if (regs[k].layerId != rj.layerId)
|
||||
continue;
|
||||
// Check if region 'k' is overlapping region 'ri'
|
||||
// Index to 'regs' is the same as region id.
|
||||
if (contains(ri.layers,ri.nlayers, (unsigned char)k))
|
||||
{
|
||||
overlap = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
// Cannot merge of regions overlap.
|
||||
if (overlap)
|
||||
continue;
|
||||
|
||||
// Can merge i and j.
|
||||
oldId = rj.layerId;
|
||||
break;
|
||||
}
|
||||
|
||||
// Could not find anything to merge with, stop.
|
||||
if (oldId == 0xff)
|
||||
break;
|
||||
|
||||
// Merge
|
||||
for (int j = 0; j < nregs; ++j)
|
||||
{
|
||||
rcLayerRegion& rj = regs[j];
|
||||
if (rj.layerId == oldId)
|
||||
{
|
||||
rj.base = 0;
|
||||
// Remap layerIds.
|
||||
rj.layerId = newId;
|
||||
// Add overlaid layers from 'rj' to 'ri'.
|
||||
for (int k = 0; k < rj.nlayers; ++k)
|
||||
addUnique(ri.layers, ri.nlayers, rj.layers[k]);
|
||||
// Update heigh bounds.
|
||||
ri.ymin = rcMin(ri.ymin, rj.ymin);
|
||||
ri.ymax = rcMax(ri.ymax, rj.ymax);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Compact layerIds
|
||||
unsigned char remap[256];
|
||||
memset(remap, 0, 256);
|
||||
|
||||
// Find number of unique layers.
|
||||
layerId = 0;
|
||||
for (int i = 0; i < nregs; ++i)
|
||||
remap[regs[i].layerId] = 1;
|
||||
for (int i = 0; i < 256; ++i)
|
||||
{
|
||||
if (remap[i])
|
||||
remap[i] = layerId++;
|
||||
else
|
||||
remap[i] = 0xff;
|
||||
}
|
||||
// Remap ids.
|
||||
for (int i = 0; i < nregs; ++i)
|
||||
regs[i].layerId = remap[regs[i].layerId];
|
||||
|
||||
// No layers, return empty.
|
||||
if (layerId == 0)
|
||||
{
|
||||
ctx->stopTimer(RC_TIMER_BUILD_LAYERS);
|
||||
return true;
|
||||
}
|
||||
|
||||
// Create layers.
|
||||
rcAssert(lset.layers == 0);
|
||||
|
||||
const int lw = w - borderSize*2;
|
||||
const int lh = h - borderSize*2;
|
||||
|
||||
// Build contracted bbox for layers.
|
||||
float bmin[3], bmax[3];
|
||||
rcVcopy(bmin, chf.bmin);
|
||||
rcVcopy(bmax, chf.bmax);
|
||||
bmin[0] += borderSize*chf.cs;
|
||||
bmin[2] += borderSize*chf.cs;
|
||||
bmax[0] -= borderSize*chf.cs;
|
||||
bmax[2] -= borderSize*chf.cs;
|
||||
|
||||
lset.nlayers = (int)layerId;
|
||||
|
||||
lset.layers = (rcHeightfieldLayer*)rcAlloc(sizeof(rcHeightfieldLayer)*lset.nlayers, RC_ALLOC_PERM);
|
||||
if (!lset.layers)
|
||||
{
|
||||
ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'layers' (%d).", lset.nlayers);
|
||||
return false;
|
||||
}
|
||||
memset(lset.layers, 0, sizeof(rcHeightfieldLayer)*lset.nlayers);
|
||||
|
||||
|
||||
// Store layers.
|
||||
for (int i = 0; i < lset.nlayers; ++i)
|
||||
{
|
||||
unsigned char curId = (unsigned char)i;
|
||||
|
||||
// Allocate memory for the current layer.
|
||||
rcHeightfieldLayer* layer = &lset.layers[i];
|
||||
memset(layer, 0, sizeof(rcHeightfieldLayer));
|
||||
|
||||
const int gridSize = sizeof(unsigned char)*lw*lh;
|
||||
|
||||
layer->heights = (unsigned char*)rcAlloc(gridSize, RC_ALLOC_PERM);
|
||||
if (!layer->heights)
|
||||
{
|
||||
ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'heights' (%d).", gridSize);
|
||||
return false;
|
||||
}
|
||||
memset(layer->heights, 0xff, gridSize);
|
||||
|
||||
layer->areas = (unsigned char*)rcAlloc(gridSize, RC_ALLOC_PERM);
|
||||
if (!layer->areas)
|
||||
{
|
||||
ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'areas' (%d).", gridSize);
|
||||
return false;
|
||||
}
|
||||
memset(layer->areas, 0, gridSize);
|
||||
|
||||
layer->cons = (unsigned char*)rcAlloc(gridSize, RC_ALLOC_PERM);
|
||||
if (!layer->cons)
|
||||
{
|
||||
ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'cons' (%d).", gridSize);
|
||||
return false;
|
||||
}
|
||||
memset(layer->cons, 0, gridSize);
|
||||
|
||||
// Find layer height bounds.
|
||||
int hmin = 0, hmax = 0;
|
||||
for (int j = 0; j < nregs; ++j)
|
||||
{
|
||||
if (regs[j].base && regs[j].layerId == curId)
|
||||
{
|
||||
hmin = (int)regs[j].ymin;
|
||||
hmax = (int)regs[j].ymax;
|
||||
}
|
||||
}
|
||||
|
||||
layer->width = lw;
|
||||
layer->height = lh;
|
||||
layer->cs = chf.cs;
|
||||
layer->ch = chf.ch;
|
||||
|
||||
// Adjust the bbox to fit the heighfield.
|
||||
rcVcopy(layer->bmin, bmin);
|
||||
rcVcopy(layer->bmax, bmax);
|
||||
layer->bmin[1] = bmin[1] + hmin*chf.ch;
|
||||
layer->bmax[1] = bmin[1] + hmax*chf.ch;
|
||||
layer->hmin = hmin;
|
||||
layer->hmax = hmax;
|
||||
|
||||
// Update usable data region.
|
||||
layer->minx = layer->width;
|
||||
layer->maxx = 0;
|
||||
layer->miny = layer->height;
|
||||
layer->maxy = 0;
|
||||
|
||||
// Copy height and area from compact heighfield.
|
||||
for (int y = 0; y < lh; ++y)
|
||||
{
|
||||
for (int x = 0; x < lw; ++x)
|
||||
{
|
||||
const int cx = borderSize+x;
|
||||
const int cy = borderSize+y;
|
||||
const rcCompactCell& c = chf.cells[cx+cy*w];
|
||||
for (int j = (int)c.index, nj = (int)(c.index+c.count); j < nj; ++j)
|
||||
{
|
||||
const rcCompactSpan& s = chf.spans[j];
|
||||
// Skip unassigned regions.
|
||||
if (srcReg[j] == 0xff)
|
||||
continue;
|
||||
// Skip of does nto belong to current layer.
|
||||
unsigned char lid = regs[srcReg[j]].layerId;
|
||||
if (lid != curId)
|
||||
continue;
|
||||
|
||||
// Update data bounds.
|
||||
layer->minx = rcMin(layer->minx, x);
|
||||
layer->maxx = rcMax(layer->maxx, x);
|
||||
layer->miny = rcMin(layer->miny, y);
|
||||
layer->maxy = rcMax(layer->maxy, y);
|
||||
|
||||
// Store height and area type.
|
||||
const int idx = x+y*lw;
|
||||
layer->heights[idx] = (unsigned char)(s.y - hmin);
|
||||
layer->areas[idx] = chf.areas[j];
|
||||
|
||||
// Check connection.
|
||||
unsigned char portal = 0;
|
||||
unsigned char con = 0;
|
||||
for (int dir = 0; dir < 4; ++dir)
|
||||
{
|
||||
if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
|
||||
{
|
||||
const int ax = cx + rcGetDirOffsetX(dir);
|
||||
const int ay = cy + rcGetDirOffsetY(dir);
|
||||
const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, dir);
|
||||
unsigned char alid = srcReg[ai] != 0xff ? regs[srcReg[ai]].layerId : 0xff;
|
||||
// Portal mask
|
||||
if (chf.areas[ai] != RC_NULL_AREA && lid != alid)
|
||||
{
|
||||
portal |= (unsigned char)(1<<dir);
|
||||
// Update height so that it matches on both sides of the portal.
|
||||
const rcCompactSpan& as = chf.spans[ai];
|
||||
if (as.y > hmin)
|
||||
layer->heights[idx] = rcMax(layer->heights[idx], (unsigned char)(as.y - hmin));
|
||||
}
|
||||
// Valid connection mask
|
||||
if (chf.areas[ai] != RC_NULL_AREA && lid == alid)
|
||||
{
|
||||
const int nx = ax - borderSize;
|
||||
const int ny = ay - borderSize;
|
||||
if (nx >= 0 && ny >= 0 && nx < lw && ny < lh)
|
||||
con |= (unsigned char)(1<<dir);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
layer->cons[idx] = (portal << 4) | con;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (layer->minx > layer->maxx)
|
||||
layer->minx = layer->maxx = 0;
|
||||
if (layer->miny > layer->maxy)
|
||||
layer->miny = layer->maxy = 0;
|
||||
}
|
||||
|
||||
ctx->stopTimer(RC_TIMER_BUILD_LAYERS);
|
||||
|
||||
return true;
|
||||
}
|
||||
@@ -59,6 +59,7 @@ static bool buildMeshAdjacency(unsigned short* polys, const int npolys,
|
||||
unsigned short* t = &polys[i*vertsPerPoly*2];
|
||||
for (int j = 0; j < vertsPerPoly; ++j)
|
||||
{
|
||||
if (t[j] == RC_MESH_NULL_IDX) break;
|
||||
unsigned short v0 = t[j];
|
||||
unsigned short v1 = (j+1 >= vertsPerPoly || t[j+1] == RC_MESH_NULL_IDX) ? t[0] : t[j+1];
|
||||
if (v0 < v1)
|
||||
@@ -83,6 +84,7 @@ static bool buildMeshAdjacency(unsigned short* polys, const int npolys,
|
||||
unsigned short* t = &polys[i*vertsPerPoly*2];
|
||||
for (int j = 0; j < vertsPerPoly; ++j)
|
||||
{
|
||||
if (t[j] == RC_MESH_NULL_IDX) break;
|
||||
unsigned short v0 = t[j];
|
||||
unsigned short v1 = (j+1 >= vertsPerPoly || t[j+1] == RC_MESH_NULL_IDX) ? t[0] : t[j+1];
|
||||
if (v0 > v1)
|
||||
@@ -195,7 +197,7 @@ inline bool collinear(const int* a, const int* b, const int* c)
|
||||
// Returns true iff ab properly intersects cd: they share
|
||||
// a point interior to both segments. The properness of the
|
||||
// intersection is ensured by using strict leftness.
|
||||
bool intersectProp(const int* a, const int* b, const int* c, const int* d)
|
||||
static bool intersectProp(const int* a, const int* b, const int* c, const int* d)
|
||||
{
|
||||
// Eliminate improper cases.
|
||||
if (collinear(a,b,c) || collinear(a,b,d) ||
|
||||
@@ -470,6 +472,7 @@ static void mergePolys(unsigned short* pa, unsigned short* pb, int ea, int eb,
|
||||
memcpy(pa, tmp, sizeof(unsigned short)*nvp);
|
||||
}
|
||||
|
||||
|
||||
static void pushFront(int v, int* arr, int& an)
|
||||
{
|
||||
an++;
|
||||
@@ -547,9 +550,9 @@ static bool canRemoveVertex(rcContext* ctx, rcPolyMesh& mesh, const unsigned sho
|
||||
|
||||
// Check if the edge exists
|
||||
bool exists = false;
|
||||
for (int k = 0; k < nedges; ++k)
|
||||
for (int m = 0; m < nedges; ++m)
|
||||
{
|
||||
int* e = &edges[k*3];
|
||||
int* e = &edges[m*3];
|
||||
if (e[1] == b)
|
||||
{
|
||||
// Exists, increment vertex share count.
|
||||
@@ -892,8 +895,13 @@ static bool removeVertex(rcContext* ctx, rcPolyMesh& mesh, const unsigned short
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
bool rcBuildPolyMesh(rcContext* ctx, rcContourSet& cset, int nvp, rcPolyMesh& mesh)
|
||||
/// @par
|
||||
///
|
||||
/// @note If the mesh data is to be used to construct a Detour navigation mesh, then the upper
|
||||
/// limit must be retricted to <= #DT_VERTS_PER_POLYGON.
|
||||
///
|
||||
/// @see rcAllocPolyMesh, rcContourSet, rcPolyMesh, rcConfig
|
||||
bool rcBuildPolyMesh(rcContext* ctx, rcContourSet& cset, const int nvp, rcPolyMesh& mesh)
|
||||
{
|
||||
rcAssert(ctx);
|
||||
|
||||
@@ -903,6 +911,7 @@ bool rcBuildPolyMesh(rcContext* ctx, rcContourSet& cset, int nvp, rcPolyMesh& me
|
||||
rcVcopy(mesh.bmax, cset.bmax);
|
||||
mesh.cs = cset.cs;
|
||||
mesh.ch = cset.ch;
|
||||
mesh.borderSize = cset.borderSize;
|
||||
|
||||
int maxVertices = 0;
|
||||
int maxTris = 0;
|
||||
@@ -925,7 +934,7 @@ bool rcBuildPolyMesh(rcContext* ctx, rcContourSet& cset, int nvp, rcPolyMesh& me
|
||||
rcScopedDelete<unsigned char> vflags = (unsigned char*)rcAlloc(sizeof(unsigned char)*maxVertices, RC_ALLOC_TEMP);
|
||||
if (!vflags)
|
||||
{
|
||||
ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'mesh.verts' (%d).", maxVertices);
|
||||
ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'vflags' (%d).", maxVertices);
|
||||
return false;
|
||||
}
|
||||
memset(vflags, 0, maxVertices);
|
||||
@@ -936,7 +945,7 @@ bool rcBuildPolyMesh(rcContext* ctx, rcContourSet& cset, int nvp, rcPolyMesh& me
|
||||
ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'mesh.verts' (%d).", maxVertices);
|
||||
return false;
|
||||
}
|
||||
mesh.polys = (unsigned short*)rcAlloc(sizeof(unsigned short)*maxTris*nvp*2*2, RC_ALLOC_PERM);
|
||||
mesh.polys = (unsigned short*)rcAlloc(sizeof(unsigned short)*maxTris*nvp*2, RC_ALLOC_PERM);
|
||||
if (!mesh.polys)
|
||||
{
|
||||
ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'mesh.polys' (%d).", maxTris*nvp*2);
|
||||
@@ -1044,7 +1053,7 @@ bool rcBuildPolyMesh(rcContext* ctx, rcContourSet& cset, int nvp, rcPolyMesh& me
|
||||
vflags[indices[j]] = 1;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Build initial polygons.
|
||||
int npolys = 0;
|
||||
memset(polys, 0xff, maxVertsPerCont*nvp*sizeof(unsigned short));
|
||||
@@ -1141,6 +1150,7 @@ bool rcBuildPolyMesh(rcContext* ctx, rcContourSet& cset, int nvp, rcPolyMesh& me
|
||||
}
|
||||
// Remove vertex
|
||||
// Note: mesh.nverts is already decremented inside removeVertex()!
|
||||
// Fixup vertex flags
|
||||
for (int j = i; j < mesh.nverts; ++j)
|
||||
vflags[j] = vflags[j+1];
|
||||
--i;
|
||||
@@ -1153,6 +1163,37 @@ bool rcBuildPolyMesh(rcContext* ctx, rcContourSet& cset, int nvp, rcPolyMesh& me
|
||||
ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Adjacency failed.");
|
||||
return false;
|
||||
}
|
||||
|
||||
// Find portal edges
|
||||
if (mesh.borderSize > 0)
|
||||
{
|
||||
const int w = cset.width;
|
||||
const int h = cset.height;
|
||||
for (int i = 0; i < mesh.npolys; ++i)
|
||||
{
|
||||
unsigned short* p = &mesh.polys[i*2*nvp];
|
||||
for (int j = 0; j < nvp; ++j)
|
||||
{
|
||||
if (p[j] == RC_MESH_NULL_IDX) break;
|
||||
// Skip connected edges.
|
||||
if (p[nvp+j] != RC_MESH_NULL_IDX)
|
||||
continue;
|
||||
int nj = j+1;
|
||||
if (nj >= nvp || p[nj] == RC_MESH_NULL_IDX) nj = 0;
|
||||
const unsigned short* va = &mesh.verts[p[j]*3];
|
||||
const unsigned short* vb = &mesh.verts[p[nj]*3];
|
||||
|
||||
if ((int)va[0] == 0 && (int)vb[0] == 0)
|
||||
p[nvp+j] = 0x8000 | 0;
|
||||
else if ((int)va[2] == h && (int)vb[2] == h)
|
||||
p[nvp+j] = 0x8000 | 1;
|
||||
else if ((int)va[0] == w && (int)vb[0] == w)
|
||||
p[nvp+j] = 0x8000 | 2;
|
||||
else if ((int)va[2] == 0 && (int)vb[2] == 0)
|
||||
p[nvp+j] = 0x8000 | 3;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Just allocate the mesh flags array. The user is resposible to fill it.
|
||||
mesh.flags = (unsigned short*)rcAlloc(sizeof(unsigned short)*mesh.npolys, RC_ALLOC_PERM);
|
||||
@@ -1165,11 +1206,11 @@ bool rcBuildPolyMesh(rcContext* ctx, rcContourSet& cset, int nvp, rcPolyMesh& me
|
||||
|
||||
if (mesh.nverts > 0xffff)
|
||||
{
|
||||
ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: The resulting mesh has too many vertices %d (max %d). Data can be corrupted.", mesh.nverts, 0xffff);
|
||||
ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: The resulting mesh has too many vertices %d (max %d). Data can be corrupted.", mesh.nverts, 0xffff);
|
||||
}
|
||||
if (mesh.npolys > 0xffff)
|
||||
{
|
||||
ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: The resulting mesh has too many polygons %d (max %d). Data can be corrupted.", mesh.npolys, 0xffff);
|
||||
ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: The resulting mesh has too many polygons %d (max %d). Data can be corrupted.", mesh.npolys, 0xffff);
|
||||
}
|
||||
|
||||
ctx->stopTimer(RC_TIMER_BUILD_POLYMESH);
|
||||
@@ -1177,6 +1218,7 @@ bool rcBuildPolyMesh(rcContext* ctx, rcContourSet& cset, int nvp, rcPolyMesh& me
|
||||
return true;
|
||||
}
|
||||
|
||||
/// @see rcAllocPolyMesh, rcPolyMesh
|
||||
bool rcMergePolyMeshes(rcContext* ctx, rcPolyMesh** meshes, const int nmeshes, rcPolyMesh& mesh)
|
||||
{
|
||||
rcAssert(ctx);
|
||||
@@ -1268,7 +1310,7 @@ bool rcMergePolyMeshes(rcContext* ctx, rcPolyMesh** meshes, const int nmeshes, r
|
||||
ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: Out of memory 'vremap' (%d).", maxVertsPerMesh);
|
||||
return false;
|
||||
}
|
||||
memset(nextVert, 0, sizeof(int)*maxVerts);
|
||||
memset(vremap, 0, sizeof(unsigned short)*maxVertsPerMesh);
|
||||
|
||||
for (int i = 0; i < nmeshes; ++i)
|
||||
{
|
||||
@@ -1320,3 +1362,67 @@ bool rcMergePolyMeshes(rcContext* ctx, rcPolyMesh** meshes, const int nmeshes, r
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool rcCopyPolyMesh(rcContext* ctx, const rcPolyMesh& src, rcPolyMesh& dst)
|
||||
{
|
||||
rcAssert(ctx);
|
||||
|
||||
// Destination must be empty.
|
||||
rcAssert(dst.verts == 0);
|
||||
rcAssert(dst.polys == 0);
|
||||
rcAssert(dst.regs == 0);
|
||||
rcAssert(dst.areas == 0);
|
||||
rcAssert(dst.flags == 0);
|
||||
|
||||
dst.nverts = src.nverts;
|
||||
dst.npolys = src.npolys;
|
||||
dst.maxpolys = src.npolys;
|
||||
dst.nvp = src.nvp;
|
||||
rcVcopy(dst.bmin, src.bmin);
|
||||
rcVcopy(dst.bmax, src.bmax);
|
||||
dst.cs = src.cs;
|
||||
dst.ch = src.ch;
|
||||
dst.borderSize = src.borderSize;
|
||||
|
||||
dst.verts = (unsigned short*)rcAlloc(sizeof(unsigned short)*src.nverts*3, RC_ALLOC_PERM);
|
||||
if (!dst.verts)
|
||||
{
|
||||
ctx->log(RC_LOG_ERROR, "rcCopyPolyMesh: Out of memory 'dst.verts' (%d).", src.nverts*3);
|
||||
return false;
|
||||
}
|
||||
memcpy(dst.verts, src.verts, sizeof(unsigned short)*src.nverts*3);
|
||||
|
||||
dst.polys = (unsigned short*)rcAlloc(sizeof(unsigned short)*src.npolys*2*src.nvp, RC_ALLOC_PERM);
|
||||
if (!dst.polys)
|
||||
{
|
||||
ctx->log(RC_LOG_ERROR, "rcCopyPolyMesh: Out of memory 'dst.polys' (%d).", src.npolys*2*src.nvp);
|
||||
return false;
|
||||
}
|
||||
memcpy(dst.polys, src.polys, sizeof(unsigned short)*src.npolys*2*src.nvp);
|
||||
|
||||
dst.regs = (unsigned short*)rcAlloc(sizeof(unsigned short)*src.npolys, RC_ALLOC_PERM);
|
||||
if (!dst.regs)
|
||||
{
|
||||
ctx->log(RC_LOG_ERROR, "rcCopyPolyMesh: Out of memory 'dst.regs' (%d).", src.npolys);
|
||||
return false;
|
||||
}
|
||||
memcpy(dst.regs, src.regs, sizeof(unsigned short)*src.npolys);
|
||||
|
||||
dst.areas = (unsigned char*)rcAlloc(sizeof(unsigned char)*src.npolys, RC_ALLOC_PERM);
|
||||
if (!dst.areas)
|
||||
{
|
||||
ctx->log(RC_LOG_ERROR, "rcCopyPolyMesh: Out of memory 'dst.areas' (%d).", src.npolys);
|
||||
return false;
|
||||
}
|
||||
memcpy(dst.areas, src.areas, sizeof(unsigned char)*src.npolys);
|
||||
|
||||
dst.flags = (unsigned short*)rcAlloc(sizeof(unsigned short)*src.npolys, RC_ALLOC_PERM);
|
||||
if (!dst.flags)
|
||||
{
|
||||
ctx->log(RC_LOG_ERROR, "rcCopyPolyMesh: Out of memory 'dst.flags' (%d).", src.npolys);
|
||||
return false;
|
||||
}
|
||||
memcpy(dst.flags, src.flags, sizeof(unsigned char)*src.npolys);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
@@ -267,11 +267,11 @@ static int addEdge(rcContext* ctx, int* edges, int& nedges, const int maxEdges,
|
||||
int e = findEdge(edges, nedges, s, t);
|
||||
if (e == UNDEF)
|
||||
{
|
||||
int* e = &edges[nedges*4];
|
||||
e[0] = s;
|
||||
e[1] = t;
|
||||
e[2] = l;
|
||||
e[3] = r;
|
||||
int* edge = &edges[nedges*4];
|
||||
edge[0] = s;
|
||||
edge[1] = t;
|
||||
edge[2] = l;
|
||||
edge[3] = r;
|
||||
return nedges++;
|
||||
}
|
||||
else
|
||||
@@ -554,7 +554,7 @@ static bool buildPolyDetail(rcContext* ctx, const float* in, const int nin,
|
||||
float dx = vi[0] - vj[0];
|
||||
float dy = vi[1] - vj[1];
|
||||
float dz = vi[2] - vj[2];
|
||||
float d = sqrtf(dx*dx + dz*dz);
|
||||
float d = rcSqrt(dx*dx + dz*dz);
|
||||
int nn = 1 + (int)floorf(d/sampleDist);
|
||||
if (nn >= MAX_VERTS_PER_EDGE) nn = MAX_VERTS_PER_EDGE-1;
|
||||
if (nverts+nn >= MAX_VERTS)
|
||||
@@ -583,10 +583,10 @@ static bool buildPolyDetail(rcContext* ctx, const float* in, const int nin,
|
||||
int maxi = -1;
|
||||
for (int m = a+1; m < b; ++m)
|
||||
{
|
||||
float d = distancePtSeg(&edge[m*3],va,vb);
|
||||
if (d > maxd)
|
||||
float dev = distancePtSeg(&edge[m*3],va,vb);
|
||||
if (dev > maxd)
|
||||
{
|
||||
maxd = d;
|
||||
maxd = dev;
|
||||
maxi = m;
|
||||
}
|
||||
}
|
||||
@@ -743,12 +743,15 @@ static bool buildPolyDetail(rcContext* ctx, const float* in, const int nin,
|
||||
|
||||
static void getHeightData(const rcCompactHeightfield& chf,
|
||||
const unsigned short* poly, const int npoly,
|
||||
const unsigned short* verts,
|
||||
const unsigned short* verts, const int bs,
|
||||
rcHeightPatch& hp, rcIntArray& stack)
|
||||
{
|
||||
// Floodfill the heightfield to get 2D height data,
|
||||
// starting at vertex locations as seeds.
|
||||
|
||||
// Note: Reads to the compact heightfield are offset by border size (bs)
|
||||
// since border size offset is already removed from the polymesh vertices.
|
||||
|
||||
memset(hp.data, 0, sizeof(unsigned short)*hp.width*hp.height);
|
||||
|
||||
stack.resize(0);
|
||||
@@ -772,7 +775,7 @@ static void getHeightData(const rcCompactHeightfield& chf,
|
||||
az < hp.ymin || az >= hp.ymin+hp.height)
|
||||
continue;
|
||||
|
||||
const rcCompactCell& c = chf.cells[ax+az*chf.width];
|
||||
const rcCompactCell& c = chf.cells[(ax+bs)+(az+bs)*chf.width];
|
||||
for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
|
||||
{
|
||||
const rcCompactSpan& s = chf.spans[i];
|
||||
@@ -844,7 +847,7 @@ static void getHeightData(const rcCompactHeightfield& chf,
|
||||
if (hp.data[ax-hp.xmin+(ay-hp.ymin)*hp.width] != 0)
|
||||
continue;
|
||||
|
||||
const int ai = (int)chf.cells[ax+ay*chf.width].index + rcGetCon(cs, dir);
|
||||
const int ai = (int)chf.cells[(ax+bs)+(ay+bs)*chf.width].index + rcGetCon(cs, dir);
|
||||
|
||||
int idx = ax-hp.xmin+(ay-hp.ymin)*hp.width;
|
||||
hp.data[idx] = 1;
|
||||
@@ -900,7 +903,7 @@ static void getHeightData(const rcCompactHeightfield& chf,
|
||||
if (hp.data[ax-hp.xmin+(ay-hp.ymin)*hp.width] != RC_UNSET_HEIGHT)
|
||||
continue;
|
||||
|
||||
const int ai = (int)chf.cells[ax+ay*chf.width].index + rcGetCon(cs, dir);
|
||||
const int ai = (int)chf.cells[(ax+bs)+(ay+bs)*chf.width].index + rcGetCon(cs, dir);
|
||||
|
||||
const rcCompactSpan& as = chf.spans[ai];
|
||||
int idx = ax-hp.xmin+(ay-hp.ymin)*hp.width;
|
||||
@@ -938,8 +941,11 @@ static unsigned char getTriFlags(const float* va, const float* vb, const float*
|
||||
return flags;
|
||||
}
|
||||
|
||||
|
||||
|
||||
/// @par
|
||||
///
|
||||
/// See the #rcConfig documentation for more information on the configuration parameters.
|
||||
///
|
||||
/// @see rcAllocPolyMeshDetail, rcPolyMesh, rcCompactHeightfield, rcPolyMeshDetail, rcConfig
|
||||
bool rcBuildPolyMeshDetail(rcContext* ctx, const rcPolyMesh& mesh, const rcCompactHeightfield& chf,
|
||||
const float sampleDist, const float sampleMaxError,
|
||||
rcPolyMeshDetail& dmesh)
|
||||
@@ -955,6 +961,7 @@ bool rcBuildPolyMeshDetail(rcContext* ctx, const rcPolyMesh& mesh, const rcCompa
|
||||
const float cs = mesh.cs;
|
||||
const float ch = mesh.ch;
|
||||
const float* orig = mesh.bmin;
|
||||
const int borderSize = mesh.borderSize;
|
||||
|
||||
rcIntArray edges(64);
|
||||
rcIntArray tris(512);
|
||||
@@ -1065,7 +1072,7 @@ bool rcBuildPolyMeshDetail(rcContext* ctx, const rcPolyMesh& mesh, const rcCompa
|
||||
hp.ymin = bounds[i*4+2];
|
||||
hp.width = bounds[i*4+1]-bounds[i*4+0];
|
||||
hp.height = bounds[i*4+3]-bounds[i*4+2];
|
||||
getHeightData(chf, p, npoly, mesh.verts, hp, stack);
|
||||
getHeightData(chf, p, npoly, mesh.verts, borderSize, hp, stack);
|
||||
|
||||
// Build detail mesh.
|
||||
int nverts = 0;
|
||||
@@ -1157,6 +1164,7 @@ bool rcBuildPolyMeshDetail(rcContext* ctx, const rcPolyMesh& mesh, const rcCompa
|
||||
return true;
|
||||
}
|
||||
|
||||
/// @see rcAllocPolyMeshDetail, rcPolyMeshDetail
|
||||
bool rcMergePolyMeshDetails(rcContext* ctx, rcPolyMeshDetail** meshes, const int nmeshes, rcPolyMeshDetail& mesh)
|
||||
{
|
||||
rcAssert(ctx);
|
||||
|
||||
@@ -154,6 +154,13 @@ static void addSpan(rcHeightfield& hf, const int x, const int y,
|
||||
}
|
||||
}
|
||||
|
||||
/// @par
|
||||
///
|
||||
/// The span addition can be set to favor flags. If the span is merged to
|
||||
/// another span and the new @p smax is within @p flagMergeThr units
|
||||
/// from the existing span, the span flags are merged.
|
||||
///
|
||||
/// @see rcHeightfield, rcSpan.
|
||||
void rcAddSpan(rcContext* /*ctx*/, rcHeightfield& hf, const int x, const int y,
|
||||
const unsigned short smin, const unsigned short smax,
|
||||
const unsigned char area, const int flagMergeThr)
|
||||
@@ -276,6 +283,11 @@ static void rasterizeTri(const float* v0, const float* v1, const float* v2,
|
||||
}
|
||||
}
|
||||
|
||||
/// @par
|
||||
///
|
||||
/// No spans will be added if the triangle does not overlap the heightfield grid.
|
||||
///
|
||||
/// @see rcHeightfield
|
||||
void rcRasterizeTriangle(rcContext* ctx, const float* v0, const float* v1, const float* v2,
|
||||
const unsigned char area, rcHeightfield& solid,
|
||||
const int flagMergeThr)
|
||||
@@ -291,6 +303,11 @@ void rcRasterizeTriangle(rcContext* ctx, const float* v0, const float* v1, const
|
||||
ctx->stopTimer(RC_TIMER_RASTERIZE_TRIANGLES);
|
||||
}
|
||||
|
||||
/// @par
|
||||
///
|
||||
/// Spans will only be added for triangles that overlap the heightfield grid.
|
||||
///
|
||||
/// @see rcHeightfield
|
||||
void rcRasterizeTriangles(rcContext* ctx, const float* verts, const int /*nv*/,
|
||||
const int* tris, const unsigned char* areas, const int nt,
|
||||
rcHeightfield& solid, const int flagMergeThr)
|
||||
@@ -314,6 +331,11 @@ void rcRasterizeTriangles(rcContext* ctx, const float* verts, const int /*nv*/,
|
||||
ctx->stopTimer(RC_TIMER_RASTERIZE_TRIANGLES);
|
||||
}
|
||||
|
||||
/// @par
|
||||
///
|
||||
/// Spans will only be added for triangles that overlap the heightfield grid.
|
||||
///
|
||||
/// @see rcHeightfield
|
||||
void rcRasterizeTriangles(rcContext* ctx, const float* verts, const int /*nv*/,
|
||||
const unsigned short* tris, const unsigned char* areas, const int nt,
|
||||
rcHeightfield& solid, const int flagMergeThr)
|
||||
@@ -337,6 +359,11 @@ void rcRasterizeTriangles(rcContext* ctx, const float* verts, const int /*nv*/,
|
||||
ctx->stopTimer(RC_TIMER_RASTERIZE_TRIANGLES);
|
||||
}
|
||||
|
||||
/// @par
|
||||
///
|
||||
/// Spans will only be added for triangles that overlap the heightfield grid.
|
||||
///
|
||||
/// @see rcHeightfield
|
||||
void rcRasterizeTriangles(rcContext* ctx, const float* verts, const unsigned char* areas, const int nt,
|
||||
rcHeightfield& solid, const int flagMergeThr)
|
||||
{
|
||||
|
||||
@@ -283,6 +283,8 @@ static bool floodRegion(int x, int y, int i,
|
||||
if (chf.areas[ai] != area)
|
||||
continue;
|
||||
unsigned short nr = srcReg[ai];
|
||||
if (nr & RC_BORDER_REG) // Do not take borders into account.
|
||||
continue;
|
||||
if (nr != 0 && nr != r)
|
||||
ar = nr;
|
||||
|
||||
@@ -296,9 +298,9 @@ static bool floodRegion(int x, int y, int i,
|
||||
const int ai2 = (int)chf.cells[ax2+ay2*w].index + rcGetCon(as, dir2);
|
||||
if (chf.areas[ai2] != area)
|
||||
continue;
|
||||
unsigned short nr = srcReg[ai2];
|
||||
if (nr != 0 && nr != r)
|
||||
ar = nr;
|
||||
unsigned short nr2 = srcReg[ai2];
|
||||
if (nr2 != 0 && nr2 != r)
|
||||
ar = nr2;
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -319,16 +321,13 @@ static bool floodRegion(int x, int y, int i,
|
||||
const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(cs, dir);
|
||||
if (chf.areas[ai] != area)
|
||||
continue;
|
||||
if (chf.dist[ai] >= lev)
|
||||
if (chf.dist[ai] >= lev && srcReg[ai] == 0)
|
||||
{
|
||||
if (srcReg[ai] == 0)
|
||||
{
|
||||
srcReg[ai] = r;
|
||||
srcDist[ai] = 0;
|
||||
stack.push(ax);
|
||||
stack.push(ay);
|
||||
stack.push(ai);
|
||||
}
|
||||
srcReg[ai] = r;
|
||||
srcDist[ai] = 0;
|
||||
stack.push(ax);
|
||||
stack.push(ay);
|
||||
stack.push(ai);
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -679,17 +678,17 @@ static void walkContour(int x, int y, int i, int dir,
|
||||
// Remove adjacent duplicates.
|
||||
if (cont.size() > 1)
|
||||
{
|
||||
for (int i = 0; i < cont.size(); )
|
||||
for (int j = 0; j < cont.size(); )
|
||||
{
|
||||
int ni = (i+1) % cont.size();
|
||||
if (cont[i] == cont[ni])
|
||||
int nj = (j+1) % cont.size();
|
||||
if (cont[j] == cont[nj])
|
||||
{
|
||||
for (int j = i; j < cont.size()-1; ++j)
|
||||
cont[j] = cont[j+1];
|
||||
for (int k = j; k < cont.size()-1; ++k)
|
||||
cont[k] = cont[k+1];
|
||||
cont.pop();
|
||||
}
|
||||
else
|
||||
++i;
|
||||
++j;
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -807,14 +806,14 @@ static bool filterSmallRegions(rcContext* ctx, int minRegionArea, int mergeRegio
|
||||
connectsToBorder = true;
|
||||
continue;
|
||||
}
|
||||
rcRegion& nreg = regions[creg.connections[j]];
|
||||
if (nreg.visited)
|
||||
rcRegion& neireg = regions[creg.connections[j]];
|
||||
if (neireg.visited)
|
||||
continue;
|
||||
if (nreg.id == 0 || (nreg.id & RC_BORDER_REG))
|
||||
if (neireg.id == 0 || (neireg.id & RC_BORDER_REG))
|
||||
continue;
|
||||
// Visit
|
||||
stack.push(nreg.id);
|
||||
nreg.visited = true;
|
||||
stack.push(neireg.id);
|
||||
neireg.visited = true;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -937,7 +936,16 @@ static bool filterSmallRegions(rcContext* ctx, int minRegionArea, int mergeRegio
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
/// @par
|
||||
///
|
||||
/// This is usually the second to the last step in creating a fully built
|
||||
/// compact heightfield. This step is required before regions are built
|
||||
/// using #rcBuildRegions or #rcBuildRegionsMonotone.
|
||||
///
|
||||
/// After this step, the distance data is available via the rcCompactHeightfield::maxDistance
|
||||
/// and rcCompactHeightfield::dist fields.
|
||||
///
|
||||
/// @see rcCompactHeightfield, rcBuildRegions, rcBuildRegionsMonotone
|
||||
bool rcBuildDistanceField(rcContext* ctx, rcCompactHeightfield& chf)
|
||||
{
|
||||
rcAssert(ctx);
|
||||
@@ -1020,6 +1028,25 @@ struct rcSweepSpan
|
||||
unsigned short nei; // neighbour id
|
||||
};
|
||||
|
||||
/// @par
|
||||
///
|
||||
/// Non-null regions will consist of connected, non-overlapping walkable spans that form a single contour.
|
||||
/// Contours will form simple polygons.
|
||||
///
|
||||
/// If multiple regions form an area that is smaller than @p minRegionArea, then all spans will be
|
||||
/// re-assigned to the zero (null) region.
|
||||
///
|
||||
/// Partitioning can result in smaller than necessary regions. @p mergeRegionArea helps
|
||||
/// reduce unecessarily small regions.
|
||||
///
|
||||
/// See the #rcConfig documentation for more information on the configuration parameters.
|
||||
///
|
||||
/// The region data will be available via the rcCompactHeightfield::maxRegions
|
||||
/// and rcCompactSpan::reg fields.
|
||||
///
|
||||
/// @warning The distance field must be created using #rcBuildDistanceField before attempting to build regions.
|
||||
///
|
||||
/// @see rcCompactHeightfield, rcCompactSpan, rcBuildDistanceField, rcBuildRegionsMonotone, rcConfig
|
||||
bool rcBuildRegionsMonotone(rcContext* ctx, rcCompactHeightfield& chf,
|
||||
const int borderSize, const int minRegionArea, const int mergeRegionArea)
|
||||
{
|
||||
@@ -1059,6 +1086,8 @@ bool rcBuildRegionsMonotone(rcContext* ctx, rcCompactHeightfield& chf,
|
||||
paintRectRegion(w-bw, w, 0, h, id|RC_BORDER_REG, chf, srcReg); id++;
|
||||
paintRectRegion(0, w, 0, bh, id|RC_BORDER_REG, chf, srcReg); id++;
|
||||
paintRectRegion(0, w, h-bh, h, id|RC_BORDER_REG, chf, srcReg); id++;
|
||||
|
||||
chf.borderSize = borderSize;
|
||||
}
|
||||
|
||||
rcIntArray prev(256);
|
||||
@@ -1170,6 +1199,25 @@ bool rcBuildRegionsMonotone(rcContext* ctx, rcCompactHeightfield& chf,
|
||||
return true;
|
||||
}
|
||||
|
||||
/// @par
|
||||
///
|
||||
/// Non-null regions will consist of connected, non-overlapping walkable spans that form a single contour.
|
||||
/// Contours will form simple polygons.
|
||||
///
|
||||
/// If multiple regions form an area that is smaller than @p minRegionArea, then all spans will be
|
||||
/// re-assigned to the zero (null) region.
|
||||
///
|
||||
/// Watershed partitioning can result in smaller than necessary regions, especially in diagonal corridors.
|
||||
/// @p mergeRegionArea helps reduce unecessarily small regions.
|
||||
///
|
||||
/// See the #rcConfig documentation for more information on the configuration parameters.
|
||||
///
|
||||
/// The region data will be available via the rcCompactHeightfield::maxRegions
|
||||
/// and rcCompactSpan::reg fields.
|
||||
///
|
||||
/// @warning The distance field must be created using #rcBuildDistanceField before attempting to build regions.
|
||||
///
|
||||
/// @see rcCompactHeightfield, rcCompactSpan, rcBuildDistanceField, rcBuildRegionsMonotone, rcConfig
|
||||
bool rcBuildRegions(rcContext* ctx, rcCompactHeightfield& chf,
|
||||
const int borderSize, const int minRegionArea, const int mergeRegionArea)
|
||||
{
|
||||
@@ -1209,11 +1257,19 @@ bool rcBuildRegions(rcContext* ctx, rcCompactHeightfield& chf,
|
||||
// const int expandIters = 4 + walkableRadius * 2;
|
||||
const int expandIters = 8;
|
||||
|
||||
// Mark border regions.
|
||||
paintRectRegion(0, borderSize, 0, h, regionId|RC_BORDER_REG, chf, srcReg); regionId++;
|
||||
paintRectRegion(w-borderSize, w, 0, h, regionId|RC_BORDER_REG, chf, srcReg); regionId++;
|
||||
paintRectRegion(0, w, 0, borderSize, regionId|RC_BORDER_REG, chf, srcReg); regionId++;
|
||||
paintRectRegion(0, w, h-borderSize, h, regionId|RC_BORDER_REG, chf, srcReg); regionId++;
|
||||
if (borderSize > 0)
|
||||
{
|
||||
// Make sure border will not overflow.
|
||||
const int bw = rcMin(w, borderSize);
|
||||
const int bh = rcMin(h, borderSize);
|
||||
// Paint regions
|
||||
paintRectRegion(0, bw, 0, h, regionId|RC_BORDER_REG, chf, srcReg); regionId++;
|
||||
paintRectRegion(w-bw, w, 0, h, regionId|RC_BORDER_REG, chf, srcReg); regionId++;
|
||||
paintRectRegion(0, w, 0, bh, regionId|RC_BORDER_REG, chf, srcReg); regionId++;
|
||||
paintRectRegion(0, w, h-bh, h, regionId|RC_BORDER_REG, chf, srcReg); regionId++;
|
||||
|
||||
chf.borderSize = borderSize;
|
||||
}
|
||||
|
||||
while (level > 0)
|
||||
{
|
||||
@@ -1242,7 +1298,6 @@ bool rcBuildRegions(rcContext* ctx, rcCompactHeightfield& chf,
|
||||
{
|
||||
if (chf.dist[i] < level || srcReg[i] != 0 || chf.areas[i] == RC_NULL_AREA)
|
||||
continue;
|
||||
|
||||
if (floodRegion(x, y, i, level, regionId, chf, srcReg, srcDist, stack))
|
||||
regionId++;
|
||||
}
|
||||
@@ -1250,7 +1305,6 @@ bool rcBuildRegions(rcContext* ctx, rcCompactHeightfield& chf,
|
||||
}
|
||||
|
||||
ctx->stopTimer(RC_TIMER_BUILD_REGIONS_FLOOD);
|
||||
|
||||
}
|
||||
|
||||
// Expand current regions until no empty connected cells found.
|
||||
|
||||
@@ -63,7 +63,7 @@ namespace MMAP
|
||||
|
||||
dtNavMesh* mesh = dtAllocNavMesh();
|
||||
ASSERT(mesh);
|
||||
if (DT_SUCCESS != mesh->init(¶ms))
|
||||
if (dtStatusFailed(mesh->init(¶ms)))
|
||||
{
|
||||
dtFreeNavMesh(mesh);
|
||||
TC_LOG_ERROR(LOG_FILTER_MAPS, "MMAP:loadMapData: Failed to initialize dtNavMesh for mmap %03u from file %s", mapId, fileName);
|
||||
@@ -152,7 +152,7 @@ namespace MMAP
|
||||
dtTileRef tileRef = 0;
|
||||
|
||||
// memory allocated for data is now managed by detour, and will be deallocated when the tile is removed
|
||||
if (DT_SUCCESS == mmap->navMesh->addTile(data, fileHeader.size, DT_TILE_FREE_DATA, 0, &tileRef))
|
||||
if (dtStatusSucceed(mmap->navMesh->addTile(data, fileHeader.size, DT_TILE_FREE_DATA, 0, &tileRef)))
|
||||
{
|
||||
mmap->mmapLoadedTiles.insert(std::pair<uint32, dtTileRef>(packedGridPos, tileRef));
|
||||
++loadedTiles;
|
||||
@@ -193,7 +193,7 @@ namespace MMAP
|
||||
dtTileRef tileRef = mmap->mmapLoadedTiles[packedGridPos];
|
||||
|
||||
// unload, and mark as non loaded
|
||||
if (DT_SUCCESS != mmap->navMesh->removeTile(tileRef, NULL, NULL))
|
||||
if (dtStatusFailed(mmap->navMesh->removeTile(tileRef, NULL, NULL)))
|
||||
{
|
||||
// this is technically a memory leak
|
||||
// if the grid is later reloaded, dtNavMesh::addTile will return error but no extra memory is used
|
||||
@@ -227,7 +227,7 @@ namespace MMAP
|
||||
{
|
||||
uint32 x = (i->first >> 16);
|
||||
uint32 y = (i->first & 0x0000FFFF);
|
||||
if (DT_SUCCESS != mmap->navMesh->removeTile(i->second, NULL, NULL))
|
||||
if (dtStatusFailed(mmap->navMesh->removeTile(i->second, NULL, NULL)))
|
||||
TC_LOG_ERROR(LOG_FILTER_MAPS, "MMAP:unloadMap: Could not unload %03u%02i%02i.mmtile from navmesh", mapId, x, y);
|
||||
else
|
||||
{
|
||||
@@ -288,7 +288,7 @@ namespace MMAP
|
||||
// allocate mesh query
|
||||
dtNavMeshQuery* query = dtAllocNavMeshQuery();
|
||||
ASSERT(query);
|
||||
if (DT_SUCCESS != query->init(mmap->navMesh, 1024))
|
||||
if (dtStatusFailed(query->init(mmap->navMesh, 1024)))
|
||||
{
|
||||
dtFreeNavMeshQuery(query);
|
||||
TC_LOG_ERROR(LOG_FILTER_MAPS, "MMAP:GetNavMeshQuery: Failed to initialize dtNavMeshQuery for mapId %03u instanceId %u", mapId, instanceId);
|
||||
|
||||
@@ -35,7 +35,7 @@ class Player;
|
||||
|
||||
#define MAX_NUMBER_OF_GRIDS 64
|
||||
|
||||
#define SIZE_OF_GRIDS 533.33333f
|
||||
#define SIZE_OF_GRIDS 533.3333f
|
||||
#define CENTER_GRID_ID (MAX_NUMBER_OF_GRIDS/2)
|
||||
|
||||
#define CENTER_GRID_OFFSET (SIZE_OF_GRIDS/2)
|
||||
|
||||
@@ -3540,7 +3540,7 @@ enum PartyResult
|
||||
};
|
||||
|
||||
const uint32 MMAP_MAGIC = 0x4d4d4150; // 'MMAP'
|
||||
#define MMAP_VERSION 3
|
||||
#define MMAP_VERSION 4
|
||||
|
||||
struct MmapTileHeader
|
||||
{
|
||||
|
||||
@@ -97,7 +97,7 @@ dtPolyRef PathGenerator::GetPathPolyByPosition(dtPolyRef const* polyPath, uint32
|
||||
for (uint32 i = 0; i < polyPathSize; ++i)
|
||||
{
|
||||
float closestPoint[VERTEX_SIZE];
|
||||
if (DT_SUCCESS != _navMeshQuery->closestPointOnPoly(polyPath[i], point, closestPoint))
|
||||
if (dtStatusFailed(_navMeshQuery->closestPointOnPoly(polyPath[i], point, closestPoint)))
|
||||
continue;
|
||||
|
||||
float d = dtVdist2DSqr(point, closestPoint);
|
||||
@@ -132,8 +132,7 @@ dtPolyRef PathGenerator::GetPolyByLocation(float const* point, float* distance)
|
||||
// first try with low search box
|
||||
float extents[VERTEX_SIZE] = {3.0f, 5.0f, 3.0f}; // bounds of poly search area
|
||||
float closestPoint[VERTEX_SIZE] = {0.0f, 0.0f, 0.0f};
|
||||
dtStatus result = _navMeshQuery->findNearestPoly(point, extents, &_filter, &polyRef, closestPoint);
|
||||
if (DT_SUCCESS == result && polyRef != INVALID_POLYREF)
|
||||
if (dtStatusSucceed(_navMeshQuery->findNearestPoly(point, extents, &_filter, &polyRef, closestPoint)) && polyRef != INVALID_POLYREF)
|
||||
{
|
||||
*distance = dtVdist(closestPoint, point);
|
||||
return polyRef;
|
||||
@@ -141,9 +140,10 @@ dtPolyRef PathGenerator::GetPolyByLocation(float const* point, float* distance)
|
||||
|
||||
// still nothing ..
|
||||
// try with bigger search box
|
||||
extents[1] = 200.0f;
|
||||
result = _navMeshQuery->findNearestPoly(point, extents, &_filter, &polyRef, closestPoint);
|
||||
if (DT_SUCCESS == result && polyRef != INVALID_POLYREF)
|
||||
// Note that the extent should not overlap more than 128 polygons in the navmesh (see dtNavMeshQuery::findNearestPoly)
|
||||
extents[1] = 50.0f;
|
||||
|
||||
if (dtStatusSucceed(_navMeshQuery->findNearestPoly(point, extents, &_filter, &polyRef, closestPoint)) && polyRef != INVALID_POLYREF)
|
||||
{
|
||||
*distance = dtVdist(closestPoint, point);
|
||||
return polyRef;
|
||||
@@ -228,7 +228,7 @@ void PathGenerator::BuildPolyPath(G3D::Vector3 const& startPos, G3D::Vector3 con
|
||||
{
|
||||
float closestPoint[VERTEX_SIZE];
|
||||
// we may want to use closestPointOnPolyBoundary instead
|
||||
if (DT_SUCCESS == _navMeshQuery->closestPointOnPoly(endPoly, endPoint, closestPoint))
|
||||
if (dtStatusSucceed(_navMeshQuery->closestPointOnPoly(endPoly, endPoint, closestPoint)))
|
||||
{
|
||||
dtVcopy(endPoint, closestPoint);
|
||||
SetActualEndPosition(G3D::Vector3(endPoint[2], endPoint[0], endPoint[1]));
|
||||
@@ -319,13 +319,13 @@ void PathGenerator::BuildPolyPath(G3D::Vector3 const& startPos, G3D::Vector3 con
|
||||
|
||||
// we need any point on our suffix start poly to generate poly-path, so we need last poly in prefix data
|
||||
float suffixEndPoint[VERTEX_SIZE];
|
||||
if (DT_SUCCESS != _navMeshQuery->closestPointOnPoly(suffixStartPoly, endPoint, suffixEndPoint))
|
||||
if (dtStatusFailed(_navMeshQuery->closestPointOnPoly(suffixStartPoly, endPoint, suffixEndPoint)))
|
||||
{
|
||||
// we can hit offmesh connection as last poly - closestPointOnPoly() don't like that
|
||||
// try to recover by using prev polyref
|
||||
--prefixPolyLength;
|
||||
suffixStartPoly = _pathPolyRefs[prefixPolyLength-1];
|
||||
if (DT_SUCCESS != _navMeshQuery->closestPointOnPoly(suffixStartPoly, endPoint, suffixEndPoint))
|
||||
if (dtStatusFailed(_navMeshQuery->closestPointOnPoly(suffixStartPoly, endPoint, suffixEndPoint)))
|
||||
{
|
||||
// suffixStartPoly is still invalid, error state
|
||||
BuildShortcut();
|
||||
@@ -346,7 +346,7 @@ void PathGenerator::BuildPolyPath(G3D::Vector3 const& startPos, G3D::Vector3 con
|
||||
(int*)&suffixPolyLength,
|
||||
MAX_PATH_LENGTH-prefixPolyLength); // max number of polygons in output path
|
||||
|
||||
if (!suffixPolyLength || dtResult != DT_SUCCESS)
|
||||
if (!suffixPolyLength || dtStatusFailed(dtResult))
|
||||
{
|
||||
// this is probably an error state, but we'll leave it
|
||||
// and hopefully recover on the next Update
|
||||
@@ -380,7 +380,7 @@ void PathGenerator::BuildPolyPath(G3D::Vector3 const& startPos, G3D::Vector3 con
|
||||
(int*)&_polyLength,
|
||||
MAX_PATH_LENGTH); // max number of polygons in output path
|
||||
|
||||
if (!_polyLength || dtResult != DT_SUCCESS)
|
||||
if (!_polyLength || dtStatusFailed(dtResult))
|
||||
{
|
||||
// only happens if we passed bad data to findPath(), or navmesh is messed up
|
||||
TC_LOG_ERROR(LOG_FILTER_MAPS, "%u's Path Build failed: 0 length path", _sourceUnit->GetGUIDLow());
|
||||
@@ -430,7 +430,7 @@ void PathGenerator::BuildPointPath(const float *startPoint, const float *endPoin
|
||||
_pointPathLimit); // maximum number of points
|
||||
}
|
||||
|
||||
if (pointCount < 2 || dtResult != DT_SUCCESS)
|
||||
if (pointCount < 2 || dtStatusFailed(dtResult))
|
||||
{
|
||||
// only happens if pass bad data to findStraightPath or navmesh is broken
|
||||
// single point paths can be generated here
|
||||
@@ -577,7 +577,7 @@ bool PathGenerator::HaveTile(const G3D::Vector3& p) const
|
||||
if (tx < 0 || ty < 0)
|
||||
return false;
|
||||
|
||||
return (_navMesh->getTileAt(tx, ty) != NULL);
|
||||
return (_navMesh->getTileAt(tx, ty, 0) != NULL);
|
||||
}
|
||||
|
||||
uint32 PathGenerator::FixupCorridor(dtPolyRef* path, uint32 npath, uint32 maxPath, dtPolyRef const* visited, uint32 nvisited)
|
||||
@@ -637,7 +637,7 @@ bool PathGenerator::GetSteerTarget(float const* startPos, float const* endPos,
|
||||
uint32 nsteerPath = 0;
|
||||
dtStatus dtResult = _navMeshQuery->findStraightPath(startPos, endPos, path, pathSize,
|
||||
steerPath, steerPathFlags, steerPathPolys, (int*)&nsteerPath, MAX_STEER_POINTS);
|
||||
if (!nsteerPath || DT_SUCCESS != dtResult)
|
||||
if (!nsteerPath || dtStatusFailed(dtResult))
|
||||
return false;
|
||||
|
||||
// Find vertex far enough to steer to.
|
||||
@@ -674,10 +674,10 @@ dtStatus PathGenerator::FindSmoothPath(float const* startPos, float const* endPo
|
||||
uint32 npolys = polyPathSize;
|
||||
|
||||
float iterPos[VERTEX_SIZE], targetPos[VERTEX_SIZE];
|
||||
if (DT_SUCCESS != _navMeshQuery->closestPointOnPolyBoundary(polys[0], startPos, iterPos))
|
||||
if (dtStatusFailed(_navMeshQuery->closestPointOnPolyBoundary(polys[0], startPos, iterPos)))
|
||||
return DT_FAILURE;
|
||||
|
||||
if (DT_SUCCESS != _navMeshQuery->closestPointOnPolyBoundary(polys[npolys-1], endPos, targetPos))
|
||||
if (dtStatusFailed(_navMeshQuery->closestPointOnPolyBoundary(polys[npolys-1], endPos, targetPos)))
|
||||
return DT_FAILURE;
|
||||
|
||||
dtVcopy(&smoothPath[nsmoothPath*VERTEX_SIZE], iterPos);
|
||||
@@ -756,7 +756,7 @@ dtStatus PathGenerator::FindSmoothPath(float const* startPos, float const* endPo
|
||||
|
||||
// Handle the connection.
|
||||
float startPos[VERTEX_SIZE], endPos[VERTEX_SIZE];
|
||||
if (DT_SUCCESS == _navMesh->getOffMeshConnectionPolyEndPoints(prevRef, polyRef, startPos, endPos))
|
||||
if (dtStatusSucceed(_navMesh->getOffMeshConnectionPolyEndPoints(prevRef, polyRef, startPos, endPos)))
|
||||
{
|
||||
if (nsmoothPath < maxSmoothPathSize)
|
||||
{
|
||||
|
||||
@@ -153,7 +153,11 @@ public:
|
||||
// navmesh poly -> navmesh tile location
|
||||
dtQueryFilter filter = dtQueryFilter();
|
||||
dtPolyRef polyRef = INVALID_POLYREF;
|
||||
navmeshquery->findNearestPoly(location, extents, &filter, &polyRef, NULL);
|
||||
if (dtStatusFailed(navmeshquery->findNearestPoly(location, extents, &filter, &polyRef, NULL)))
|
||||
{
|
||||
handler->PSendSysMessage("Dt [??,??] (invalid poly, probably no tile loaded)");
|
||||
return true;
|
||||
}
|
||||
|
||||
if (polyRef == INVALID_POLYREF)
|
||||
handler->PSendSysMessage("Dt [??, ??] (invalid poly, probably no tile loaded)");
|
||||
@@ -161,11 +165,16 @@ public:
|
||||
{
|
||||
dtMeshTile const* tile;
|
||||
dtPoly const* poly;
|
||||
navmesh->getTileAndPolyByRef(polyRef, &tile, &poly);
|
||||
if (tile)
|
||||
handler->PSendSysMessage("Dt [%02i, %02i]", tile->header->x, tile->header->y);
|
||||
else
|
||||
handler->PSendSysMessage("Dt [??, ??] (no tile loaded)");
|
||||
if (dtStatusSucceed(navmesh->getTileAndPolyByRef(polyRef, &tile, &poly)))
|
||||
{
|
||||
if (tile)
|
||||
{
|
||||
handler->PSendSysMessage("Dt [%02i,%02i]", tile->header->x, tile->header->y);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
handler->PSendSysMessage("Dt [??,??] (no tile loaded)");
|
||||
}
|
||||
|
||||
return true;
|
||||
|
||||
@@ -8,7 +8,7 @@ Generator command line args
|
||||
"map_id tile_x,tile_y (start_x start_y start_z) (end_x end_y end_z) size //optional comments"
|
||||
Single mesh connection per line.
|
||||
|
||||
--silent Make us script friendly. Do not wait for user input
|
||||
--silent [] Make us script friendly. Do not wait for user input
|
||||
on error or completion.
|
||||
|
||||
--bigBaseUnit [true|false] Generate tile/map using bigger basic unit.
|
||||
@@ -20,7 +20,7 @@ Generator command line args
|
||||
|
||||
float between 45 and 90 degrees (default 60)
|
||||
|
||||
--skipLiquid liquid data for maps
|
||||
--skipLiquid [true|false] extract liquid data for maps
|
||||
|
||||
false: include liquid data (default)
|
||||
|
||||
|
||||
@@ -36,7 +36,7 @@ namespace DisableMgr
|
||||
}
|
||||
|
||||
#define MMAP_MAGIC 0x4d4d4150 // 'MMAP'
|
||||
#define MMAP_VERSION 3
|
||||
#define MMAP_VERSION 4
|
||||
|
||||
struct MmapTileHeader
|
||||
{
|
||||
@@ -332,12 +332,12 @@ namespace MMAP
|
||||
buildNavMesh(mapID, navMesh);
|
||||
if (!navMesh)
|
||||
{
|
||||
printf("[Map %i] Failed creating navmesh!\n", mapID);
|
||||
printf("[Map %03i] Failed creating navmesh!\n", mapID);
|
||||
return;
|
||||
}
|
||||
|
||||
// now start building mmtiles for each tile
|
||||
printf("[Map %i] We have %u tiles. \n", mapID, (unsigned int)tiles->size());
|
||||
printf("[Map %03i] We have %u tiles. \n", mapID, (unsigned int)tiles->size());
|
||||
for (std::set<uint32>::iterator it = tiles->begin(); it != tiles->end(); ++it)
|
||||
{
|
||||
uint32 tileX, tileY;
|
||||
@@ -354,13 +354,13 @@ namespace MMAP
|
||||
dtFreeNavMesh(navMesh);
|
||||
}
|
||||
|
||||
printf("[Map %i] Complete!\n", mapID);
|
||||
printf("[Map %03i] Complete!\n", mapID);
|
||||
}
|
||||
|
||||
/**************************************************************************/
|
||||
void MapBuilder::buildTile(uint32 mapID, uint32 tileX, uint32 tileY, dtNavMesh* navMesh)
|
||||
{
|
||||
printf("[Map %i] Building tile [%02u,%02u]\n", mapID, tileX, tileY);
|
||||
printf("[Map %03i] Building tile [%02u,%02u]\n", mapID, tileX, tileY);
|
||||
|
||||
MeshData meshData;
|
||||
|
||||
@@ -446,10 +446,10 @@ namespace MMAP
|
||||
navMeshParams.maxPolys = maxPolysPerTile;
|
||||
|
||||
navMesh = dtAllocNavMesh();
|
||||
printf("[Map %i] Creating navMesh...\n", mapID);
|
||||
printf("[Map %03i] Creating navMesh...\n", mapID);
|
||||
if (!navMesh->init(&navMeshParams))
|
||||
{
|
||||
printf("[Map %i] Failed creating navmesh! \n", mapID);
|
||||
printf("[Map %03i] Failed creating navmesh! \n", mapID);
|
||||
return;
|
||||
}
|
||||
|
||||
@@ -461,7 +461,7 @@ namespace MMAP
|
||||
{
|
||||
dtFreeNavMesh(navMesh);
|
||||
char message[1024];
|
||||
sprintf(message, "[Map %i] Failed to open %s for writing!\n", mapID, fileName);
|
||||
sprintf(message, "[Map %03i] Failed to open %s for writing!\n", mapID, fileName);
|
||||
perror(message);
|
||||
return;
|
||||
}
|
||||
@@ -496,8 +496,8 @@ namespace MMAP
|
||||
|
||||
// these are WORLD UNIT based metrics
|
||||
// this are basic unit dimentions
|
||||
// value have to divide GRID_SIZE(533.33333f) ( aka: 0.5333, 0.2666, 0.3333, 0.1333, etc )
|
||||
const static float BASE_UNIT_DIM = m_bigBaseUnit ? 0.533333f : 0.266666f;
|
||||
// value have to divide GRID_SIZE(533.3333f) ( aka: 0.5333, 0.2666, 0.3333, 0.1333, etc )
|
||||
const static float BASE_UNIT_DIM = m_bigBaseUnit ? 0.5333333f : 0.2666666f;
|
||||
|
||||
// All are in UNIT metrics!
|
||||
const static int VERTEX_PER_MAP = int(GRID_SIZE/BASE_UNIT_DIM + 0.5f);
|
||||
@@ -517,12 +517,12 @@ namespace MMAP
|
||||
config.tileSize = VERTEX_PER_TILE;
|
||||
config.walkableRadius = m_bigBaseUnit ? 1 : 2;
|
||||
config.borderSize = config.walkableRadius + 3;
|
||||
config.maxEdgeLen = VERTEX_PER_TILE + 1; //anything bigger than tileSize
|
||||
config.walkableHeight = m_bigBaseUnit ? 3 : 6;
|
||||
config.walkableClimb = m_bigBaseUnit ? 2 : 4; // keep less than walkableHeight
|
||||
config.maxEdgeLen = VERTEX_PER_TILE + 1; // anything bigger than tileSize
|
||||
config.walkableHeight = m_bigBaseUnit ? 2 : 4;
|
||||
config.walkableClimb = m_bigBaseUnit ? 1 : 2; // keep less than walkableHeight
|
||||
config.minRegionArea = rcSqr(60);
|
||||
config.mergeRegionArea = rcSqr(50);
|
||||
config.maxSimplificationError = 2.0f; // eliminates most jagged edges (tinny polygons)
|
||||
config.maxSimplificationError = 1.8f; // eliminates most jagged edges (tiny polygons)
|
||||
config.detailSampleDist = config.cs * 64;
|
||||
config.detailSampleMaxError = config.ch * 2;
|
||||
|
||||
@@ -677,14 +677,6 @@ namespace MMAP
|
||||
|
||||
delete[] tiles;
|
||||
|
||||
// remove padding for extraction
|
||||
for (int i = 0; i < iv.polyMesh->nverts; ++i)
|
||||
{
|
||||
unsigned short* v = &iv.polyMesh->verts[i*3];
|
||||
v[0] -= (unsigned short)config.borderSize;
|
||||
v[2] -= (unsigned short)config.borderSize;
|
||||
}
|
||||
|
||||
// set polygons as walkable
|
||||
// TODO: special flags for DYNAMIC polygons, ie surfaces that can be turned on and off
|
||||
for (int i = 0; i < iv.polyMesh->npolys; ++i)
|
||||
@@ -723,8 +715,9 @@ namespace MMAP
|
||||
rcVcopy(params.bmax, bmax);
|
||||
params.cs = config.cs;
|
||||
params.ch = config.ch;
|
||||
params.tileSize = VERTEX_PER_MAP;
|
||||
|
||||
params.tileLayer = 0;
|
||||
params.buildBvTree = true;
|
||||
|
||||
// will hold final navmesh
|
||||
unsigned char* navData = NULL;
|
||||
int navDataSize = 0;
|
||||
@@ -792,7 +785,7 @@ namespace MMAP
|
||||
if (!file)
|
||||
{
|
||||
char message[1024];
|
||||
sprintf(message, "[Map %i] Failed to open %s for writing!\n", mapID, fileName);
|
||||
sprintf(message, "[Map %03i] Failed to open %s for writing!\n", mapID, fileName);
|
||||
perror(message);
|
||||
navMesh->removeTile(tileRef, NULL, NULL);
|
||||
continue;
|
||||
@@ -854,50 +847,50 @@ namespace MMAP
|
||||
{
|
||||
if (m_skipContinents)
|
||||
switch (mapID)
|
||||
{
|
||||
case 0:
|
||||
case 1:
|
||||
case 530:
|
||||
case 571:
|
||||
return true;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
{
|
||||
case 0:
|
||||
case 1:
|
||||
case 530:
|
||||
case 571:
|
||||
return true;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
||||
if (m_skipJunkMaps)
|
||||
switch (mapID)
|
||||
{
|
||||
case 13: // test.wdt
|
||||
case 25: // ScottTest.wdt
|
||||
case 29: // Test.wdt
|
||||
case 42: // Colin.wdt
|
||||
case 169: // EmeraldDream.wdt (unused, and very large)
|
||||
case 451: // development.wdt
|
||||
case 573: // ExteriorTest.wdt
|
||||
case 597: // CraigTest.wdt
|
||||
case 605: // development_nonweighted.wdt
|
||||
case 606: // QA_DVD.wdt
|
||||
return true;
|
||||
default:
|
||||
if (isTransportMap(mapID))
|
||||
{
|
||||
case 13: // test.wdt
|
||||
case 25: // ScottTest.wdt
|
||||
case 29: // Test.wdt
|
||||
case 42: // Colin.wdt
|
||||
case 169: // EmeraldDream.wdt (unused, and very large)
|
||||
case 451: // development.wdt
|
||||
case 573: // ExteriorTest.wdt
|
||||
case 597: // CraigTest.wdt
|
||||
case 605: // development_nonweighted.wdt
|
||||
case 606: // QA_DVD.wdt
|
||||
return true;
|
||||
break;
|
||||
}
|
||||
default:
|
||||
if (isTransportMap(mapID))
|
||||
return true;
|
||||
break;
|
||||
}
|
||||
|
||||
if (m_skipBattlegrounds)
|
||||
switch (mapID)
|
||||
{
|
||||
case 30: // AV
|
||||
case 37: // ?
|
||||
case 489: // WSG
|
||||
case 529: // AB
|
||||
case 566: // EotS
|
||||
case 607: // SotA
|
||||
case 628: // IoC
|
||||
return true;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
{
|
||||
case 30: // AV
|
||||
case 37: // ?
|
||||
case 489: // WSG
|
||||
case 529: // AB
|
||||
case 566: // EotS
|
||||
case 607: // SotA
|
||||
case 628: // IoC
|
||||
return true;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
@@ -908,37 +901,37 @@ namespace MMAP
|
||||
switch (mapID)
|
||||
{
|
||||
// transport maps
|
||||
case 582:
|
||||
case 584:
|
||||
case 586:
|
||||
case 587:
|
||||
case 588:
|
||||
case 589:
|
||||
case 590:
|
||||
case 591:
|
||||
case 592:
|
||||
case 593:
|
||||
case 594:
|
||||
case 596:
|
||||
case 610:
|
||||
case 612:
|
||||
case 613:
|
||||
case 614:
|
||||
case 620:
|
||||
case 621:
|
||||
case 622:
|
||||
case 623:
|
||||
case 641:
|
||||
case 642:
|
||||
case 647:
|
||||
case 672:
|
||||
case 673:
|
||||
case 712:
|
||||
case 713:
|
||||
case 718:
|
||||
return true;
|
||||
default:
|
||||
return false;
|
||||
case 582:
|
||||
case 584:
|
||||
case 586:
|
||||
case 587:
|
||||
case 588:
|
||||
case 589:
|
||||
case 590:
|
||||
case 591:
|
||||
case 592:
|
||||
case 593:
|
||||
case 594:
|
||||
case 596:
|
||||
case 610:
|
||||
case 612:
|
||||
case 613:
|
||||
case 614:
|
||||
case 620:
|
||||
case 621:
|
||||
case 622:
|
||||
case 623:
|
||||
case 641:
|
||||
case 642:
|
||||
case 647:
|
||||
case 672:
|
||||
case 673:
|
||||
case 712:
|
||||
case 713:
|
||||
case 718:
|
||||
return true;
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -61,7 +61,7 @@ namespace MMAP
|
||||
class MapBuilder
|
||||
{
|
||||
public:
|
||||
MapBuilder(float maxWalkableAngle = 60.f,
|
||||
MapBuilder(float maxWalkableAngle = 55.f,
|
||||
bool skipLiquid = false,
|
||||
bool skipContinents = false,
|
||||
bool skipJunkMaps = true,
|
||||
|
||||
@@ -242,7 +242,7 @@ int finish(const char* message, int returnValue)
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
int threads = 3, mapnum = -1;
|
||||
float maxAngle = 60.0f;
|
||||
float maxAngle = 55.0f;
|
||||
int tileX = -1, tileY = -1;
|
||||
bool skipLiquid = false,
|
||||
skipContinents = false,
|
||||
|
||||
@@ -47,7 +47,7 @@ namespace MMAP
|
||||
static const int V9_SIZE_SQ = V9_SIZE*V9_SIZE;
|
||||
static const int V8_SIZE = 128;
|
||||
static const int V8_SIZE_SQ = V8_SIZE*V8_SIZE;
|
||||
static const float GRID_SIZE = 533.33333f;
|
||||
static const float GRID_SIZE = 533.3333f;
|
||||
static const float GRID_PART_SIZE = GRID_SIZE/V8_SIZE;
|
||||
|
||||
// see contrib/extractor/system.cpp, CONF_use_minHeight
|
||||
|
||||
Reference in New Issue
Block a user