re-added jemalloc

--HG--
branch : trunk
This commit is contained in:
Rat
2010-06-07 00:13:01 +02:00
parent 8ef7414c23
commit aa953f4ac8
45 changed files with 14433 additions and 0 deletions

27
externals/jemalloc/CMakeLists.txt vendored Normal file
View File

@@ -0,0 +1,27 @@
SET(jmalloc_STAT_SRC
arena.c
chunk.c
chunk_mmap.c
ckh.c
extent.c
huge.c
mb.c
prof.c
tcache.c
base.c
chunk_dss.c
chunk_swap.c
ctl.c
hash.c
jemalloc.c
mutex.c
stats.c
)
include_directories(
${CMAKE_SOURCE_DIR}/dep/include
)
add_definitions(-D_GNU_SOURCE -D_REENTRANT)
add_library(jmalloc STATIC ${jmalloc_STAT_SRC})

2446
externals/jemalloc/arena.c vendored Normal file

File diff suppressed because it is too large Load Diff

106
externals/jemalloc/base.c vendored Normal file
View File

@@ -0,0 +1,106 @@
#define JEMALLOC_BASE_C_
#include "jemalloc/internal/jemalloc_internal.h"
/******************************************************************************/
/* Data. */
malloc_mutex_t base_mtx;
/*
* Current pages that are being used for internal memory allocations. These
* pages are carved up in cacheline-size quanta, so that there is no chance of
* false cache line sharing.
*/
static void *base_pages;
static void *base_next_addr;
static void *base_past_addr; /* Addr immediately past base_pages. */
static extent_node_t *base_nodes;
/******************************************************************************/
/* Function prototypes for non-inline static functions. */
static bool base_pages_alloc(size_t minsize);
/******************************************************************************/
static bool
base_pages_alloc(size_t minsize)
{
size_t csize;
bool zero;
assert(minsize != 0);
csize = CHUNK_CEILING(minsize);
zero = false;
base_pages = chunk_alloc(csize, &zero);
if (base_pages == NULL)
return (true);
base_next_addr = base_pages;
base_past_addr = (void *)((uintptr_t)base_pages + csize);
return (false);
}
void *
base_alloc(size_t size)
{
void *ret;
size_t csize;
/* Round size up to nearest multiple of the cacheline size. */
csize = CACHELINE_CEILING(size);
malloc_mutex_lock(&base_mtx);
/* Make sure there's enough space for the allocation. */
if ((uintptr_t)base_next_addr + csize > (uintptr_t)base_past_addr) {
if (base_pages_alloc(csize)) {
malloc_mutex_unlock(&base_mtx);
return (NULL);
}
}
/* Allocate. */
ret = base_next_addr;
base_next_addr = (void *)((uintptr_t)base_next_addr + csize);
malloc_mutex_unlock(&base_mtx);
return (ret);
}
extent_node_t *
base_node_alloc(void)
{
extent_node_t *ret;
malloc_mutex_lock(&base_mtx);
if (base_nodes != NULL) {
ret = base_nodes;
base_nodes = *(extent_node_t **)ret;
malloc_mutex_unlock(&base_mtx);
} else {
malloc_mutex_unlock(&base_mtx);
ret = (extent_node_t *)base_alloc(sizeof(extent_node_t));
}
return (ret);
}
void
base_node_dealloc(extent_node_t *node)
{
malloc_mutex_lock(&base_mtx);
*(extent_node_t **)node = base_nodes;
base_nodes = node;
malloc_mutex_unlock(&base_mtx);
}
bool
base_boot(void)
{
base_nodes = NULL;
if (malloc_mutex_init(&base_mtx))
return (true);
return (false);
}

150
externals/jemalloc/chunk.c vendored Normal file
View File

@@ -0,0 +1,150 @@
#define JEMALLOC_CHUNK_C_
#include "jemalloc/internal/jemalloc_internal.h"
/******************************************************************************/
/* Data. */
size_t opt_lg_chunk = LG_CHUNK_DEFAULT;
#ifdef JEMALLOC_SWAP
bool opt_overcommit = true;
#endif
#if (defined(JEMALLOC_STATS) || defined(JEMALLOC_PROF))
malloc_mutex_t chunks_mtx;
chunk_stats_t stats_chunks;
#endif
/* Various chunk-related settings. */
size_t chunksize;
size_t chunksize_mask; /* (chunksize - 1). */
size_t chunk_npages;
size_t arena_chunk_header_npages;
size_t arena_maxclass; /* Max size class for arenas. */
/******************************************************************************/
/*
* If the caller specifies (*zero == false), it is still possible to receive
* zeroed memory, in which case *zero is toggled to true. arena_chunk_alloc()
* takes advantage of this to avoid demanding zeroed chunks, but taking
* advantage of them if they are returned.
*/
void *
chunk_alloc(size_t size, bool *zero)
{
void *ret;
assert(size != 0);
assert((size & chunksize_mask) == 0);
#ifdef JEMALLOC_SWAP
if (swap_enabled) {
ret = chunk_alloc_swap(size, zero);
if (ret != NULL)
goto RETURN;
}
if (swap_enabled == false || opt_overcommit) {
#endif
#ifdef JEMALLOC_DSS
ret = chunk_alloc_dss(size, zero);
if (ret != NULL)
goto RETURN;
#endif
ret = chunk_alloc_mmap(size);
if (ret != NULL) {
*zero = true;
goto RETURN;
}
#ifdef JEMALLOC_SWAP
}
#endif
/* All strategies for allocation failed. */
ret = NULL;
RETURN:
#if (defined(JEMALLOC_STATS) || defined(JEMALLOC_PROF))
if (ret != NULL) {
# ifdef JEMALLOC_PROF
bool udump;
# endif
malloc_mutex_lock(&chunks_mtx);
# ifdef JEMALLOC_STATS
stats_chunks.nchunks += (size / chunksize);
# endif
stats_chunks.curchunks += (size / chunksize);
if (stats_chunks.curchunks > stats_chunks.highchunks) {
stats_chunks.highchunks = stats_chunks.curchunks;
# ifdef JEMALLOC_PROF
udump = true;
# endif
}
# ifdef JEMALLOC_PROF
else
udump = false;
# endif
malloc_mutex_unlock(&chunks_mtx);
# ifdef JEMALLOC_PROF
if (opt_prof && opt_prof_udump && udump)
prof_udump();
# endif
}
#endif
assert(CHUNK_ADDR2BASE(ret) == ret);
return (ret);
}
void
chunk_dealloc(void *chunk, size_t size)
{
assert(chunk != NULL);
assert(CHUNK_ADDR2BASE(chunk) == chunk);
assert(size != 0);
assert((size & chunksize_mask) == 0);
#if (defined(JEMALLOC_STATS) || defined(JEMALLOC_PROF))
malloc_mutex_lock(&chunks_mtx);
stats_chunks.curchunks -= (size / chunksize);
malloc_mutex_unlock(&chunks_mtx);
#endif
#ifdef JEMALLOC_SWAP
if (swap_enabled && chunk_dealloc_swap(chunk, size) == false)
return;
#endif
#ifdef JEMALLOC_DSS
if (chunk_dealloc_dss(chunk, size) == false)
return;
#endif
chunk_dealloc_mmap(chunk, size);
}
bool
chunk_boot(void)
{
/* Set variables according to the value of opt_lg_chunk. */
chunksize = (1LU << opt_lg_chunk);
assert(chunksize >= PAGE_SIZE);
chunksize_mask = chunksize - 1;
chunk_npages = (chunksize >> PAGE_SHIFT);
#if (defined(JEMALLOC_STATS) || defined(JEMALLOC_PROF))
if (malloc_mutex_init(&chunks_mtx))
return (true);
memset(&stats_chunks, 0, sizeof(chunk_stats_t));
#endif
#ifdef JEMALLOC_SWAP
if (chunk_swap_boot())
return (true);
#endif
#ifdef JEMALLOC_DSS
if (chunk_dss_boot())
return (true);
#endif
return (false);
}

268
externals/jemalloc/chunk_dss.c vendored Normal file
View File

@@ -0,0 +1,268 @@
#define JEMALLOC_CHUNK_DSS_C_
#include "jemalloc/internal/jemalloc_internal.h"
#ifdef JEMALLOC_DSS
/******************************************************************************/
/* Data. */
malloc_mutex_t dss_mtx;
/* Base address of the DSS. */
static void *dss_base;
/* Current end of the DSS, or ((void *)-1) if the DSS is exhausted. */
static void *dss_prev;
/* Current upper limit on DSS addresses. */
static void *dss_max;
/*
* Trees of chunks that were previously allocated (trees differ only in node
* ordering). These are used when allocating chunks, in an attempt to re-use
* address space. Depending on function, different tree orderings are needed,
* which is why there are two trees with the same contents.
*/
static extent_tree_t dss_chunks_szad;
static extent_tree_t dss_chunks_ad;
/******************************************************************************/
/* Function prototypes for non-inline static functions. */
static void *chunk_recycle_dss(size_t size, bool *zero);
static extent_node_t *chunk_dealloc_dss_record(void *chunk, size_t size);
/******************************************************************************/
static void *
chunk_recycle_dss(size_t size, bool *zero)
{
extent_node_t *node, key;
key.addr = NULL;
key.size = size;
malloc_mutex_lock(&dss_mtx);
node = extent_tree_szad_nsearch(&dss_chunks_szad, &key);
if (node != NULL) {
void *ret = node->addr;
/* Remove node from the tree. */
extent_tree_szad_remove(&dss_chunks_szad, node);
if (node->size == size) {
extent_tree_ad_remove(&dss_chunks_ad, node);
base_node_dealloc(node);
} else {
/*
* Insert the remainder of node's address range as a
* smaller chunk. Its position within dss_chunks_ad
* does not change.
*/
assert(node->size > size);
node->addr = (void *)((uintptr_t)node->addr + size);
node->size -= size;
extent_tree_szad_insert(&dss_chunks_szad, node);
}
malloc_mutex_unlock(&dss_mtx);
if (*zero)
memset(ret, 0, size);
return (ret);
}
malloc_mutex_unlock(&dss_mtx);
return (NULL);
}
void *
chunk_alloc_dss(size_t size, bool *zero)
{
void *ret;
ret = chunk_recycle_dss(size, zero);
if (ret != NULL)
return (ret);
/*
* sbrk() uses a signed increment argument, so take care not to
* interpret a huge allocation request as a negative increment.
*/
if ((intptr_t)size < 0)
return (NULL);
malloc_mutex_lock(&dss_mtx);
if (dss_prev != (void *)-1) {
intptr_t incr;
/*
* The loop is necessary to recover from races with other
* threads that are using the DSS for something other than
* malloc.
*/
do {
/* Get the current end of the DSS. */
dss_max = sbrk(0);
/*
* Calculate how much padding is necessary to
* chunk-align the end of the DSS.
*/
incr = (intptr_t)size
- (intptr_t)CHUNK_ADDR2OFFSET(dss_max);
if (incr == (intptr_t)size)
ret = dss_max;
else {
ret = (void *)((intptr_t)dss_max + incr);
incr += size;
}
dss_prev = sbrk(incr);
if (dss_prev == dss_max) {
/* Success. */
dss_max = (void *)((intptr_t)dss_prev + incr);
malloc_mutex_unlock(&dss_mtx);
*zero = true;
return (ret);
}
} while (dss_prev != (void *)-1);
}
malloc_mutex_unlock(&dss_mtx);
return (NULL);
}
static extent_node_t *
chunk_dealloc_dss_record(void *chunk, size_t size)
{
extent_node_t *xnode, *node, *prev, key;
xnode = NULL;
while (true) {
key.addr = (void *)((uintptr_t)chunk + size);
node = extent_tree_ad_nsearch(&dss_chunks_ad, &key);
/* Try to coalesce forward. */
if (node != NULL && node->addr == key.addr) {
/*
* Coalesce chunk with the following address range.
* This does not change the position within
* dss_chunks_ad, so only remove/insert from/into
* dss_chunks_szad.
*/
extent_tree_szad_remove(&dss_chunks_szad, node);
node->addr = chunk;
node->size += size;
extent_tree_szad_insert(&dss_chunks_szad, node);
break;
} else if (xnode == NULL) {
/*
* It is possible that base_node_alloc() will cause a
* new base chunk to be allocated, so take care not to
* deadlock on dss_mtx, and recover if another thread
* deallocates an adjacent chunk while this one is busy
* allocating xnode.
*/
malloc_mutex_unlock(&dss_mtx);
xnode = base_node_alloc();
malloc_mutex_lock(&dss_mtx);
if (xnode == NULL)
return (NULL);
} else {
/* Coalescing forward failed, so insert a new node. */
node = xnode;
xnode = NULL;
node->addr = chunk;
node->size = size;
extent_tree_ad_insert(&dss_chunks_ad, node);
extent_tree_szad_insert(&dss_chunks_szad, node);
break;
}
}
/* Discard xnode if it ended up unused do to a race. */
if (xnode != NULL)
base_node_dealloc(xnode);
/* Try to coalesce backward. */
prev = extent_tree_ad_prev(&dss_chunks_ad, node);
if (prev != NULL && (void *)((uintptr_t)prev->addr + prev->size) ==
chunk) {
/*
* Coalesce chunk with the previous address range. This does
* not change the position within dss_chunks_ad, so only
* remove/insert node from/into dss_chunks_szad.
*/
extent_tree_szad_remove(&dss_chunks_szad, prev);
extent_tree_ad_remove(&dss_chunks_ad, prev);
extent_tree_szad_remove(&dss_chunks_szad, node);
node->addr = prev->addr;
node->size += prev->size;
extent_tree_szad_insert(&dss_chunks_szad, node);
base_node_dealloc(prev);
}
return (node);
}
bool
chunk_dealloc_dss(void *chunk, size_t size)
{
bool ret;
malloc_mutex_lock(&dss_mtx);
if ((uintptr_t)chunk >= (uintptr_t)dss_base
&& (uintptr_t)chunk < (uintptr_t)dss_max) {
extent_node_t *node;
/* Try to coalesce with other unused chunks. */
node = chunk_dealloc_dss_record(chunk, size);
if (node != NULL) {
chunk = node->addr;
size = node->size;
}
/* Get the current end of the DSS. */
dss_max = sbrk(0);
/*
* Try to shrink the DSS if this chunk is at the end of the
* DSS. The sbrk() call here is subject to a race condition
* with threads that use brk(2) or sbrk(2) directly, but the
* alternative would be to leak memory for the sake of poorly
* designed multi-threaded programs.
*/
if ((void *)((uintptr_t)chunk + size) == dss_max
&& (dss_prev = sbrk(-(intptr_t)size)) == dss_max) {
/* Success. */
dss_max = (void *)((intptr_t)dss_prev - (intptr_t)size);
if (node != NULL) {
extent_tree_szad_remove(&dss_chunks_szad, node);
extent_tree_ad_remove(&dss_chunks_ad, node);
base_node_dealloc(node);
}
} else
madvise(chunk, size, MADV_DONTNEED);
ret = false;
goto RETURN;
}
ret = true;
RETURN:
malloc_mutex_unlock(&dss_mtx);
return (ret);
}
bool
chunk_dss_boot(void)
{
if (malloc_mutex_init(&dss_mtx))
return (true);
dss_base = sbrk(0);
dss_prev = dss_base;
dss_max = dss_base;
extent_tree_szad_new(&dss_chunks_szad);
extent_tree_ad_new(&dss_chunks_ad);
return (false);
}
/******************************************************************************/
#endif /* JEMALLOC_DSS */

201
externals/jemalloc/chunk_mmap.c vendored Normal file
View File

@@ -0,0 +1,201 @@
#define JEMALLOC_CHUNK_MMAP_C_
#include "jemalloc/internal/jemalloc_internal.h"
/******************************************************************************/
/* Data. */
/*
* Used by chunk_alloc_mmap() to decide whether to attempt the fast path and
* potentially avoid some system calls. We can get away without TLS here,
* since the state of mmap_unaligned only affects performance, rather than
* correct function.
*/
static
#ifndef NO_TLS
__thread
#endif
bool mmap_unaligned
#ifndef NO_TLS
JEMALLOC_ATTR(tls_model("initial-exec"))
#endif
;
/******************************************************************************/
/* Function prototypes for non-inline static functions. */
static void *pages_map(void *addr, size_t size);
static void pages_unmap(void *addr, size_t size);
static void *chunk_alloc_mmap_slow(size_t size, bool unaligned);
/******************************************************************************/
static void *
pages_map(void *addr, size_t size)
{
void *ret;
/*
* We don't use MAP_FIXED here, because it can cause the *replacement*
* of existing mappings, and we only want to create new mappings.
*/
ret = mmap(addr, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON,
-1, 0);
assert(ret != NULL);
if (ret == MAP_FAILED)
ret = NULL;
else if (addr != NULL && ret != addr) {
/*
* We succeeded in mapping memory, but not in the right place.
*/
if (munmap(ret, size) == -1) {
char buf[STRERROR_BUF];
strerror_r(errno, buf, sizeof(buf));
malloc_write("<jemalloc>: Error in munmap(): ");
malloc_write(buf);
malloc_write("\n");
if (opt_abort)
abort();
}
ret = NULL;
}
assert(ret == NULL || (addr == NULL && ret != addr)
|| (addr != NULL && ret == addr));
return (ret);
}
static void
pages_unmap(void *addr, size_t size)
{
if (munmap(addr, size) == -1) {
char buf[STRERROR_BUF];
strerror_r(errno, buf, sizeof(buf));
malloc_write("<jemalloc>: Error in munmap(): ");
malloc_write(buf);
malloc_write("\n");
if (opt_abort)
abort();
}
}
static void *
chunk_alloc_mmap_slow(size_t size, bool unaligned)
{
void *ret;
size_t offset;
/* Beware size_t wrap-around. */
if (size + chunksize <= size)
return (NULL);
ret = pages_map(NULL, size + chunksize);
if (ret == NULL)
return (NULL);
/* Clean up unneeded leading/trailing space. */
offset = CHUNK_ADDR2OFFSET(ret);
if (offset != 0) {
/* Note that mmap() returned an unaligned mapping. */
unaligned = true;
/* Leading space. */
pages_unmap(ret, chunksize - offset);
ret = (void *)((uintptr_t)ret +
(chunksize - offset));
/* Trailing space. */
pages_unmap((void *)((uintptr_t)ret + size),
offset);
} else {
/* Trailing space only. */
pages_unmap((void *)((uintptr_t)ret + size),
chunksize);
}
/*
* If mmap() returned an aligned mapping, reset mmap_unaligned so that
* the next chunk_alloc_mmap() execution tries the fast allocation
* method.
*/
if (unaligned == false)
mmap_unaligned = false;
return (ret);
}
void *
chunk_alloc_mmap(size_t size)
{
void *ret;
/*
* Ideally, there would be a way to specify alignment to mmap() (like
* NetBSD has), but in the absence of such a feature, we have to work
* hard to efficiently create aligned mappings. The reliable, but
* slow method is to create a mapping that is over-sized, then trim the
* excess. However, that always results in at least one call to
* pages_unmap().
*
* A more optimistic approach is to try mapping precisely the right
* amount, then try to append another mapping if alignment is off. In
* practice, this works out well as long as the application is not
* interleaving mappings via direct mmap() calls. If we do run into a
* situation where there is an interleaved mapping and we are unable to
* extend an unaligned mapping, our best option is to switch to the
* slow method until mmap() returns another aligned mapping. This will
* tend to leave a gap in the memory map that is too small to cause
* later problems for the optimistic method.
*
* Another possible confounding factor is address space layout
* randomization (ASLR), which causes mmap(2) to disregard the
* requested address. mmap_unaligned tracks whether the previous
* chunk_alloc_mmap() execution received any unaligned or relocated
* mappings, and if so, the current execution will immediately fall
* back to the slow method. However, we keep track of whether the fast
* method would have succeeded, and if so, we make a note to try the
* fast method next time.
*/
if (mmap_unaligned == false) {
size_t offset;
ret = pages_map(NULL, size);
if (ret == NULL)
return (NULL);
offset = CHUNK_ADDR2OFFSET(ret);
if (offset != 0) {
mmap_unaligned = true;
/* Try to extend chunk boundary. */
if (pages_map((void *)((uintptr_t)ret + size),
chunksize - offset) == NULL) {
/*
* Extension failed. Clean up, then revert to
* the reliable-but-expensive method.
*/
pages_unmap(ret, size);
ret = chunk_alloc_mmap_slow(size, true);
} else {
/* Clean up unneeded leading space. */
pages_unmap(ret, chunksize - offset);
ret = (void *)((uintptr_t)ret + (chunksize -
offset));
}
}
} else
ret = chunk_alloc_mmap_slow(size, false);
return (ret);
}
void
chunk_dealloc_mmap(void *chunk, size_t size)
{
pages_unmap(chunk, size);
}

383
externals/jemalloc/chunk_swap.c vendored Normal file
View File

@@ -0,0 +1,383 @@
#define JEMALLOC_CHUNK_SWAP_C_
#include "jemalloc/internal/jemalloc_internal.h"
#ifdef JEMALLOC_SWAP
/******************************************************************************/
/* Data. */
malloc_mutex_t swap_mtx;
bool swap_enabled;
bool swap_prezeroed;
size_t swap_nfds;
int *swap_fds;
#ifdef JEMALLOC_STATS
size_t swap_avail;
#endif
/* Base address of the mmap()ed file(s). */
static void *swap_base;
/* Current end of the space in use (<= swap_max). */
static void *swap_end;
/* Absolute upper limit on file-backed addresses. */
static void *swap_max;
/*
* Trees of chunks that were previously allocated (trees differ only in node
* ordering). These are used when allocating chunks, in an attempt to re-use
* address space. Depending on function, different tree orderings are needed,
* which is why there are two trees with the same contents.
*/
static extent_tree_t swap_chunks_szad;
static extent_tree_t swap_chunks_ad;
/******************************************************************************/
/* Function prototypes for non-inline static functions. */
static void *chunk_recycle_swap(size_t size, bool *zero);
static extent_node_t *chunk_dealloc_swap_record(void *chunk, size_t size);
/******************************************************************************/
static void *
chunk_recycle_swap(size_t size, bool *zero)
{
extent_node_t *node, key;
key.addr = NULL;
key.size = size;
malloc_mutex_lock(&swap_mtx);
node = extent_tree_szad_nsearch(&swap_chunks_szad, &key);
if (node != NULL) {
void *ret = node->addr;
/* Remove node from the tree. */
extent_tree_szad_remove(&swap_chunks_szad, node);
if (node->size == size) {
extent_tree_ad_remove(&swap_chunks_ad, node);
base_node_dealloc(node);
} else {
/*
* Insert the remainder of node's address range as a
* smaller chunk. Its position within swap_chunks_ad
* does not change.
*/
assert(node->size > size);
node->addr = (void *)((uintptr_t)node->addr + size);
node->size -= size;
extent_tree_szad_insert(&swap_chunks_szad, node);
}
#ifdef JEMALLOC_STATS
swap_avail -= size;
#endif
malloc_mutex_unlock(&swap_mtx);
if (*zero)
memset(ret, 0, size);
return (ret);
}
malloc_mutex_unlock(&swap_mtx);
return (NULL);
}
void *
chunk_alloc_swap(size_t size, bool *zero)
{
void *ret;
assert(swap_enabled);
ret = chunk_recycle_swap(size, zero);
if (ret != NULL)
return (ret);
malloc_mutex_lock(&swap_mtx);
if ((uintptr_t)swap_end + size <= (uintptr_t)swap_max) {
ret = swap_end;
swap_end = (void *)((uintptr_t)swap_end + size);
#ifdef JEMALLOC_STATS
swap_avail -= size;
#endif
malloc_mutex_unlock(&swap_mtx);
if (swap_prezeroed)
*zero = true;
else if (*zero)
memset(ret, 0, size);
} else {
malloc_mutex_unlock(&swap_mtx);
return (NULL);
}
return (ret);
}
static extent_node_t *
chunk_dealloc_swap_record(void *chunk, size_t size)
{
extent_node_t *xnode, *node, *prev, key;
xnode = NULL;
while (true) {
key.addr = (void *)((uintptr_t)chunk + size);
node = extent_tree_ad_nsearch(&swap_chunks_ad, &key);
/* Try to coalesce forward. */
if (node != NULL && node->addr == key.addr) {
/*
* Coalesce chunk with the following address range.
* This does not change the position within
* swap_chunks_ad, so only remove/insert from/into
* swap_chunks_szad.
*/
extent_tree_szad_remove(&swap_chunks_szad, node);
node->addr = chunk;
node->size += size;
extent_tree_szad_insert(&swap_chunks_szad, node);
break;
} else if (xnode == NULL) {
/*
* It is possible that base_node_alloc() will cause a
* new base chunk to be allocated, so take care not to
* deadlock on swap_mtx, and recover if another thread
* deallocates an adjacent chunk while this one is busy
* allocating xnode.
*/
malloc_mutex_unlock(&swap_mtx);
xnode = base_node_alloc();
malloc_mutex_lock(&swap_mtx);
if (xnode == NULL)
return (NULL);
} else {
/* Coalescing forward failed, so insert a new node. */
node = xnode;
xnode = NULL;
node->addr = chunk;
node->size = size;
extent_tree_ad_insert(&swap_chunks_ad, node);
extent_tree_szad_insert(&swap_chunks_szad, node);
break;
}
}
/* Discard xnode if it ended up unused do to a race. */
if (xnode != NULL)
base_node_dealloc(xnode);
/* Try to coalesce backward. */
prev = extent_tree_ad_prev(&swap_chunks_ad, node);
if (prev != NULL && (void *)((uintptr_t)prev->addr + prev->size) ==
chunk) {
/*
* Coalesce chunk with the previous address range. This does
* not change the position within swap_chunks_ad, so only
* remove/insert node from/into swap_chunks_szad.
*/
extent_tree_szad_remove(&swap_chunks_szad, prev);
extent_tree_ad_remove(&swap_chunks_ad, prev);
extent_tree_szad_remove(&swap_chunks_szad, node);
node->addr = prev->addr;
node->size += prev->size;
extent_tree_szad_insert(&swap_chunks_szad, node);
base_node_dealloc(prev);
}
return (node);
}
bool
chunk_dealloc_swap(void *chunk, size_t size)
{
bool ret;
assert(swap_enabled);
malloc_mutex_lock(&swap_mtx);
if ((uintptr_t)chunk >= (uintptr_t)swap_base
&& (uintptr_t)chunk < (uintptr_t)swap_max) {
extent_node_t *node;
/* Try to coalesce with other unused chunks. */
node = chunk_dealloc_swap_record(chunk, size);
if (node != NULL) {
chunk = node->addr;
size = node->size;
}
/*
* Try to shrink the in-use memory if this chunk is at the end
* of the in-use memory.
*/
if ((void *)((uintptr_t)chunk + size) == swap_end) {
swap_end = (void *)((uintptr_t)swap_end - size);
if (node != NULL) {
extent_tree_szad_remove(&swap_chunks_szad,
node);
extent_tree_ad_remove(&swap_chunks_ad, node);
base_node_dealloc(node);
}
} else
madvise(chunk, size, MADV_DONTNEED);
ret = false;
goto RETURN;
}
ret = true;
RETURN:
#ifdef JEMALLOC_STATS
swap_avail += size;
#endif
malloc_mutex_unlock(&swap_mtx);
return (ret);
}
bool
chunk_swap_enable(const int *fds, unsigned nfds, bool prezeroed)
{
bool ret;
unsigned i;
off_t off;
void *vaddr;
size_t cumsize, voff;
size_t sizes[nfds];
malloc_mutex_lock(&swap_mtx);
/* Get file sizes. */
for (i = 0, cumsize = 0; i < nfds; i++) {
off = lseek(fds[i], 0, SEEK_END);
if (off == ((off_t)-1)) {
ret = true;
goto RETURN;
}
if (PAGE_CEILING(off) != off) {
/* Truncate to a multiple of the page size. */
off &= ~PAGE_MASK;
if (ftruncate(fds[i], off) != 0) {
ret = true;
goto RETURN;
}
}
sizes[i] = off;
if (cumsize + off < cumsize) {
/*
* Cumulative file size is greater than the total
* address space. Bail out while it's still obvious
* what the problem is.
*/
ret = true;
goto RETURN;
}
cumsize += off;
}
/* Round down to a multiple of the chunk size. */
cumsize &= ~chunksize_mask;
if (cumsize == 0) {
ret = true;
goto RETURN;
}
/*
* Allocate a chunk-aligned region of anonymous memory, which will
* be the final location for the memory-mapped files.
*/
vaddr = chunk_alloc_mmap(cumsize);
if (vaddr == NULL) {
ret = true;
goto RETURN;
}
/* Overlay the files onto the anonymous mapping. */
for (i = 0, voff = 0; i < nfds; i++) {
void *addr = mmap((void *)((uintptr_t)vaddr + voff), sizes[i],
PROT_READ | PROT_WRITE, MAP_SHARED | MAP_FIXED, fds[i], 0);
if (addr == MAP_FAILED) {
char buf[STRERROR_BUF];
strerror_r(errno, buf, sizeof(buf));
malloc_write(
"<jemalloc>: Error in mmap(..., MAP_FIXED, ...): ");
malloc_write(buf);
malloc_write("\n");
if (opt_abort)
abort();
if (munmap(vaddr, voff) == -1) {
strerror_r(errno, buf, sizeof(buf));
malloc_write("<jemalloc>: Error in munmap(): ");
malloc_write(buf);
malloc_write("\n");
}
ret = true;
goto RETURN;
}
assert(addr == (void *)((uintptr_t)vaddr + voff));
/*
* Tell the kernel that the mapping will be accessed randomly,
* and that it should not gratuitously sync pages to the
* filesystem.
*/
#ifdef MADV_RANDOM
madvise(addr, sizes[i], MADV_RANDOM);
#endif
#ifdef MADV_NOSYNC
madvise(addr, sizes[i], MADV_NOSYNC);
#endif
voff += sizes[i];
}
swap_prezeroed = prezeroed;
swap_base = vaddr;
swap_end = swap_base;
swap_max = (void *)((uintptr_t)vaddr + cumsize);
/* Copy the fds array for mallctl purposes. */
swap_fds = (int *)base_alloc(nfds * sizeof(int));
if (swap_fds == NULL) {
ret = true;
goto RETURN;
}
memcpy(swap_fds, fds, nfds * sizeof(int));
swap_nfds = nfds;
#ifdef JEMALLOC_STATS
swap_avail = cumsize;
#endif
swap_enabled = true;
ret = false;
RETURN:
malloc_mutex_unlock(&swap_mtx);
return (ret);
}
bool
chunk_swap_boot(void)
{
if (malloc_mutex_init(&swap_mtx))
return (true);
swap_enabled = false;
swap_prezeroed = false; /* swap.* mallctl's depend on this. */
swap_nfds = 0;
swap_fds = NULL;
#ifdef JEMALLOC_STATS
swap_avail = 0;
#endif
swap_base = NULL;
swap_end = NULL;
swap_max = NULL;
extent_tree_szad_new(&swap_chunks_szad);
extent_tree_ad_new(&swap_chunks_ad);
return (false);
}
/******************************************************************************/
#endif /* JEMALLOC_SWAP */

601
externals/jemalloc/ckh.c vendored Normal file
View File

@@ -0,0 +1,601 @@
/*
*******************************************************************************
* Implementation of (2^1+,2) cuckoo hashing, where 2^1+ indicates that each
* hash bucket contains 2^n cells, for n >= 1, and 2 indicates that two hash
* functions are employed. The original cuckoo hashing algorithm was described
* in:
*
* Pagh, R., F.F. Rodler (2004) Cuckoo Hashing. Journal of Algorithms
* 51(2):122-144.
*
* Generalization of cuckoo hashing was discussed in:
*
* Erlingsson, U., M. Manasse, F. McSherry (2006) A cool and practical
* alternative to traditional hash tables. In Proceedings of the 7th
* Workshop on Distributed Data and Structures (WDAS'06), Santa Clara, CA,
* January 2006.
*
* This implementation uses precisely two hash functions because that is the
* fewest that can work, and supporting multiple hashes is an implementation
* burden. Here is a reproduction of Figure 1 from Erlingsson et al. (2006)
* that shows approximate expected maximum load factors for various
* configurations:
*
* | #cells/bucket |
* #hashes | 1 | 2 | 4 | 8 |
* --------+-------+-------+-------+-------+
* 1 | 0.006 | 0.006 | 0.03 | 0.12 |
* 2 | 0.49 | 0.86 |>0.93< |>0.96< |
* 3 | 0.91 | 0.97 | 0.98 | 0.999 |
* 4 | 0.97 | 0.99 | 0.999 | |
*
* The number of cells per bucket is chosen such that a bucket fits in one cache
* line. So, on 32- and 64-bit systems, we use (8,2) and (4,2) cuckoo hashing,
* respectively.
*
******************************************************************************/
#define CKH_C_
#include "jemalloc/internal/jemalloc_internal.h"
/******************************************************************************/
/* Function prototypes for non-inline static functions. */
static bool ckh_grow(ckh_t *ckh);
static void ckh_shrink(ckh_t *ckh);
/******************************************************************************/
/*
* Search bucket for key and return the cell number if found; SIZE_T_MAX
* otherwise.
*/
JEMALLOC_INLINE size_t
ckh_bucket_search(ckh_t *ckh, size_t bucket, const void *key)
{
ckhc_t *cell;
unsigned i;
for (i = 0; i < (ZU(1) << LG_CKH_BUCKET_CELLS); i++) {
cell = &ckh->tab[(bucket << LG_CKH_BUCKET_CELLS) + i];
if (cell->key != NULL && ckh->keycomp(key, cell->key))
return ((bucket << LG_CKH_BUCKET_CELLS) + i);
}
return (SIZE_T_MAX);
}
/*
* Search table for key and return cell number if found; SIZE_T_MAX otherwise.
*/
JEMALLOC_INLINE size_t
ckh_isearch(ckh_t *ckh, const void *key)
{
size_t hash1, hash2, bucket, cell;
assert(ckh != NULL);
assert(ckh->magic = CKH_MAGIG);
ckh->hash(key, ckh->lg_curbuckets, &hash1, &hash2);
/* Search primary bucket. */
bucket = hash1 & ((ZU(1) << ckh->lg_curbuckets) - 1);
cell = ckh_bucket_search(ckh, bucket, key);
if (cell != SIZE_T_MAX)
return (cell);
/* Search secondary bucket. */
bucket = hash2 & ((ZU(1) << ckh->lg_curbuckets) - 1);
cell = ckh_bucket_search(ckh, bucket, key);
return (cell);
}
JEMALLOC_INLINE bool
ckh_try_bucket_insert(ckh_t *ckh, size_t bucket, const void *key,
const void *data)
{
ckhc_t *cell;
unsigned offset, i;
/*
* Cycle through the cells in the bucket, starting at a random position.
* The randomness avoids worst-case search overhead as buckets fill up.
*/
prn32(offset, LG_CKH_BUCKET_CELLS, ckh->prn_state, CKH_A, CKH_C);
for (i = 0; i < (ZU(1) << LG_CKH_BUCKET_CELLS); i++) {
cell = &ckh->tab[(bucket << LG_CKH_BUCKET_CELLS) +
((i + offset) & ((ZU(1) << LG_CKH_BUCKET_CELLS) - 1))];
if (cell->key == NULL) {
cell->key = key;
cell->data = data;
ckh->count++;
return (false);
}
}
return (true);
}
/*
* No space is available in bucket. Randomly evict an item, then try to find an
* alternate location for that item. Iteratively repeat this
* eviction/relocation procedure until either success or detection of an
* eviction/relocation bucket cycle.
*/
JEMALLOC_INLINE bool
ckh_evict_reloc_insert(ckh_t *ckh, size_t argbucket, void const **argkey,
void const **argdata)
{
const void *key, *data, *tkey, *tdata;
ckhc_t *cell;
size_t hash1, hash2, bucket, tbucket;
unsigned i;
bucket = argbucket;
key = *argkey;
data = *argdata;
while (true) {
/*
* Choose a random item within the bucket to evict. This is
* critical to correct function, because without (eventually)
* evicting all items within a bucket during iteration, it
* would be possible to get stuck in an infinite loop if there
* were an item for which both hashes indicated the same
* bucket.
*/
prn32(i, LG_CKH_BUCKET_CELLS, ckh->prn_state, CKH_A, CKH_C);
cell = &ckh->tab[(bucket << LG_CKH_BUCKET_CELLS) + i];
assert(cell->key != NULL);
/* Swap cell->{key,data} and {key,data} (evict). */
tkey = cell->key; tdata = cell->data;
cell->key = key; cell->data = data;
key = tkey; data = tdata;
#ifdef CKH_COUNT
ckh->nrelocs++;
#endif
/* Find the alternate bucket for the evicted item. */
ckh->hash(key, ckh->lg_curbuckets, &hash1, &hash2);
tbucket = hash2 & ((ZU(1) << ckh->lg_curbuckets) - 1);
if (tbucket == bucket) {
tbucket = hash1 & ((ZU(1) << ckh->lg_curbuckets) - 1);
/*
* It may be that (tbucket == bucket) still, if the
* item's hashes both indicate this bucket. However,
* we are guaranteed to eventually escape this bucket
* during iteration, assuming pseudo-random item
* selection (true randomness would make infinite
* looping a remote possibility). The reason we can
* never get trapped forever is that there are two
* cases:
*
* 1) This bucket == argbucket, so we will quickly
* detect an eviction cycle and terminate.
* 2) An item was evicted to this bucket from another,
* which means that at least one item in this bucket
* has hashes that indicate distinct buckets.
*/
}
/* Check for a cycle. */
if (tbucket == argbucket) {
*argkey = key;
*argdata = data;
return (true);
}
bucket = tbucket;
if (ckh_try_bucket_insert(ckh, bucket, key, data) == false)
return (false);
}
}
JEMALLOC_INLINE bool
ckh_try_insert(ckh_t *ckh, void const**argkey, void const**argdata)
{
size_t hash1, hash2, bucket;
const void *key = *argkey;
const void *data = *argdata;
ckh->hash(key, ckh->lg_curbuckets, &hash1, &hash2);
/* Try to insert in primary bucket. */
bucket = hash1 & ((ZU(1) << ckh->lg_curbuckets) - 1);
if (ckh_try_bucket_insert(ckh, bucket, key, data) == false)
return (false);
/* Try to insert in secondary bucket. */
bucket = hash2 & ((ZU(1) << ckh->lg_curbuckets) - 1);
if (ckh_try_bucket_insert(ckh, bucket, key, data) == false)
return (false);
/*
* Try to find a place for this item via iterative eviction/relocation.
*/
return (ckh_evict_reloc_insert(ckh, bucket, argkey, argdata));
}
/*
* Try to rebuild the hash table from scratch by inserting all items from the
* old table into the new.
*/
JEMALLOC_INLINE bool
ckh_rebuild(ckh_t *ckh, ckhc_t *aTab)
{
size_t count, i, nins;
const void *key, *data;
count = ckh->count;
ckh->count = 0;
for (i = nins = 0; nins < count; i++) {
if (aTab[i].key != NULL) {
key = aTab[i].key;
data = aTab[i].data;
if (ckh_try_insert(ckh, &key, &data)) {
ckh->count = count;
return (true);
}
nins++;
}
}
return (false);
}
static bool
ckh_grow(ckh_t *ckh)
{
bool ret;
ckhc_t *tab, *ttab;
size_t lg_curcells;
unsigned lg_prevbuckets;
#ifdef CKH_COUNT
ckh->ngrows++;
#endif
/*
* It is possible (though unlikely, given well behaved hashes) that the
* table will have to be doubled more than once in order to create a
* usable table.
*/
lg_prevbuckets = ckh->lg_curbuckets;
lg_curcells = ckh->lg_curbuckets + LG_CKH_BUCKET_CELLS;
while (true) {
lg_curcells++;
tab = (ckhc_t *) ipalloc((ZU(1) << LG_CACHELINE),
sizeof(ckhc_t) << lg_curcells);
if (tab == NULL) {
ret = true;
goto RETURN;
}
memset(tab, 0, sizeof(ckhc_t) << lg_curcells);
/* Swap in new table. */
ttab = ckh->tab;
ckh->tab = tab;
tab = ttab;
ckh->lg_curbuckets = lg_curcells - LG_CKH_BUCKET_CELLS;
if (ckh_rebuild(ckh, tab) == false) {
idalloc(tab);
break;
}
/* Rebuilding failed, so back out partially rebuilt table. */
idalloc(ckh->tab);
ckh->tab = tab;
ckh->lg_curbuckets = lg_prevbuckets;
}
ret = false;
RETURN:
return (ret);
}
static void
ckh_shrink(ckh_t *ckh)
{
ckhc_t *tab, *ttab;
size_t lg_curcells;
unsigned lg_prevbuckets;
/*
* It is possible (though unlikely, given well behaved hashes) that the
* table rebuild will fail.
*/
lg_prevbuckets = ckh->lg_curbuckets;
lg_curcells = ckh->lg_curbuckets + LG_CKH_BUCKET_CELLS - 1;
tab = (ckhc_t *)ipalloc((ZU(1) << LG_CACHELINE),
sizeof(ckhc_t) << lg_curcells);
if (tab == NULL) {
/*
* An OOM error isn't worth propagating, since it doesn't
* prevent this or future operations from proceeding.
*/
return;
}
memset(tab, 0, sizeof(ckhc_t) << lg_curcells);
/* Swap in new table. */
ttab = ckh->tab;
ckh->tab = tab;
tab = ttab;
ckh->lg_curbuckets = lg_curcells - LG_CKH_BUCKET_CELLS;
if (ckh_rebuild(ckh, tab) == false) {
idalloc(tab);
#ifdef CKH_COUNT
ckh->nshrinks++;
#endif
return;
}
/* Rebuilding failed, so back out partially rebuilt table. */
idalloc(ckh->tab);
ckh->tab = tab;
ckh->lg_curbuckets = lg_prevbuckets;
#ifdef CKH_COUNT
ckh->nshrinkfails++;
#endif
}
bool
ckh_new(ckh_t *ckh, size_t minitems, ckh_hash_t *hash, ckh_keycomp_t *keycomp)
{
bool ret;
size_t mincells;
unsigned lg_mincells;
assert(minitems > 0);
assert(hash != NULL);
assert(keycomp != NULL);
#ifdef CKH_COUNT
ckh->ngrows = 0;
ckh->nshrinks = 0;
ckh->nshrinkfails = 0;
ckh->ninserts = 0;
ckh->nrelocs = 0;
#endif
ckh->prn_state = 42; /* Value doesn't really matter. */
ckh->count = 0;
/*
* Find the minimum power of 2 that is large enough to fit aBaseCount
* entries. We are using (2+,2) cuckoo hashing, which has an expected
* maximum load factor of at least ~0.86, so 0.75 is a conservative load
* factor that will typically allow 2^aLgMinItems to fit without ever
* growing the table.
*/
assert(LG_CKH_BUCKET_CELLS > 0);
mincells = ((minitems + (3 - (minitems % 3))) / 3) << 2;
for (lg_mincells = LG_CKH_BUCKET_CELLS;
(ZU(1) << lg_mincells) < mincells;
lg_mincells++)
; /* Do nothing. */
ckh->lg_minbuckets = lg_mincells - LG_CKH_BUCKET_CELLS;
ckh->lg_curbuckets = lg_mincells - LG_CKH_BUCKET_CELLS;
ckh->hash = hash;
ckh->keycomp = keycomp;
ckh->tab = (ckhc_t *)ipalloc((ZU(1) << LG_CACHELINE),
sizeof(ckhc_t) << lg_mincells);
if (ckh->tab == NULL) {
ret = true;
goto RETURN;
}
memset(ckh->tab, 0, sizeof(ckhc_t) << lg_mincells);
#ifdef JEMALLOC_DEBUG
ckh->magic = CKH_MAGIG;
#endif
ret = false;
RETURN:
return (ret);
}
void
ckh_delete(ckh_t *ckh)
{
assert(ckh != NULL);
assert(ckh->magic = CKH_MAGIG);
#ifdef CKH_VERBOSE
malloc_printf(
"%s(%p): ngrows: %"PRIu64", nshrinks: %"PRIu64","
" nshrinkfails: %"PRIu64", ninserts: %"PRIu64","
" nrelocs: %"PRIu64"\n", __func__, ckh,
(unsigned long long)ckh->ngrows,
(unsigned long long)ckh->nshrinks,
(unsigned long long)ckh->nshrinkfails,
(unsigned long long)ckh->ninserts,
(unsigned long long)ckh->nrelocs);
#endif
idalloc(ckh->tab);
#ifdef JEMALLOC_DEBUG
memset(ckh, 0x5a, sizeof(ckh_t));
#endif
}
size_t
ckh_count(ckh_t *ckh)
{
assert(ckh != NULL);
assert(ckh->magic = CKH_MAGIG);
return (ckh->count);
}
bool
ckh_iter(ckh_t *ckh, size_t *tabind, void **key, void **data)
{
size_t i, ncells;
for (i = *tabind, ncells = (ZU(1) << (ckh->lg_curbuckets +
LG_CKH_BUCKET_CELLS)); i < ncells; i++) {
if (ckh->tab[i].key != NULL) {
if (key != NULL)
*key = (void *)ckh->tab[i].key;
if (data != NULL)
*data = (void *)ckh->tab[i].data;
*tabind = i + 1;
return (false);
}
}
return (true);
}
bool
ckh_insert(ckh_t *ckh, const void *key, const void *data)
{
bool ret;
assert(ckh != NULL);
assert(ckh->magic = CKH_MAGIG);
assert(ckh_search(ckh, key, NULL, NULL));
#ifdef CKH_COUNT
ckh->ninserts++;
#endif
while (ckh_try_insert(ckh, &key, &data)) {
if (ckh_grow(ckh)) {
ret = true;
goto RETURN;
}
}
ret = false;
RETURN:
return (ret);
}
bool
ckh_remove(ckh_t *ckh, const void *searchkey, void **key, void **data)
{
size_t cell;
assert(ckh != NULL);
assert(ckh->magic = CKH_MAGIG);
cell = ckh_isearch(ckh, searchkey);
if (cell != SIZE_T_MAX) {
if (key != NULL)
*key = (void *)ckh->tab[cell].key;
if (data != NULL)
*data = (void *)ckh->tab[cell].data;
ckh->tab[cell].key = NULL;
ckh->tab[cell].data = NULL; /* Not necessary. */
ckh->count--;
/* Try to halve the table if it is less than 1/4 full. */
if (ckh->count < (ZU(1) << (ckh->lg_curbuckets
+ LG_CKH_BUCKET_CELLS - 2)) && ckh->lg_curbuckets
> ckh->lg_minbuckets) {
/* Ignore error due to OOM. */
ckh_shrink(ckh);
}
return (false);
}
return (true);
}
bool
ckh_search(ckh_t *ckh, const void *searchkey, void **key, void **data)
{
size_t cell;
assert(ckh != NULL);
assert(ckh->magic = CKH_MAGIG);
cell = ckh_isearch(ckh, searchkey);
if (cell != SIZE_T_MAX) {
if (key != NULL)
*key = (void *)ckh->tab[cell].key;
if (data != NULL)
*data = (void *)ckh->tab[cell].data;
return (false);
}
return (true);
}
void
ckh_string_hash(const void *key, unsigned minbits, size_t *hash1, size_t *hash2)
{
size_t ret1, ret2;
uint64_t h;
assert(minbits <= 32 || (SIZEOF_PTR == 8 && minbits <= 64));
assert(hash1 != NULL);
assert(hash2 != NULL);
h = hash(key, strlen((const char *)key), 0x94122f335b332aeaLLU);
if (minbits <= 32) {
/*
* Avoid doing multiple hashes, since a single hash provides
* enough bits.
*/
ret1 = h & ZU(0xffffffffU);
ret2 = h >> 32;
} else {
ret1 = h;
ret2 = hash(key, strlen((const char *)key),
0x8432a476666bbc13U);
}
*hash1 = ret1;
*hash2 = ret2;
}
bool
ckh_string_keycomp(const void *k1, const void *k2)
{
assert(k1 != NULL);
assert(k2 != NULL);
return (strcmp((char *)k1, (char *)k2) ? false : true);
}
void
ckh_pointer_hash(const void *key, unsigned minbits, size_t *hash1,
size_t *hash2)
{
size_t ret1, ret2;
uint64_t h;
assert(minbits <= 32 || (SIZEOF_PTR == 8 && minbits <= 64));
assert(hash1 != NULL);
assert(hash2 != NULL);
h = hash(&key, sizeof(void *), 0xd983396e68886082LLU);
if (minbits <= 32) {
/*
* Avoid doing multiple hashes, since a single hash provides
* enough bits.
*/
ret1 = h & ZU(0xffffffffU);
ret2 = h >> 32;
} else {
assert(SIZEOF_PTR == 8);
ret1 = h;
ret2 = hash(&key, sizeof(void *), 0x5e2be9aff8709a5dLLU);
}
*hash1 = ret1;
*hash2 = ret2;
}
bool
ckh_pointer_keycomp(const void *k1, const void *k2)
{
return ((k1 == k2) ? true : false);
}

1482
externals/jemalloc/ctl.c vendored Normal file

File diff suppressed because it is too large Load Diff

View File

41
externals/jemalloc/extent.c vendored Normal file
View File

@@ -0,0 +1,41 @@
#define JEMALLOC_EXTENT_C_
#include "jemalloc/internal/jemalloc_internal.h"
/******************************************************************************/
#if (defined(JEMALLOC_SWAP) || defined(JEMALLOC_DSS))
static inline int
extent_szad_comp(extent_node_t *a, extent_node_t *b)
{
int ret;
size_t a_size = a->size;
size_t b_size = b->size;
ret = (a_size > b_size) - (a_size < b_size);
if (ret == 0) {
uintptr_t a_addr = (uintptr_t)a->addr;
uintptr_t b_addr = (uintptr_t)b->addr;
ret = (a_addr > b_addr) - (a_addr < b_addr);
}
return (ret);
}
/* Generate red-black tree functions. */
rb_gen(, extent_tree_szad_, extent_tree_t, extent_node_t, link_szad,
extent_szad_comp)
#endif
static inline int
extent_ad_comp(extent_node_t *a, extent_node_t *b)
{
uintptr_t a_addr = (uintptr_t)a->addr;
uintptr_t b_addr = (uintptr_t)b->addr;
return ((a_addr > b_addr) - (a_addr < b_addr));
}
/* Generate red-black tree functions. */
rb_gen(, extent_tree_ad_, extent_tree_t, extent_node_t, link_ad,
extent_ad_comp)

2
externals/jemalloc/hash.c vendored Normal file
View File

@@ -0,0 +1,2 @@
#define HASH_C_
#include "jemalloc/internal/jemalloc_internal.h"

298
externals/jemalloc/huge.c vendored Normal file
View File

@@ -0,0 +1,298 @@
#define JEMALLOC_HUGE_C_
#include "jemalloc/internal/jemalloc_internal.h"
/******************************************************************************/
/* Data. */
#ifdef JEMALLOC_STATS
uint64_t huge_nmalloc;
uint64_t huge_ndalloc;
size_t huge_allocated;
#endif
malloc_mutex_t huge_mtx;
/******************************************************************************/
/* Tree of chunks that are stand-alone huge allocations. */
static extent_tree_t huge;
void *
huge_malloc(size_t size, bool zero)
{
void *ret;
size_t csize;
extent_node_t *node;
/* Allocate one or more contiguous chunks for this request. */
csize = CHUNK_CEILING(size);
if (csize == 0) {
/* size is large enough to cause size_t wrap-around. */
return (NULL);
}
/* Allocate an extent node with which to track the chunk. */
node = base_node_alloc();
if (node == NULL)
return (NULL);
ret = chunk_alloc(csize, &zero);
if (ret == NULL) {
base_node_dealloc(node);
return (NULL);
}
/* Insert node into huge. */
node->addr = ret;
node->size = csize;
malloc_mutex_lock(&huge_mtx);
extent_tree_ad_insert(&huge, node);
#ifdef JEMALLOC_STATS
huge_nmalloc++;
huge_allocated += csize;
#endif
malloc_mutex_unlock(&huge_mtx);
#ifdef JEMALLOC_FILL
if (zero == false) {
if (opt_junk)
memset(ret, 0xa5, csize);
else if (opt_zero)
memset(ret, 0, csize);
}
#endif
return (ret);
}
/* Only handles large allocations that require more than chunk alignment. */
void *
huge_palloc(size_t alignment, size_t size)
{
void *ret;
size_t alloc_size, chunk_size, offset;
extent_node_t *node;
bool zero;
/*
* This allocation requires alignment that is even larger than chunk
* alignment. This means that huge_malloc() isn't good enough.
*
* Allocate almost twice as many chunks as are demanded by the size or
* alignment, in order to assure the alignment can be achieved, then
* unmap leading and trailing chunks.
*/
assert(alignment >= chunksize);
chunk_size = CHUNK_CEILING(size);
if (size >= alignment)
alloc_size = chunk_size + alignment - chunksize;
else
alloc_size = (alignment << 1) - chunksize;
/* Allocate an extent node with which to track the chunk. */
node = base_node_alloc();
if (node == NULL)
return (NULL);
zero = false;
ret = chunk_alloc(alloc_size, &zero);
if (ret == NULL) {
base_node_dealloc(node);
return (NULL);
}
offset = (uintptr_t)ret & (alignment - 1);
assert((offset & chunksize_mask) == 0);
assert(offset < alloc_size);
if (offset == 0) {
/* Trim trailing space. */
chunk_dealloc((void *)((uintptr_t)ret + chunk_size), alloc_size
- chunk_size);
} else {
size_t trailsize;
/* Trim leading space. */
chunk_dealloc(ret, alignment - offset);
ret = (void *)((uintptr_t)ret + (alignment - offset));
trailsize = alloc_size - (alignment - offset) - chunk_size;
if (trailsize != 0) {
/* Trim trailing space. */
assert(trailsize < alloc_size);
chunk_dealloc((void *)((uintptr_t)ret + chunk_size),
trailsize);
}
}
/* Insert node into huge. */
node->addr = ret;
node->size = chunk_size;
malloc_mutex_lock(&huge_mtx);
extent_tree_ad_insert(&huge, node);
#ifdef JEMALLOC_STATS
huge_nmalloc++;
huge_allocated += chunk_size;
#endif
malloc_mutex_unlock(&huge_mtx);
#ifdef JEMALLOC_FILL
if (opt_junk)
memset(ret, 0xa5, chunk_size);
else if (opt_zero)
memset(ret, 0, chunk_size);
#endif
return (ret);
}
void *
huge_ralloc(void *ptr, size_t size, size_t oldsize)
{
void *ret;
size_t copysize;
/* Avoid moving the allocation if the size class would not change. */
if (oldsize > arena_maxclass &&
CHUNK_CEILING(size) == CHUNK_CEILING(oldsize)) {
#ifdef JEMALLOC_FILL
if (opt_junk && size < oldsize) {
memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize
- size);
} else if (opt_zero && size > oldsize) {
memset((void *)((uintptr_t)ptr + oldsize), 0, size
- oldsize);
}
#endif
return (ptr);
}
/*
* If we get here, then size and oldsize are different enough that we
* need to use a different size class. In that case, fall back to
* allocating new space and copying.
*/
ret = huge_malloc(size, false);
if (ret == NULL)
return (NULL);
copysize = (size < oldsize) ? size : oldsize;
memcpy(ret, ptr, copysize);
idalloc(ptr);
return (ret);
}
void
huge_dalloc(void *ptr)
{
extent_node_t *node, key;
malloc_mutex_lock(&huge_mtx);
/* Extract from tree of huge allocations. */
key.addr = ptr;
node = extent_tree_ad_search(&huge, &key);
assert(node != NULL);
assert(node->addr == ptr);
extent_tree_ad_remove(&huge, node);
#ifdef JEMALLOC_STATS
huge_ndalloc++;
huge_allocated -= node->size;
#endif
malloc_mutex_unlock(&huge_mtx);
/* Unmap chunk. */
#ifdef JEMALLOC_FILL
#if (defined(JEMALLOC_SWAP) || defined(JEMALLOC_DSS))
if (opt_junk)
memset(node->addr, 0x5a, node->size);
#endif
#endif
chunk_dealloc(node->addr, node->size);
base_node_dealloc(node);
}
size_t
huge_salloc(const void *ptr)
{
size_t ret;
extent_node_t *node, key;
malloc_mutex_lock(&huge_mtx);
/* Extract from tree of huge allocations. */
key.addr = __DECONST(void *, ptr);
node = extent_tree_ad_search(&huge, &key);
assert(node != NULL);
ret = node->size;
malloc_mutex_unlock(&huge_mtx);
return (ret);
}
#ifdef JEMALLOC_PROF
prof_thr_cnt_t *
huge_prof_cnt_get(const void *ptr)
{
prof_thr_cnt_t *ret;
extent_node_t *node, key;
malloc_mutex_lock(&huge_mtx);
/* Extract from tree of huge allocations. */
key.addr = __DECONST(void *, ptr);
node = extent_tree_ad_search(&huge, &key);
assert(node != NULL);
ret = node->prof_cnt;
malloc_mutex_unlock(&huge_mtx);
return (ret);
}
void
huge_prof_cnt_set(const void *ptr, prof_thr_cnt_t *cnt)
{
extent_node_t *node, key;
malloc_mutex_lock(&huge_mtx);
/* Extract from tree of huge allocations. */
key.addr = __DECONST(void *, ptr);
node = extent_tree_ad_search(&huge, &key);
assert(node != NULL);
node->prof_cnt = cnt;
malloc_mutex_unlock(&huge_mtx);
}
#endif
bool
huge_boot(void)
{
/* Initialize chunks data. */
if (malloc_mutex_init(&huge_mtx))
return (true);
extent_tree_ad_new(&huge);
#ifdef JEMALLOC_STATS
huge_nmalloc = 0;
huge_ndalloc = 0;
huge_allocated = 0;
#endif
return (false);
}

View File

@@ -0,0 +1,537 @@
/******************************************************************************/
#ifdef JEMALLOC_H_TYPES
/*
* Subpages are an artificially designated partitioning of pages. Their only
* purpose is to support subpage-spaced size classes.
*
* There must be at least 4 subpages per page, due to the way size classes are
* handled.
*/
#define LG_SUBPAGE 8
#define SUBPAGE ((size_t)(1U << LG_SUBPAGE))
#define SUBPAGE_MASK (SUBPAGE - 1)
/* Return the smallest subpage multiple that is >= s. */
#define SUBPAGE_CEILING(s) \
(((s) + SUBPAGE_MASK) & ~SUBPAGE_MASK)
#ifdef JEMALLOC_TINY
/* Smallest size class to support. */
# define LG_TINY_MIN LG_SIZEOF_PTR
#endif
/*
* Maximum size class that is a multiple of the quantum, but not (necessarily)
* a power of 2. Above this size, allocations are rounded up to the nearest
* power of 2.
*/
#define LG_QSPACE_MAX_DEFAULT 7
/*
* Maximum size class that is a multiple of the cacheline, but not (necessarily)
* a power of 2. Above this size, allocations are rounded up to the nearest
* power of 2.
*/
#define LG_CSPACE_MAX_DEFAULT 9
/*
* RUN_MAX_OVRHD indicates maximum desired run header overhead. Runs are sized
* as small as possible such that this setting is still honored, without
* violating other constraints. The goal is to make runs as small as possible
* without exceeding a per run external fragmentation threshold.
*
* We use binary fixed point math for overhead computations, where the binary
* point is implicitly RUN_BFP bits to the left.
*
* Note that it is possible to set RUN_MAX_OVRHD low enough that it cannot be
* honored for some/all object sizes, since there is one bit of header overhead
* per object (plus a constant). This constraint is relaxed (ignored) for runs
* that are so small that the per-region overhead is greater than:
*
* (RUN_MAX_OVRHD / (reg_size << (3+RUN_BFP))
*/
#define RUN_BFP 12
/* \/ Implicit binary fixed point. */
#define RUN_MAX_OVRHD 0x0000003dU
#define RUN_MAX_OVRHD_RELAX 0x00001800U
/*
* The minimum ratio of active:dirty pages per arena is computed as:
*
* (nactive >> opt_lg_dirty_mult) >= ndirty
*
* So, supposing that opt_lg_dirty_mult is 5, there can be no less than 32
* times as many active pages as dirty pages.
*/
#define LG_DIRTY_MULT_DEFAULT 5
typedef struct arena_chunk_map_s arena_chunk_map_t;
typedef struct arena_chunk_s arena_chunk_t;
typedef struct arena_run_s arena_run_t;
typedef struct arena_bin_s arena_bin_t;
typedef struct arena_s arena_t;
#endif /* JEMALLOC_H_TYPES */
/******************************************************************************/
#ifdef JEMALLOC_H_STRUCTS
/* Each element of the chunk map corresponds to one page within the chunk. */
struct arena_chunk_map_s {
union {
/*
* Linkage for run trees. There are two disjoint uses:
*
* 1) arena_t's runs_avail_{clean,dirty} trees.
* 2) arena_run_t conceptually uses this linkage for in-use
* non-full runs, rather than directly embedding linkage.
*/
rb_node(arena_chunk_map_t) rb_link;
/*
* List of runs currently in purgatory. arena_chunk_purge()
* temporarily allocates runs that contain dirty pages while
* purging, so that other threads cannot use the runs while the
* purging thread is operating without the arena lock held.
*/
ql_elm(arena_chunk_map_t) ql_link;
} u;
#ifdef JEMALLOC_PROF
/* Profile counters, used for large object runs. */
prof_thr_cnt_t *prof_cnt;
#endif
/*
* Run address (or size) and various flags are stored together. The bit
* layout looks like (assuming 32-bit system):
*
* ???????? ???????? ????---- ----dzla
*
* ? : Unallocated: Run address for first/last pages, unset for internal
* pages.
* Small: Run page offset.
* Large: Run size for first page, unset for trailing pages.
* - : Unused.
* d : dirty?
* z : zeroed?
* l : large?
* a : allocated?
*
* Following are example bit patterns for the three types of runs.
*
* p : run page offset
* s : run size
* c : size class (used only if prof_promote is true)
* x : don't care
* - : 0
* + : 1
* [DZLA] : bit set
* [dzla] : bit unset
*
* Unallocated (clean):
* ssssssss ssssssss ssss---- ----dz--
* xxxxxxxx xxxxxxxx xxxx---- -----Zxx
* ssssssss ssssssss ssss---- ----dZ--
*
* Unallocated (dirty):
* ssssssss ssssssss ssss---- ----D---
* xxxxxxxx xxxxxxxx xxxx---- ----xxxx
* ssssssss ssssssss ssss---- ----D---
*
* Small:
* pppppppp pppppppp pppp---- ----d--a
* pppppppp pppppppp pppp---- -------a
* pppppppp pppppppp pppp---- ----d--a
*
* Large:
* ssssssss ssssssss ssss++++ ++++D-la
* xxxxxxxx xxxxxxxx xxxx---- ----xxxx
* -------- -------- -------- ----D-la
*
* Large (sampled, size <= PAGE_SIZE):
* ssssssss ssssssss sssscccc ccccD-la
*
* Large (not sampled, size == PAGE_SIZE):
* ssssssss ssssssss ssss++++ ++++D-la
*/
size_t bits;
#ifdef JEMALLOC_PROF
#define CHUNK_MAP_CLASS_SHIFT 4
#define CHUNK_MAP_CLASS_MASK ((size_t)0xff0U)
#endif
#define CHUNK_MAP_FLAGS_MASK ((size_t)0xfU)
#define CHUNK_MAP_DIRTY ((size_t)0x8U)
#define CHUNK_MAP_ZEROED ((size_t)0x4U)
#define CHUNK_MAP_LARGE ((size_t)0x2U)
#define CHUNK_MAP_ALLOCATED ((size_t)0x1U)
#define CHUNK_MAP_KEY CHUNK_MAP_ALLOCATED
};
typedef rb_tree(arena_chunk_map_t) arena_avail_tree_t;
typedef rb_tree(arena_chunk_map_t) arena_run_tree_t;
/* Arena chunk header. */
struct arena_chunk_s {
/* Arena that owns the chunk. */
arena_t *arena;
/* Linkage for the arena's chunks_dirty list. */
ql_elm(arena_chunk_t) link_dirty;
/*
* True if the chunk is currently in the chunks_dirty list, due to
* having at some point contained one or more dirty pages. Removal
* from chunks_dirty is lazy, so (dirtied && ndirty == 0) is possible.
*/
bool dirtied;
/* Number of dirty pages. */
size_t ndirty;
/* Map of pages within chunk that keeps track of free/large/small. */
arena_chunk_map_t map[1]; /* Dynamically sized. */
};
typedef rb_tree(arena_chunk_t) arena_chunk_tree_t;
struct arena_run_s {
#ifdef JEMALLOC_DEBUG
uint32_t magic;
# define ARENA_RUN_MAGIC 0x384adf93
#endif
/* Bin this run is associated with. */
arena_bin_t *bin;
/* Stack of available freed regions, or NULL. */
void *avail;
/* Next region that has never been allocated, or run boundary. */
void *next;
/* Number of free regions in run. */
unsigned nfree;
};
struct arena_bin_s {
/*
* All operations on runcur, runs, and stats require that lock be
* locked. Run allocation/deallocation are protected by the arena lock,
* which may be acquired while holding one or more bin locks, but not
* vise versa.
*/
malloc_mutex_t lock;
/*
* Current run being used to service allocations of this bin's size
* class.
*/
arena_run_t *runcur;
/*
* Tree of non-full runs. This tree is used when looking for an
* existing run when runcur is no longer usable. We choose the
* non-full run that is lowest in memory; this policy tends to keep
* objects packed well, and it can also help reduce the number of
* almost-empty chunks.
*/
arena_run_tree_t runs;
/* Size of regions in a run for this bin's size class. */
size_t reg_size;
/* Total size of a run for this bin's size class. */
size_t run_size;
/* Total number of regions in a run for this bin's size class. */
uint32_t nregs;
#ifdef JEMALLOC_PROF
/*
* Offset of first (prof_cnt_t *) in a run header for this bin's size
* class, or 0 if (opt_prof == false).
*/
uint32_t cnt0_offset;
#endif
/* Offset of first region in a run for this bin's size class. */
uint32_t reg0_offset;
#ifdef JEMALLOC_STATS
/* Bin statistics. */
malloc_bin_stats_t stats;
#endif
};
struct arena_s {
#ifdef JEMALLOC_DEBUG
uint32_t magic;
# define ARENA_MAGIC 0x947d3d24
#endif
/* This arena's index within the arenas array. */
unsigned ind;
/*
* All non-bin-related operations on this arena require that lock be
* locked.
*/
malloc_mutex_t lock;
#ifdef JEMALLOC_STATS
arena_stats_t stats;
# ifdef JEMALLOC_TCACHE
/*
* List of tcaches for extant threads associated with this arena.
* Stats from these are merged incrementally, and at exit.
*/
ql_head(tcache_t) tcache_ql;
# endif
#endif
#ifdef JEMALLOC_PROF
uint64_t prof_accumbytes;
#endif
/* List of dirty-page-containing chunks this arena manages. */
ql_head(arena_chunk_t) chunks_dirty;
/*
* In order to avoid rapid chunk allocation/deallocation when an arena
* oscillates right on the cusp of needing a new chunk, cache the most
* recently freed chunk. The spare is left in the arena's chunk trees
* until it is deleted.
*
* There is one spare chunk per arena, rather than one spare total, in
* order to avoid interactions between multiple threads that could make
* a single spare inadequate.
*/
arena_chunk_t *spare;
/* Number of pages in active runs. */
size_t nactive;
/*
* Current count of pages within unused runs that are potentially
* dirty, and for which madvise(... MADV_DONTNEED) has not been called.
* By tracking this, we can institute a limit on how much dirty unused
* memory is mapped for each arena.
*/
size_t ndirty;
/*
* Approximate number of pages being purged. It is possible for
* multiple threads to purge dirty pages concurrently, and they use
* npurgatory to indicate the total number of pages all threads are
* attempting to purge.
*/
size_t npurgatory;
/*
* Size/address-ordered trees of this arena's available runs. The trees
* are used for first-best-fit run allocation. The dirty tree contains
* runs with dirty pages (i.e. very likely to have been touched and
* therefore have associated physical pages), whereas the clean tree
* contains runs with pages that either have no associated physical
* pages, or have pages that the kernel may recycle at any time due to
* previous madvise(2) calls. The dirty tree is used in preference to
* the clean tree for allocations, because using dirty pages reduces
* the amount of dirty purging necessary to keep the active:dirty page
* ratio below the purge threshold.
*/
arena_avail_tree_t runs_avail_clean;
arena_avail_tree_t runs_avail_dirty;
/*
* bins is used to store trees of free regions of the following sizes,
* assuming a 16-byte quantum, 4 KiB page size, and default
* JEMALLOC_OPTIONS.
*
* bins[i] | size |
* --------+--------+
* 0 | 2 |
* 1 | 4 |
* 2 | 8 |
* --------+--------+
* 3 | 16 |
* 4 | 32 |
* 5 | 48 |
* : :
* 8 | 96 |
* 9 | 112 |
* 10 | 128 |
* --------+--------+
* 11 | 192 |
* 12 | 256 |
* 13 | 320 |
* 14 | 384 |
* 15 | 448 |
* 16 | 512 |
* --------+--------+
* 17 | 768 |
* 18 | 1024 |
* 19 | 1280 |
* : :
* 27 | 3328 |
* 28 | 3584 |
* 29 | 3840 |
* --------+--------+
* 30 | 4 KiB |
* 31 | 6 KiB |
* 33 | 8 KiB |
* : :
* 43 | 28 KiB |
* 44 | 30 KiB |
* 45 | 32 KiB |
* --------+--------+
*/
arena_bin_t bins[1]; /* Dynamically sized. */
};
#endif /* JEMALLOC_H_STRUCTS */
/******************************************************************************/
#ifdef JEMALLOC_H_EXTERNS
extern size_t opt_lg_qspace_max;
extern size_t opt_lg_cspace_max;
extern ssize_t opt_lg_dirty_mult;
extern uint8_t const *small_size2bin;
/* Various bin-related settings. */
#ifdef JEMALLOC_TINY /* Number of (2^n)-spaced tiny bins. */
# define ntbins ((unsigned)(LG_QUANTUM - LG_TINY_MIN))
#else
# define ntbins 0
#endif
extern unsigned nqbins; /* Number of quantum-spaced bins. */
extern unsigned ncbins; /* Number of cacheline-spaced bins. */
extern unsigned nsbins; /* Number of subpage-spaced bins. */
extern unsigned nbins;
#ifdef JEMALLOC_TINY
# define tspace_max ((size_t)(QUANTUM >> 1))
#endif
#define qspace_min QUANTUM
extern size_t qspace_max;
extern size_t cspace_min;
extern size_t cspace_max;
extern size_t sspace_min;
extern size_t sspace_max;
#define small_maxclass sspace_max
#define nlclasses (chunk_npages - arena_chunk_header_npages)
#ifdef JEMALLOC_TCACHE
void arena_tcache_fill_small(arena_t *arena, tcache_bin_t *tbin,
size_t binind
# ifdef JEMALLOC_PROF
, uint64_t prof_accumbytes
# endif
);
#endif
#ifdef JEMALLOC_PROF
void arena_prof_accum(arena_t *arena, uint64_t accumbytes);
#endif
void *arena_malloc_small(arena_t *arena, size_t size, bool zero);
void *arena_malloc_large(arena_t *arena, size_t size, bool zero);
void *arena_malloc(size_t size, bool zero);
void *arena_palloc(arena_t *arena, size_t alignment, size_t size,
size_t alloc_size);
size_t arena_salloc(const void *ptr);
#ifdef JEMALLOC_PROF
void arena_prof_promoted(const void *ptr, size_t size);
size_t arena_salloc_demote(const void *ptr);
prof_thr_cnt_t *arena_prof_cnt_get(const void *ptr);
void arena_prof_cnt_set(const void *ptr, prof_thr_cnt_t *cnt);
#endif
void arena_dalloc_bin(arena_t *arena, arena_chunk_t *chunk, void *ptr,
arena_chunk_map_t *mapelm);
void arena_dalloc_large(arena_t *arena, arena_chunk_t *chunk, void *ptr);
#ifdef JEMALLOC_STATS
void arena_stats_merge(arena_t *arena, size_t *nactive, size_t *ndirty,
arena_stats_t *astats, malloc_bin_stats_t *bstats,
malloc_large_stats_t *lstats);
#endif
void *arena_ralloc(void *ptr, size_t size, size_t oldsize);
bool arena_new(arena_t *arena, unsigned ind);
bool arena_boot(void);
#endif /* JEMALLOC_H_EXTERNS */
/******************************************************************************/
#ifdef JEMALLOC_H_INLINES
#ifndef JEMALLOC_ENABLE_INLINE
void arena_dalloc(arena_t *arena, arena_chunk_t *chunk, void *ptr);
#endif
#if (defined(JEMALLOC_ENABLE_INLINE) || defined(JEMALLOC_ARENA_C_))
JEMALLOC_INLINE void
arena_dalloc(arena_t *arena, arena_chunk_t *chunk, void *ptr)
{
size_t pageind;
arena_chunk_map_t *mapelm;
assert(arena != NULL);
assert(arena->magic == ARENA_MAGIC);
assert(chunk->arena == arena);
assert(ptr != NULL);
assert(CHUNK_ADDR2BASE(ptr) != ptr);
pageind = (((uintptr_t)ptr - (uintptr_t)chunk) >> PAGE_SHIFT);
mapelm = &chunk->map[pageind];
assert((mapelm->bits & CHUNK_MAP_ALLOCATED) != 0);
if ((mapelm->bits & CHUNK_MAP_LARGE) == 0) {
/* Small allocation. */
#ifdef JEMALLOC_TCACHE
tcache_t *tcache;
if ((tcache = tcache_get()) != NULL)
tcache_dalloc_small(tcache, ptr);
else {
#endif
arena_run_t *run;
arena_bin_t *bin;
run = (arena_run_t *)((uintptr_t)chunk +
(uintptr_t)((pageind - (mapelm->bits >>
PAGE_SHIFT)) << PAGE_SHIFT));
assert(run->magic == ARENA_RUN_MAGIC);
assert(((uintptr_t)ptr - ((uintptr_t)run +
(uintptr_t)run->bin->reg0_offset)) %
run->bin->reg_size == 0);
bin = run->bin;
malloc_mutex_lock(&bin->lock);
arena_dalloc_bin(arena, chunk, ptr, mapelm);
malloc_mutex_unlock(&bin->lock);
#ifdef JEMALLOC_TCACHE
}
#endif
} else {
#ifdef JEMALLOC_TCACHE
size_t size = mapelm->bits & ~PAGE_MASK;
assert(((uintptr_t)ptr & PAGE_MASK) == 0);
if (size <= tcache_maxclass) {
tcache_t *tcache;
if ((tcache = tcache_get()) != NULL)
tcache_dalloc_large(tcache, ptr, size);
else {
malloc_mutex_lock(&arena->lock);
arena_dalloc_large(arena, chunk, ptr);
malloc_mutex_unlock(&arena->lock);
}
} else {
malloc_mutex_lock(&arena->lock);
arena_dalloc_large(arena, chunk, ptr);
malloc_mutex_unlock(&arena->lock);
}
#else
assert(((uintptr_t)ptr & PAGE_MASK) == 0);
malloc_mutex_lock(&arena->lock);
arena_dalloc_large(arena, chunk, ptr);
malloc_mutex_unlock(&arena->lock);
#endif
}
}
#endif
#endif /* JEMALLOC_H_INLINES */
/******************************************************************************/

View File

@@ -0,0 +1,24 @@
/******************************************************************************/
#ifdef JEMALLOC_H_TYPES
#endif /* JEMALLOC_H_TYPES */
/******************************************************************************/
#ifdef JEMALLOC_H_STRUCTS
#endif /* JEMALLOC_H_STRUCTS */
/******************************************************************************/
#ifdef JEMALLOC_H_EXTERNS
extern malloc_mutex_t base_mtx;
void *base_alloc(size_t size);
extent_node_t *base_node_alloc(void);
void base_node_dealloc(extent_node_t *node);
bool base_boot(void);
#endif /* JEMALLOC_H_EXTERNS */
/******************************************************************************/
#ifdef JEMALLOC_H_INLINES
#endif /* JEMALLOC_H_INLINES */
/******************************************************************************/

View File

@@ -0,0 +1,61 @@
/******************************************************************************/
#ifdef JEMALLOC_H_TYPES
/*
* Size and alignment of memory chunks that are allocated by the OS's virtual
* memory system.
*/
#define LG_CHUNK_DEFAULT 22
/* Return the chunk address for allocation address a. */
#define CHUNK_ADDR2BASE(a) \
((void *)((uintptr_t)(a) & ~chunksize_mask))
/* Return the chunk offset of address a. */
#define CHUNK_ADDR2OFFSET(a) \
((size_t)((uintptr_t)(a) & chunksize_mask))
/* Return the smallest chunk multiple that is >= s. */
#define CHUNK_CEILING(s) \
(((s) + chunksize_mask) & ~chunksize_mask)
#endif /* JEMALLOC_H_TYPES */
/******************************************************************************/
#ifdef JEMALLOC_H_STRUCTS
#endif /* JEMALLOC_H_STRUCTS */
/******************************************************************************/
#ifdef JEMALLOC_H_EXTERNS
extern size_t opt_lg_chunk;
#ifdef JEMALLOC_SWAP
extern bool opt_overcommit;
#endif
#if (defined(JEMALLOC_STATS) || defined(JEMALLOC_PROF))
/* Protects stats_chunks; currently not used for any other purpose. */
extern malloc_mutex_t chunks_mtx;
/* Chunk statistics. */
extern chunk_stats_t stats_chunks;
#endif
extern size_t chunksize;
extern size_t chunksize_mask; /* (chunksize - 1). */
extern size_t chunk_npages;
extern size_t arena_chunk_header_npages;
extern size_t arena_maxclass; /* Max size class for arenas. */
void *chunk_alloc(size_t size, bool *zero);
void chunk_dealloc(void *chunk, size_t size);
bool chunk_boot(void);
#endif /* JEMALLOC_H_EXTERNS */
/******************************************************************************/
#ifdef JEMALLOC_H_INLINES
#endif /* JEMALLOC_H_INLINES */
/******************************************************************************/
#include "jemalloc/internal/chunk_swap.h"
#include "jemalloc/internal/chunk_dss.h"
#include "jemalloc/internal/chunk_mmap.h"

View File

@@ -0,0 +1,29 @@
#ifdef JEMALLOC_DSS
/******************************************************************************/
#ifdef JEMALLOC_H_TYPES
#endif /* JEMALLOC_H_TYPES */
/******************************************************************************/
#ifdef JEMALLOC_H_STRUCTS
#endif /* JEMALLOC_H_STRUCTS */
/******************************************************************************/
#ifdef JEMALLOC_H_EXTERNS
/*
* Protects sbrk() calls. This avoids malloc races among threads, though it
* does not protect against races with threads that call sbrk() directly.
*/
extern malloc_mutex_t dss_mtx;
void *chunk_alloc_dss(size_t size, bool *zero);
bool chunk_dealloc_dss(void *chunk, size_t size);
bool chunk_dss_boot(void);
#endif /* JEMALLOC_H_EXTERNS */
/******************************************************************************/
#ifdef JEMALLOC_H_INLINES
#endif /* JEMALLOC_H_INLINES */
/******************************************************************************/
#endif /* JEMALLOC_DSS */

View File

@@ -0,0 +1,20 @@
/******************************************************************************/
#ifdef JEMALLOC_H_TYPES
#endif /* JEMALLOC_H_TYPES */
/******************************************************************************/
#ifdef JEMALLOC_H_STRUCTS
#endif /* JEMALLOC_H_STRUCTS */
/******************************************************************************/
#ifdef JEMALLOC_H_EXTERNS
void *chunk_alloc_mmap(size_t size);
void chunk_dealloc_mmap(void *chunk, size_t size);
#endif /* JEMALLOC_H_EXTERNS */
/******************************************************************************/
#ifdef JEMALLOC_H_INLINES
#endif /* JEMALLOC_H_INLINES */
/******************************************************************************/

View File

@@ -0,0 +1,33 @@
#ifdef JEMALLOC_SWAP
/******************************************************************************/
#ifdef JEMALLOC_H_TYPES
#endif /* JEMALLOC_H_TYPES */
/******************************************************************************/
#ifdef JEMALLOC_H_STRUCTS
#endif /* JEMALLOC_H_STRUCTS */
/******************************************************************************/
#ifdef JEMALLOC_H_EXTERNS
extern malloc_mutex_t swap_mtx;
extern bool swap_enabled;
extern bool swap_prezeroed;
extern size_t swap_nfds;
extern int *swap_fds;
#ifdef JEMALLOC_STATS
extern size_t swap_avail;
#endif
void *chunk_alloc_swap(size_t size, bool *zero);
bool chunk_dealloc_swap(void *chunk, size_t size);
bool chunk_swap_enable(const int *fds, unsigned nfds, bool prezeroed);
bool chunk_swap_boot(void);
#endif /* JEMALLOC_H_EXTERNS */
/******************************************************************************/
#ifdef JEMALLOC_H_INLINES
#endif /* JEMALLOC_H_INLINES */
/******************************************************************************/
#endif /* JEMALLOC_SWAP */

View File

@@ -0,0 +1,95 @@
/******************************************************************************/
#ifdef JEMALLOC_H_TYPES
typedef struct ckh_s ckh_t;
typedef struct ckhc_s ckhc_t;
/* Typedefs to allow easy function pointer passing. */
typedef void ckh_hash_t (const void *, unsigned, size_t *, size_t *);
typedef bool ckh_keycomp_t (const void *, const void *);
/* Maintain counters used to get an idea of performance. */
/* #define CKH_COUNT */
/* Print counter values in ckh_delete() (requires CKH_COUNT). */
/* #define CKH_VERBOSE */
/*
* There are 2^LG_CKH_BUCKET_CELLS cells in each hash table bucket. Try to fit
* one bucket per L1 cache line.
*/
#define LG_CKH_BUCKET_CELLS (LG_CACHELINE - LG_SIZEOF_PTR - 1)
#endif /* JEMALLOC_H_TYPES */
/******************************************************************************/
#ifdef JEMALLOC_H_STRUCTS
/* Hash table cell. */
struct ckhc_s {
const void *key;
const void *data;
};
struct ckh_s {
#ifdef JEMALLOC_DEBUG
#define CKH_MAGIG 0x3af2489d
uint32_t magic;
#endif
#ifdef CKH_COUNT
/* Counters used to get an idea of performance. */
uint64_t ngrows;
uint64_t nshrinks;
uint64_t nshrinkfails;
uint64_t ninserts;
uint64_t nrelocs;
#endif
/* Used for pseudo-random number generation. */
#define CKH_A 12345
#define CKH_C 12347
uint32_t prn_state;
/* Total number of items. */
size_t count;
/*
* Minimum and current number of hash table buckets. There are
* 2^LG_CKH_BUCKET_CELLS cells per bucket.
*/
unsigned lg_minbuckets;
unsigned lg_curbuckets;
/* Hash and comparison functions. */
ckh_hash_t *hash;
ckh_keycomp_t *keycomp;
/* Hash table with 2^lg_curbuckets buckets. */
ckhc_t *tab;
};
#endif /* JEMALLOC_H_STRUCTS */
/******************************************************************************/
#ifdef JEMALLOC_H_EXTERNS
bool ckh_new(ckh_t *ckh, size_t minitems, ckh_hash_t *hash,
ckh_keycomp_t *keycomp);
void ckh_delete(ckh_t *ckh);
size_t ckh_count(ckh_t *ckh);
bool ckh_iter(ckh_t *ckh, size_t *tabind, void **key, void **data);
bool ckh_insert(ckh_t *ckh, const void *key, const void *data);
bool ckh_remove(ckh_t *ckh, const void *searchkey, void **key,
void **data);
bool ckh_search(ckh_t *ckh, const void *seachkey, void **key, void **data);
void ckh_string_hash(const void *key, unsigned minbits, size_t *hash1,
size_t *hash2);
bool ckh_string_keycomp(const void *k1, const void *k2);
void ckh_pointer_hash(const void *key, unsigned minbits, size_t *hash1,
size_t *hash2);
bool ckh_pointer_keycomp(const void *k1, const void *k2);
#endif /* JEMALLOC_H_EXTERNS */
/******************************************************************************/
#ifdef JEMALLOC_H_INLINES
#endif /* JEMALLOC_H_INLINES */
/******************************************************************************/

View File

@@ -0,0 +1,117 @@
/******************************************************************************/
#ifdef JEMALLOC_H_TYPES
typedef struct ctl_node_s ctl_node_t;
typedef struct ctl_arena_stats_s ctl_arena_stats_t;
typedef struct ctl_stats_s ctl_stats_t;
#endif /* JEMALLOC_H_TYPES */
/******************************************************************************/
#ifdef JEMALLOC_H_STRUCTS
struct ctl_node_s {
bool named;
union {
struct {
const char *name;
/* If (nchildren == 0), this is a terminal node. */
unsigned nchildren;
const ctl_node_t *children;
} named;
struct {
const ctl_node_t *(*index)(const size_t *, size_t,
size_t);
} indexed;
} u;
int (*ctl)(const size_t *, size_t, void *, size_t *, void *,
size_t);
};
struct ctl_arena_stats_s {
bool initialized;
size_t pactive;
size_t pdirty;
#ifdef JEMALLOC_STATS
arena_stats_t astats;
/* Aggregate stats for small size classes, based on bin stats. */
size_t allocated_small;
uint64_t nmalloc_small;
uint64_t ndalloc_small;
uint64_t nrequests_small;
malloc_bin_stats_t *bstats; /* nbins elements. */
malloc_large_stats_t *lstats; /* nlclasses elements. */
#endif
};
struct ctl_stats_s {
#ifdef JEMALLOC_STATS
size_t allocated;
size_t active;
size_t mapped;
struct {
size_t current; /* stats_chunks.curchunks */
uint64_t total; /* stats_chunks.nchunks */
size_t high; /* stats_chunks.highchunks */
} chunks;
struct {
size_t allocated; /* huge_allocated */
uint64_t nmalloc; /* huge_nmalloc */
uint64_t ndalloc; /* huge_ndalloc */
} huge;
#endif
ctl_arena_stats_t *arenas; /* (narenas + 1) elements. */
#ifdef JEMALLOC_SWAP
size_t swap_avail;
#endif
};
#endif /* JEMALLOC_H_STRUCTS */
/******************************************************************************/
#ifdef JEMALLOC_H_EXTERNS
int ctl_byname(const char *name, void *oldp, size_t *oldlenp, void *newp,
size_t newlen);
int ctl_nametomib(const char *name, size_t *mibp, size_t *miblenp);
int ctl_bymib(const size_t *mib, size_t miblen, void *oldp, size_t *oldlenp,
void *newp, size_t newlen);
bool ctl_boot(void);
#define xmallctl(name, oldp, oldlenp, newp, newlen) do { \
if (JEMALLOC_P(mallctl)(name, oldp, oldlenp, newp, newlen) \
!= 0) { \
malloc_write("<jemalloc>: Invalid xmallctl(\""); \
malloc_write(name); \
malloc_write("\", ...) call\n"); \
abort(); \
} \
} while (0)
#define xmallctlnametomib(name, mibp, miblenp) do { \
if (JEMALLOC_P(mallctlnametomib)(name, mibp, miblenp) != 0) { \
malloc_write( \
"<jemalloc>: Invalid xmallctlnametomib(\""); \
malloc_write(name); \
malloc_write("\", ...) call\n"); \
abort(); \
} \
} while (0)
#define xmallctlbymib(mib, miblen, oldp, oldlenp, newp, newlen) do { \
if (JEMALLOC_P(mallctlbymib)(mib, miblen, oldp, oldlenp, newp, \
newlen) != 0) { \
malloc_write( \
"<jemalloc>: Invalid xmallctlbymib() call\n"); \
abort(); \
} \
} while (0)
#endif /* JEMALLOC_H_EXTERNS */
/******************************************************************************/
#ifdef JEMALLOC_H_INLINES
#endif /* JEMALLOC_H_INLINES */
/******************************************************************************/

View File

@@ -0,0 +1,49 @@
/******************************************************************************/
#ifdef JEMALLOC_H_TYPES
typedef struct extent_node_s extent_node_t;
#endif /* JEMALLOC_H_TYPES */
/******************************************************************************/
#ifdef JEMALLOC_H_STRUCTS
/* Tree of extents. */
struct extent_node_s {
#if (defined(JEMALLOC_SWAP) || defined(JEMALLOC_DSS))
/* Linkage for the size/address-ordered tree. */
rb_node(extent_node_t) link_szad;
#endif
/* Linkage for the address-ordered tree. */
rb_node(extent_node_t) link_ad;
#ifdef JEMALLOC_PROF
/* Profile counters, used for huge objects. */
prof_thr_cnt_t *prof_cnt;
#endif
/* Pointer to the extent that this tree node is responsible for. */
void *addr;
/* Total region size. */
size_t size;
};
typedef rb_tree(extent_node_t) extent_tree_t;
#endif /* JEMALLOC_H_STRUCTS */
/******************************************************************************/
#ifdef JEMALLOC_H_EXTERNS
#if (defined(JEMALLOC_SWAP) || defined(JEMALLOC_DSS))
rb_proto(, extent_tree_szad_, extent_tree_t, extent_node_t)
#endif
rb_proto(, extent_tree_ad_, extent_tree_t, extent_node_t)
#endif /* JEMALLOC_H_EXTERNS */
/******************************************************************************/
#ifdef JEMALLOC_H_INLINES
#endif /* JEMALLOC_H_INLINES */
/******************************************************************************/

View File

@@ -0,0 +1,70 @@
/******************************************************************************/
#ifdef JEMALLOC_H_TYPES
#endif /* JEMALLOC_H_TYPES */
/******************************************************************************/
#ifdef JEMALLOC_H_STRUCTS
#endif /* JEMALLOC_H_STRUCTS */
/******************************************************************************/
#ifdef JEMALLOC_H_EXTERNS
#endif /* JEMALLOC_H_EXTERNS */
/******************************************************************************/
#ifdef JEMALLOC_H_INLINES
#ifndef JEMALLOC_ENABLE_INLINE
uint64_t hash(const void *key, size_t len, uint64_t seed);
#endif
#if (defined(JEMALLOC_ENABLE_INLINE) || defined(HASH_C_))
/*
* The following hash function is based on MurmurHash64A(), placed into the
* public domain by Austin Appleby. See http://murmurhash.googlepages.com/ for
* details.
*/
JEMALLOC_INLINE uint64_t
hash(const void *key, size_t len, uint64_t seed)
{
const uint64_t m = 0xc6a4a7935bd1e995;
const int r = 47;
uint64_t h = seed ^ (len * m);
const uint64_t *data = (const uint64_t *)key;
const uint64_t *end = data + (len/8);
const unsigned char *data2;
assert(((uintptr_t)key & 0x7) == 0);
while(data != end) {
uint64_t k = *data++;
k *= m;
k ^= k >> r;
k *= m;
h ^= k;
h *= m;
}
data2 = (const unsigned char *)data;
switch(len & 7) {
case 7: h ^= ((uint64_t)(data2[6])) << 48;
case 6: h ^= ((uint64_t)(data2[5])) << 40;
case 5: h ^= ((uint64_t)(data2[4])) << 32;
case 4: h ^= ((uint64_t)(data2[3])) << 24;
case 3: h ^= ((uint64_t)(data2[2])) << 16;
case 2: h ^= ((uint64_t)(data2[1])) << 8;
case 1: h ^= ((uint64_t)(data2[0]));
h *= m;
}
h ^= h >> r;
h *= m;
h ^= h >> r;
return h;
}
#endif
#endif /* JEMALLOC_H_INLINES */
/******************************************************************************/

View File

@@ -0,0 +1,38 @@
/******************************************************************************/
#ifdef JEMALLOC_H_TYPES
#endif /* JEMALLOC_H_TYPES */
/******************************************************************************/
#ifdef JEMALLOC_H_STRUCTS
#endif /* JEMALLOC_H_STRUCTS */
/******************************************************************************/
#ifdef JEMALLOC_H_EXTERNS
#ifdef JEMALLOC_STATS
/* Huge allocation statistics. */
extern uint64_t huge_nmalloc;
extern uint64_t huge_ndalloc;
extern size_t huge_allocated;
#endif
/* Protects chunk-related data structures. */
extern malloc_mutex_t huge_mtx;
void *huge_malloc(size_t size, bool zero);
void *huge_palloc(size_t alignment, size_t size);
void *huge_ralloc(void *ptr, size_t size, size_t oldsize);
void huge_dalloc(void *ptr);
size_t huge_salloc(const void *ptr);
#ifdef JEMALLOC_PROF
prof_thr_cnt_t *huge_prof_cnt_get(const void *ptr);
void huge_prof_cnt_set(const void *ptr, prof_thr_cnt_t *cnt);
#endif
bool huge_boot(void);
#endif /* JEMALLOC_H_EXTERNS */
/******************************************************************************/
#ifdef JEMALLOC_H_INLINES
#endif /* JEMALLOC_H_INLINES */
/******************************************************************************/

View File

@@ -0,0 +1,561 @@
#include <sys/mman.h>
#include <sys/param.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/sysctl.h>
#include <sys/uio.h>
#include <errno.h>
#include <limits.h>
#ifndef SIZE_T_MAX
# define SIZE_T_MAX SIZE_MAX
#endif
#include <pthread.h>
#include <sched.h>
#include <stdarg.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <inttypes.h>
#include <string.h>
#include <strings.h>
#include <unistd.h>
#include <fcntl.h>
#include <pthread.h>
#define JEMALLOC_MANGLE
#include "../jemalloc.h"
#ifdef JEMALLOC_LAZY_LOCK
#include <dlfcn.h>
#endif
#define RB_COMPACT
#include "jemalloc/internal/rb.h"
#include "jemalloc/internal/qr.h"
#include "jemalloc/internal/ql.h"
extern void (*JEMALLOC_P(malloc_message))(void *wcbopaque, const char *s);
/*
* Define a custom assert() in order to reduce the chances of deadlock during
* assertion failure.
*/
#ifdef JEMALLOC_DEBUG
# define assert(e) do { \
if (!(e)) { \
char line_buf[UMAX2S_BUFSIZE]; \
malloc_write("<jemalloc>: "); \
malloc_write(__FILE__); \
malloc_write(":"); \
malloc_write(umax2s(__LINE__, 10, line_buf)); \
malloc_write(": Failed assertion: "); \
malloc_write("\""); \
malloc_write(#e); \
malloc_write("\"\n"); \
abort(); \
} \
} while (0)
#else
#define assert(e)
#endif
/*
* jemalloc can conceptually be broken into components (arena, tcache, etc.),
* but there are circular dependencies that cannot be broken without
* substantial performance degradation. In order to reduce the effect on
* visual code flow, read the header files in multiple passes, with one of the
* following cpp variables defined during each pass:
*
* JEMALLOC_H_TYPES : Preprocessor-defined constants and psuedo-opaque data
* types.
* JEMALLOC_H_STRUCTS : Data structures.
* JEMALLOC_H_EXTERNS : Extern data declarations and function prototypes.
* JEMALLOC_H_INLINES : Inline functions.
*/
/******************************************************************************/
#define JEMALLOC_H_TYPES
#define ZU(z) ((size_t)z)
#ifndef __DECONST
# define __DECONST(type, var) ((type)(uintptr_t)(const void *)(var))
#endif
#ifdef JEMALLOC_DEBUG
/* Disable inlining to make debugging easier. */
# define JEMALLOC_INLINE
# define inline
#else
# define JEMALLOC_ENABLE_INLINE
# define JEMALLOC_INLINE static inline
#endif
/* Size of stack-allocated buffer passed to strerror_r(). */
#define STRERROR_BUF 64
/* Minimum alignment of allocations is 2^LG_QUANTUM bytes. */
#ifdef __i386__
# define LG_QUANTUM 4
#endif
#ifdef __ia64__
# define LG_QUANTUM 4
#endif
#ifdef __alpha__
# define LG_QUANTUM 4
#endif
#ifdef __sparc64__
# define LG_QUANTUM 4
#endif
#if (defined(__amd64__) || defined(__x86_64__))
# define LG_QUANTUM 4
#endif
#ifdef __arm__
# define LG_QUANTUM 3
#endif
#ifdef __mips__
# define LG_QUANTUM 3
#endif
#ifdef __powerpc__
# define LG_QUANTUM 4
#endif
#ifdef __s390x__
# define LG_QUANTUM 4
#endif
#define QUANTUM ((size_t)(1U << LG_QUANTUM))
#define QUANTUM_MASK (QUANTUM - 1)
/* Return the smallest quantum multiple that is >= a. */
#define QUANTUM_CEILING(a) \
(((a) + QUANTUM_MASK) & ~QUANTUM_MASK)
#define SIZEOF_PTR (1U << LG_SIZEOF_PTR)
/* We can't use TLS in non-PIC programs, since TLS relies on loader magic. */
#if (!defined(PIC) && !defined(NO_TLS))
# define NO_TLS
#endif
/*
* Maximum size of L1 cache line. This is used to avoid cache line aliasing.
* In addition, this controls the spacing of cacheline-spaced size classes.
*/
#define LG_CACHELINE 6
#define CACHELINE ((size_t)(1U << LG_CACHELINE))
#define CACHELINE_MASK (CACHELINE - 1)
/* Return the smallest cacheline multiple that is >= s. */
#define CACHELINE_CEILING(s) \
(((s) + CACHELINE_MASK) & ~CACHELINE_MASK)
/*
* Page size. STATIC_PAGE_SHIFT is determined by the configure script. If
* DYNAMIC_PAGE_SHIFT is enabled, only use the STATIC_PAGE_* macros where
* compile-time values are required for the purposes of defining data
* structures.
*/
#define STATIC_PAGE_SIZE ((size_t)(1U << STATIC_PAGE_SHIFT))
#define STATIC_PAGE_MASK ((size_t)(STATIC_PAGE_SIZE - 1))
#ifdef DYNAMIC_PAGE_SHIFT
# define PAGE_SHIFT lg_pagesize
# define PAGE_SIZE pagesize
# define PAGE_MASK pagesize_mask
#else
# define PAGE_SHIFT STATIC_PAGE_SHIFT
# define PAGE_SIZE STATIC_PAGE_SIZE
# define PAGE_MASK STATIC_PAGE_MASK
#endif
/* Return the smallest pagesize multiple that is >= s. */
#define PAGE_CEILING(s) \
(((s) + PAGE_MASK) & ~PAGE_MASK)
#include "jemalloc/internal/totally_not_p_r_n.h"
#include "jemalloc/internal/ckh.h"
#include "jemalloc/internal/stats.h"
#include "jemalloc/internal/ctl.h"
#include "jemalloc/internal/mutex.h"
#include "jemalloc/internal/mb.h"
#include "jemalloc/internal/extent.h"
#include "jemalloc/internal/arena.h"
#include "jemalloc/internal/base.h"
#include "jemalloc/internal/chunk.h"
#include "jemalloc/internal/huge.h"
#include "jemalloc/internal/tcache.h"
#include "jemalloc/internal/hash.h"
#include "jemalloc/internal/prof.h"
#undef JEMALLOC_H_TYPES
/******************************************************************************/
#define JEMALLOC_H_STRUCTS
#include "jemalloc/internal/totally_not_p_r_n.h"
#include "jemalloc/internal/ckh.h"
#include "jemalloc/internal/stats.h"
#include "jemalloc/internal/ctl.h"
#include "jemalloc/internal/mutex.h"
#include "jemalloc/internal/mb.h"
#include "jemalloc/internal/extent.h"
#include "jemalloc/internal/arena.h"
#include "jemalloc/internal/base.h"
#include "jemalloc/internal/chunk.h"
#include "jemalloc/internal/huge.h"
#include "jemalloc/internal/tcache.h"
#include "jemalloc/internal/hash.h"
#include "jemalloc/internal/prof.h"
#undef JEMALLOC_H_STRUCTS
/******************************************************************************/
#define JEMALLOC_H_EXTERNS
extern bool opt_abort;
#ifdef JEMALLOC_FILL
extern bool opt_junk;
#endif
#ifdef JEMALLOC_SYSV
extern bool opt_sysv;
#endif
#ifdef JEMALLOC_XMALLOC
extern bool opt_xmalloc;
#endif
#ifdef JEMALLOC_FILL
extern bool opt_zero;
#endif
#ifdef DYNAMIC_PAGE_SHIFT
extern size_t pagesize;
extern size_t pagesize_mask;
extern size_t lg_pagesize;
#endif
/* Number of CPUs. */
extern unsigned ncpus;
extern malloc_mutex_t arenas_lock; /* Protects arenas initialization. */
#ifndef NO_TLS
/*
* Map of pthread_self() --> arenas[???], used for selecting an arena to use
* for allocations.
*/
extern __thread arena_t *arenas_map JEMALLOC_ATTR(tls_model("initial-exec"));
#endif
/*
* Arenas that are used to service external requests. Not all elements of the
* arenas array are necessarily used; arenas are created lazily as needed.
*/
extern arena_t **arenas;
extern unsigned narenas;
arena_t *arenas_extend(unsigned ind);
#ifndef NO_TLS
arena_t *choose_arena_hard(void);
#endif
#include "jemalloc/internal/totally_not_p_r_n.h"
#include "jemalloc/internal/ckh.h"
#include "jemalloc/internal/stats.h"
#include "jemalloc/internal/ctl.h"
#include "jemalloc/internal/mutex.h"
#include "jemalloc/internal/mb.h"
#include "jemalloc/internal/extent.h"
#include "jemalloc/internal/arena.h"
#include "jemalloc/internal/base.h"
#include "jemalloc/internal/chunk.h"
#include "jemalloc/internal/huge.h"
#include "jemalloc/internal/tcache.h"
#include "jemalloc/internal/hash.h"
#include "jemalloc/internal/prof.h"
#undef JEMALLOC_H_EXTERNS
/******************************************************************************/
#define JEMALLOC_H_INLINES
#include "jemalloc/internal/totally_not_p_r_n.h"
#include "jemalloc/internal/ckh.h"
#include "jemalloc/internal/stats.h"
#include "jemalloc/internal/ctl.h"
#include "jemalloc/internal/mutex.h"
#include "jemalloc/internal/mb.h"
#include "jemalloc/internal/extent.h"
#include "jemalloc/internal/base.h"
#include "jemalloc/internal/chunk.h"
#include "jemalloc/internal/huge.h"
#ifndef JEMALLOC_ENABLE_INLINE
void malloc_write(const char *s);
arena_t *choose_arena(void);
#endif
#if (defined(JEMALLOC_ENABLE_INLINE) || defined(JEMALLOC_C_))
/*
* Wrapper around malloc_message() that avoids the need for
* JEMALLOC_P(malloc_message)(...) throughout the code.
*/
JEMALLOC_INLINE void
malloc_write(const char *s)
{
JEMALLOC_P(malloc_message)(NULL, s);
}
/*
* Choose an arena based on a per-thread value (fast-path code, calls slow-path
* code if necessary).
*/
JEMALLOC_INLINE arena_t *
choose_arena(void)
{
arena_t *ret;
/*
* We can only use TLS if this is a PIC library, since for the static
* library version, libc's malloc is used by TLS allocation, which
* introduces a bootstrapping issue.
*/
#ifndef NO_TLS
ret = arenas_map;
if (ret == NULL) {
ret = choose_arena_hard();
assert(ret != NULL);
}
#else
if (isthreaded && narenas > 1) {
unsigned long ind;
/*
* Hash pthread_self() to one of the arenas. There is a prime
* number of arenas, so this has a reasonable chance of
* working. Even so, the hashing can be easily thwarted by
* inconvenient pthread_self() values. Without specific
* knowledge of how pthread_self() calculates values, we can't
* easily do much better than this.
*/
ind = (unsigned long) pthread_self() % narenas;
/*
* Optimistially assume that arenas[ind] has been initialized.
* At worst, we find out that some other thread has already
* done so, after acquiring the lock in preparation. Note that
* this lazy locking also has the effect of lazily forcing
* cache coherency; without the lock acquisition, there's no
* guarantee that modification of arenas[ind] by another thread
* would be seen on this CPU for an arbitrary amount of time.
*
* In general, this approach to modifying a synchronized value
* isn't a good idea, but in this case we only ever modify the
* value once, so things work out well.
*/
ret = arenas[ind];
if (ret == NULL) {
/*
* Avoid races with another thread that may have already
* initialized arenas[ind].
*/
malloc_mutex_lock(&arenas_lock);
if (arenas[ind] == NULL)
ret = arenas_extend((unsigned)ind);
else
ret = arenas[ind];
malloc_mutex_unlock(&arenas_lock);
}
} else
ret = arenas[0];
#endif
assert(ret != NULL);
return (ret);
}
#endif
#include "jemalloc/internal/tcache.h"
#include "jemalloc/internal/arena.h"
#include "jemalloc/internal/hash.h"
#include "jemalloc/internal/prof.h"
#ifndef JEMALLOC_ENABLE_INLINE
void *imalloc(size_t size);
void *icalloc(size_t size);
void *ipalloc(size_t alignment, size_t size);
size_t isalloc(const void *ptr);
void *iralloc(void *ptr, size_t size);
void idalloc(void *ptr);
#endif
#if (defined(JEMALLOC_ENABLE_INLINE) || defined(JEMALLOC_C_))
JEMALLOC_INLINE void *
imalloc(size_t size)
{
assert(size != 0);
if (size <= arena_maxclass)
return (arena_malloc(size, false));
else
return (huge_malloc(size, false));
}
JEMALLOC_INLINE void *
icalloc(size_t size)
{
if (size <= arena_maxclass)
return (arena_malloc(size, true));
else
return (huge_malloc(size, true));
}
JEMALLOC_INLINE void *
ipalloc(size_t alignment, size_t size)
{
void *ret;
size_t ceil_size;
/*
* Round size up to the nearest multiple of alignment.
*
* This done, we can take advantage of the fact that for each small
* size class, every object is aligned at the smallest power of two
* that is non-zero in the base two representation of the size. For
* example:
*
* Size | Base 2 | Minimum alignment
* -----+----------+------------------
* 96 | 1100000 | 32
* 144 | 10100000 | 32
* 192 | 11000000 | 64
*
* Depending on runtime settings, it is possible that arena_malloc()
* will further round up to a power of two, but that never causes
* correctness issues.
*/
ceil_size = (size + (alignment - 1)) & (-alignment);
/*
* (ceil_size < size) protects against the combination of maximal
* alignment and size greater than maximal alignment.
*/
if (ceil_size < size) {
/* size_t overflow. */
return (NULL);
}
if (ceil_size <= PAGE_SIZE || (alignment <= PAGE_SIZE
&& ceil_size <= arena_maxclass))
ret = arena_malloc(ceil_size, false);
else {
size_t run_size;
/*
* We can't achieve subpage alignment, so round up alignment
* permanently; it makes later calculations simpler.
*/
alignment = PAGE_CEILING(alignment);
ceil_size = PAGE_CEILING(size);
/*
* (ceil_size < size) protects against very large sizes within
* PAGE_SIZE of SIZE_T_MAX.
*
* (ceil_size + alignment < ceil_size) protects against the
* combination of maximal alignment and ceil_size large enough
* to cause overflow. This is similar to the first overflow
* check above, but it needs to be repeated due to the new
* ceil_size value, which may now be *equal* to maximal
* alignment, whereas before we only detected overflow if the
* original size was *greater* than maximal alignment.
*/
if (ceil_size < size || ceil_size + alignment < ceil_size) {
/* size_t overflow. */
return (NULL);
}
/*
* Calculate the size of the over-size run that arena_palloc()
* would need to allocate in order to guarantee the alignment.
*/
if (ceil_size >= alignment)
run_size = ceil_size + alignment - PAGE_SIZE;
else {
/*
* It is possible that (alignment << 1) will cause
* overflow, but it doesn't matter because we also
* subtract PAGE_SIZE, which in the case of overflow
* leaves us with a very large run_size. That causes
* the first conditional below to fail, which means
* that the bogus run_size value never gets used for
* anything important.
*/
run_size = (alignment << 1) - PAGE_SIZE;
}
if (run_size <= arena_maxclass) {
ret = arena_palloc(choose_arena(), alignment, ceil_size,
run_size);
} else if (alignment <= chunksize)
ret = huge_malloc(ceil_size, false);
else
ret = huge_palloc(alignment, ceil_size);
}
assert(((uintptr_t)ret & (alignment - 1)) == 0);
return (ret);
}
JEMALLOC_INLINE size_t
isalloc(const void *ptr)
{
size_t ret;
arena_chunk_t *chunk;
assert(ptr != NULL);
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
if (chunk != ptr) {
/* Region. */
assert(chunk->arena->magic == ARENA_MAGIC);
#ifdef JEMALLOC_PROF
ret = arena_salloc_demote(ptr);
#else
ret = arena_salloc(ptr);
#endif
} else
ret = huge_salloc(ptr);
return (ret);
}
JEMALLOC_INLINE void *
iralloc(void *ptr, size_t size)
{
size_t oldsize;
assert(ptr != NULL);
assert(size != 0);
oldsize = isalloc(ptr);
if (size <= arena_maxclass)
return (arena_ralloc(ptr, size, oldsize));
else
return (huge_ralloc(ptr, size, oldsize));
}
JEMALLOC_INLINE void
idalloc(void *ptr)
{
arena_chunk_t *chunk;
assert(ptr != NULL);
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
if (chunk != ptr)
arena_dalloc(chunk->arena, chunk, ptr);
else
huge_dalloc(ptr);
}
#endif
#undef JEMALLOC_H_INLINES
/******************************************************************************/

View File

@@ -0,0 +1,561 @@
#include <sys/mman.h>
#include <sys/param.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/sysctl.h>
#include <sys/uio.h>
#include <errno.h>
#include <limits.h>
#ifndef SIZE_T_MAX
# define SIZE_T_MAX SIZE_MAX
#endif
#include <pthread.h>
#include <sched.h>
#include <stdarg.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <inttypes.h>
#include <string.h>
#include <strings.h>
#include <unistd.h>
#include <fcntl.h>
#include <pthread.h>
#define JEMALLOC_MANGLE
#include "../jemalloc@install_suffix@.h"
#ifdef JEMALLOC_LAZY_LOCK
#include <dlfcn.h>
#endif
#define RB_COMPACT
#include "jemalloc/internal/rb.h"
#include "jemalloc/internal/qr.h"
#include "jemalloc/internal/ql.h"
extern void (*JEMALLOC_P(malloc_message))(void *wcbopaque, const char *s);
/*
* Define a custom assert() in order to reduce the chances of deadlock during
* assertion failure.
*/
#ifdef JEMALLOC_DEBUG
# define assert(e) do { \
if (!(e)) { \
char line_buf[UMAX2S_BUFSIZE]; \
malloc_write("<jemalloc>: "); \
malloc_write(__FILE__); \
malloc_write(":"); \
malloc_write(umax2s(__LINE__, 10, line_buf)); \
malloc_write(": Failed assertion: "); \
malloc_write("\""); \
malloc_write(#e); \
malloc_write("\"\n"); \
abort(); \
} \
} while (0)
#else
#define assert(e)
#endif
/*
* jemalloc can conceptually be broken into components (arena, tcache, etc.),
* but there are circular dependencies that cannot be broken without
* substantial performance degradation. In order to reduce the effect on
* visual code flow, read the header files in multiple passes, with one of the
* following cpp variables defined during each pass:
*
* JEMALLOC_H_TYPES : Preprocessor-defined constants and psuedo-opaque data
* types.
* JEMALLOC_H_STRUCTS : Data structures.
* JEMALLOC_H_EXTERNS : Extern data declarations and function prototypes.
* JEMALLOC_H_INLINES : Inline functions.
*/
/******************************************************************************/
#define JEMALLOC_H_TYPES
#define ZU(z) ((size_t)z)
#ifndef __DECONST
# define __DECONST(type, var) ((type)(uintptr_t)(const void *)(var))
#endif
#ifdef JEMALLOC_DEBUG
/* Disable inlining to make debugging easier. */
# define JEMALLOC_INLINE
# define inline
#else
# define JEMALLOC_ENABLE_INLINE
# define JEMALLOC_INLINE static inline
#endif
/* Size of stack-allocated buffer passed to strerror_r(). */
#define STRERROR_BUF 64
/* Minimum alignment of allocations is 2^LG_QUANTUM bytes. */
#ifdef __i386__
# define LG_QUANTUM 4
#endif
#ifdef __ia64__
# define LG_QUANTUM 4
#endif
#ifdef __alpha__
# define LG_QUANTUM 4
#endif
#ifdef __sparc64__
# define LG_QUANTUM 4
#endif
#if (defined(__amd64__) || defined(__x86_64__))
# define LG_QUANTUM 4
#endif
#ifdef __arm__
# define LG_QUANTUM 3
#endif
#ifdef __mips__
# define LG_QUANTUM 3
#endif
#ifdef __powerpc__
# define LG_QUANTUM 4
#endif
#ifdef __s390x__
# define LG_QUANTUM 4
#endif
#define QUANTUM ((size_t)(1U << LG_QUANTUM))
#define QUANTUM_MASK (QUANTUM - 1)
/* Return the smallest quantum multiple that is >= a. */
#define QUANTUM_CEILING(a) \
(((a) + QUANTUM_MASK) & ~QUANTUM_MASK)
#define SIZEOF_PTR (1U << LG_SIZEOF_PTR)
/* We can't use TLS in non-PIC programs, since TLS relies on loader magic. */
#if (!defined(PIC) && !defined(NO_TLS))
# define NO_TLS
#endif
/*
* Maximum size of L1 cache line. This is used to avoid cache line aliasing.
* In addition, this controls the spacing of cacheline-spaced size classes.
*/
#define LG_CACHELINE 6
#define CACHELINE ((size_t)(1U << LG_CACHELINE))
#define CACHELINE_MASK (CACHELINE - 1)
/* Return the smallest cacheline multiple that is >= s. */
#define CACHELINE_CEILING(s) \
(((s) + CACHELINE_MASK) & ~CACHELINE_MASK)
/*
* Page size. STATIC_PAGE_SHIFT is determined by the configure script. If
* DYNAMIC_PAGE_SHIFT is enabled, only use the STATIC_PAGE_* macros where
* compile-time values are required for the purposes of defining data
* structures.
*/
#define STATIC_PAGE_SIZE ((size_t)(1U << STATIC_PAGE_SHIFT))
#define STATIC_PAGE_MASK ((size_t)(STATIC_PAGE_SIZE - 1))
#ifdef DYNAMIC_PAGE_SHIFT
# define PAGE_SHIFT lg_pagesize
# define PAGE_SIZE pagesize
# define PAGE_MASK pagesize_mask
#else
# define PAGE_SHIFT STATIC_PAGE_SHIFT
# define PAGE_SIZE STATIC_PAGE_SIZE
# define PAGE_MASK STATIC_PAGE_MASK
#endif
/* Return the smallest pagesize multiple that is >= s. */
#define PAGE_CEILING(s) \
(((s) + PAGE_MASK) & ~PAGE_MASK)
#include "jemalloc/internal/prn.h"
#include "jemalloc/internal/ckh.h"
#include "jemalloc/internal/stats.h"
#include "jemalloc/internal/ctl.h"
#include "jemalloc/internal/mutex.h"
#include "jemalloc/internal/mb.h"
#include "jemalloc/internal/extent.h"
#include "jemalloc/internal/arena.h"
#include "jemalloc/internal/base.h"
#include "jemalloc/internal/chunk.h"
#include "jemalloc/internal/huge.h"
#include "jemalloc/internal/tcache.h"
#include "jemalloc/internal/hash.h"
#include "jemalloc/internal/prof.h"
#undef JEMALLOC_H_TYPES
/******************************************************************************/
#define JEMALLOC_H_STRUCTS
#include "jemalloc/internal/prn.h"
#include "jemalloc/internal/ckh.h"
#include "jemalloc/internal/stats.h"
#include "jemalloc/internal/ctl.h"
#include "jemalloc/internal/mutex.h"
#include "jemalloc/internal/mb.h"
#include "jemalloc/internal/extent.h"
#include "jemalloc/internal/arena.h"
#include "jemalloc/internal/base.h"
#include "jemalloc/internal/chunk.h"
#include "jemalloc/internal/huge.h"
#include "jemalloc/internal/tcache.h"
#include "jemalloc/internal/hash.h"
#include "jemalloc/internal/prof.h"
#undef JEMALLOC_H_STRUCTS
/******************************************************************************/
#define JEMALLOC_H_EXTERNS
extern bool opt_abort;
#ifdef JEMALLOC_FILL
extern bool opt_junk;
#endif
#ifdef JEMALLOC_SYSV
extern bool opt_sysv;
#endif
#ifdef JEMALLOC_XMALLOC
extern bool opt_xmalloc;
#endif
#ifdef JEMALLOC_FILL
extern bool opt_zero;
#endif
#ifdef DYNAMIC_PAGE_SHIFT
extern size_t pagesize;
extern size_t pagesize_mask;
extern size_t lg_pagesize;
#endif
/* Number of CPUs. */
extern unsigned ncpus;
extern malloc_mutex_t arenas_lock; /* Protects arenas initialization. */
#ifndef NO_TLS
/*
* Map of pthread_self() --> arenas[???], used for selecting an arena to use
* for allocations.
*/
extern __thread arena_t *arenas_map JEMALLOC_ATTR(tls_model("initial-exec"));
#endif
/*
* Arenas that are used to service external requests. Not all elements of the
* arenas array are necessarily used; arenas are created lazily as needed.
*/
extern arena_t **arenas;
extern unsigned narenas;
arena_t *arenas_extend(unsigned ind);
#ifndef NO_TLS
arena_t *choose_arena_hard(void);
#endif
#include "jemalloc/internal/prn.h"
#include "jemalloc/internal/ckh.h"
#include "jemalloc/internal/stats.h"
#include "jemalloc/internal/ctl.h"
#include "jemalloc/internal/mutex.h"
#include "jemalloc/internal/mb.h"
#include "jemalloc/internal/extent.h"
#include "jemalloc/internal/arena.h"
#include "jemalloc/internal/base.h"
#include "jemalloc/internal/chunk.h"
#include "jemalloc/internal/huge.h"
#include "jemalloc/internal/tcache.h"
#include "jemalloc/internal/hash.h"
#include "jemalloc/internal/prof.h"
#undef JEMALLOC_H_EXTERNS
/******************************************************************************/
#define JEMALLOC_H_INLINES
#include "jemalloc/internal/prn.h"
#include "jemalloc/internal/ckh.h"
#include "jemalloc/internal/stats.h"
#include "jemalloc/internal/ctl.h"
#include "jemalloc/internal/mutex.h"
#include "jemalloc/internal/mb.h"
#include "jemalloc/internal/extent.h"
#include "jemalloc/internal/base.h"
#include "jemalloc/internal/chunk.h"
#include "jemalloc/internal/huge.h"
#ifndef JEMALLOC_ENABLE_INLINE
void malloc_write(const char *s);
arena_t *choose_arena(void);
#endif
#if (defined(JEMALLOC_ENABLE_INLINE) || defined(JEMALLOC_C_))
/*
* Wrapper around malloc_message() that avoids the need for
* JEMALLOC_P(malloc_message)(...) throughout the code.
*/
JEMALLOC_INLINE void
malloc_write(const char *s)
{
JEMALLOC_P(malloc_message)(NULL, s);
}
/*
* Choose an arena based on a per-thread value (fast-path code, calls slow-path
* code if necessary).
*/
JEMALLOC_INLINE arena_t *
choose_arena(void)
{
arena_t *ret;
/*
* We can only use TLS if this is a PIC library, since for the static
* library version, libc's malloc is used by TLS allocation, which
* introduces a bootstrapping issue.
*/
#ifndef NO_TLS
ret = arenas_map;
if (ret == NULL) {
ret = choose_arena_hard();
assert(ret != NULL);
}
#else
if (isthreaded && narenas > 1) {
unsigned long ind;
/*
* Hash pthread_self() to one of the arenas. There is a prime
* number of arenas, so this has a reasonable chance of
* working. Even so, the hashing can be easily thwarted by
* inconvenient pthread_self() values. Without specific
* knowledge of how pthread_self() calculates values, we can't
* easily do much better than this.
*/
ind = (unsigned long) pthread_self() % narenas;
/*
* Optimistially assume that arenas[ind] has been initialized.
* At worst, we find out that some other thread has already
* done so, after acquiring the lock in preparation. Note that
* this lazy locking also has the effect of lazily forcing
* cache coherency; without the lock acquisition, there's no
* guarantee that modification of arenas[ind] by another thread
* would be seen on this CPU for an arbitrary amount of time.
*
* In general, this approach to modifying a synchronized value
* isn't a good idea, but in this case we only ever modify the
* value once, so things work out well.
*/
ret = arenas[ind];
if (ret == NULL) {
/*
* Avoid races with another thread that may have already
* initialized arenas[ind].
*/
malloc_mutex_lock(&arenas_lock);
if (arenas[ind] == NULL)
ret = arenas_extend((unsigned)ind);
else
ret = arenas[ind];
malloc_mutex_unlock(&arenas_lock);
}
} else
ret = arenas[0];
#endif
assert(ret != NULL);
return (ret);
}
#endif
#include "jemalloc/internal/tcache.h"
#include "jemalloc/internal/arena.h"
#include "jemalloc/internal/hash.h"
#include "jemalloc/internal/prof.h"
#ifndef JEMALLOC_ENABLE_INLINE
void *imalloc(size_t size);
void *icalloc(size_t size);
void *ipalloc(size_t alignment, size_t size);
size_t isalloc(const void *ptr);
void *iralloc(void *ptr, size_t size);
void idalloc(void *ptr);
#endif
#if (defined(JEMALLOC_ENABLE_INLINE) || defined(JEMALLOC_C_))
JEMALLOC_INLINE void *
imalloc(size_t size)
{
assert(size != 0);
if (size <= arena_maxclass)
return (arena_malloc(size, false));
else
return (huge_malloc(size, false));
}
JEMALLOC_INLINE void *
icalloc(size_t size)
{
if (size <= arena_maxclass)
return (arena_malloc(size, true));
else
return (huge_malloc(size, true));
}
JEMALLOC_INLINE void *
ipalloc(size_t alignment, size_t size)
{
void *ret;
size_t ceil_size;
/*
* Round size up to the nearest multiple of alignment.
*
* This done, we can take advantage of the fact that for each small
* size class, every object is aligned at the smallest power of two
* that is non-zero in the base two representation of the size. For
* example:
*
* Size | Base 2 | Minimum alignment
* -----+----------+------------------
* 96 | 1100000 | 32
* 144 | 10100000 | 32
* 192 | 11000000 | 64
*
* Depending on runtime settings, it is possible that arena_malloc()
* will further round up to a power of two, but that never causes
* correctness issues.
*/
ceil_size = (size + (alignment - 1)) & (-alignment);
/*
* (ceil_size < size) protects against the combination of maximal
* alignment and size greater than maximal alignment.
*/
if (ceil_size < size) {
/* size_t overflow. */
return (NULL);
}
if (ceil_size <= PAGE_SIZE || (alignment <= PAGE_SIZE
&& ceil_size <= arena_maxclass))
ret = arena_malloc(ceil_size, false);
else {
size_t run_size;
/*
* We can't achieve subpage alignment, so round up alignment
* permanently; it makes later calculations simpler.
*/
alignment = PAGE_CEILING(alignment);
ceil_size = PAGE_CEILING(size);
/*
* (ceil_size < size) protects against very large sizes within
* PAGE_SIZE of SIZE_T_MAX.
*
* (ceil_size + alignment < ceil_size) protects against the
* combination of maximal alignment and ceil_size large enough
* to cause overflow. This is similar to the first overflow
* check above, but it needs to be repeated due to the new
* ceil_size value, which may now be *equal* to maximal
* alignment, whereas before we only detected overflow if the
* original size was *greater* than maximal alignment.
*/
if (ceil_size < size || ceil_size + alignment < ceil_size) {
/* size_t overflow. */
return (NULL);
}
/*
* Calculate the size of the over-size run that arena_palloc()
* would need to allocate in order to guarantee the alignment.
*/
if (ceil_size >= alignment)
run_size = ceil_size + alignment - PAGE_SIZE;
else {
/*
* It is possible that (alignment << 1) will cause
* overflow, but it doesn't matter because we also
* subtract PAGE_SIZE, which in the case of overflow
* leaves us with a very large run_size. That causes
* the first conditional below to fail, which means
* that the bogus run_size value never gets used for
* anything important.
*/
run_size = (alignment << 1) - PAGE_SIZE;
}
if (run_size <= arena_maxclass) {
ret = arena_palloc(choose_arena(), alignment, ceil_size,
run_size);
} else if (alignment <= chunksize)
ret = huge_malloc(ceil_size, false);
else
ret = huge_palloc(alignment, ceil_size);
}
assert(((uintptr_t)ret & (alignment - 1)) == 0);
return (ret);
}
JEMALLOC_INLINE size_t
isalloc(const void *ptr)
{
size_t ret;
arena_chunk_t *chunk;
assert(ptr != NULL);
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
if (chunk != ptr) {
/* Region. */
assert(chunk->arena->magic == ARENA_MAGIC);
#ifdef JEMALLOC_PROF
ret = arena_salloc_demote(ptr);
#else
ret = arena_salloc(ptr);
#endif
} else
ret = huge_salloc(ptr);
return (ret);
}
JEMALLOC_INLINE void *
iralloc(void *ptr, size_t size)
{
size_t oldsize;
assert(ptr != NULL);
assert(size != 0);
oldsize = isalloc(ptr);
if (size <= arena_maxclass)
return (arena_ralloc(ptr, size, oldsize));
else
return (huge_ralloc(ptr, size, oldsize));
}
JEMALLOC_INLINE void
idalloc(void *ptr)
{
arena_chunk_t *chunk;
assert(ptr != NULL);
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
if (chunk != ptr)
arena_dalloc(chunk->arena, chunk, ptr);
else
huge_dalloc(ptr);
}
#endif
#undef JEMALLOC_H_INLINES
/******************************************************************************/

108
externals/jemalloc/include/internal/mb.h vendored Normal file
View File

@@ -0,0 +1,108 @@
/******************************************************************************/
#ifdef JEMALLOC_H_TYPES
#endif /* JEMALLOC_H_TYPES */
/******************************************************************************/
#ifdef JEMALLOC_H_STRUCTS
#endif /* JEMALLOC_H_STRUCTS */
/******************************************************************************/
#ifdef JEMALLOC_H_EXTERNS
#endif /* JEMALLOC_H_EXTERNS */
/******************************************************************************/
#ifdef JEMALLOC_H_INLINES
#ifndef JEMALLOC_ENABLE_INLINE
void mb_write(void);
#endif
#if (defined(JEMALLOC_ENABLE_INLINE) || defined(MB_C_))
#ifdef __i386__
/*
* According to the Intel Architecture Software Developer's Manual, current
* processors execute instructions in order from the perspective of other
* processors in a multiprocessor system, but 1) Intel reserves the right to
* change that, and 2) the compiler's optimizer could re-order instructions if
* there weren't some form of barrier. Therefore, even if running on an
* architecture that does not need memory barriers (everything through at least
* i686), an "optimizer barrier" is necessary.
*/
JEMALLOC_INLINE void
mb_write(void)
{
# if 0
/* This is a true memory barrier. */
asm volatile ("pusha;"
"xor %%eax,%%eax;"
"cpuid;"
"popa;"
: /* Outputs. */
: /* Inputs. */
: "memory" /* Clobbers. */
);
#else
/*
* This is hopefully enough to keep the compiler from reordering
* instructions around this one.
*/
asm volatile ("nop;"
: /* Outputs. */
: /* Inputs. */
: "memory" /* Clobbers. */
);
#endif
}
#elif (defined(__amd64_) || defined(__x86_64__))
JEMALLOC_INLINE void
mb_write(void)
{
asm volatile ("sfence"
: /* Outputs. */
: /* Inputs. */
: "memory" /* Clobbers. */
);
}
#elif defined(__powerpc__)
JEMALLOC_INLINE void
mb_write(void)
{
asm volatile ("eieio"
: /* Outputs. */
: /* Inputs. */
: "memory" /* Clobbers. */
);
}
#elif defined(__sparc64__)
JEMALLOC_INLINE void
mb_write(void)
{
asm volatile ("membar #StoreStore"
: /* Outputs. */
: /* Inputs. */
: "memory" /* Clobbers. */
);
}
#else
/*
* This is much slower than a simple memory barrier, but the semantics of mutex
* unlock make this work.
*/
JEMALLOC_INLINE void
mb_write(void)
{
malloc_mutex_t mtx;
malloc_mutex_init(&mtx);
malloc_mutex_lock(&mtx);
malloc_mutex_unlock(&mtx);
}
#endif
#endif
#endif /* JEMALLOC_H_INLINES */
/******************************************************************************/

View File

@@ -0,0 +1,61 @@
/******************************************************************************/
#ifdef JEMALLOC_H_TYPES
typedef pthread_mutex_t malloc_mutex_t;
#endif /* JEMALLOC_H_TYPES */
/******************************************************************************/
#ifdef JEMALLOC_H_STRUCTS
#endif /* JEMALLOC_H_STRUCTS */
/******************************************************************************/
#ifdef JEMALLOC_H_EXTERNS
#ifdef JEMALLOC_LAZY_LOCK
extern bool isthreaded;
#else
# define isthreaded true
#endif
bool malloc_mutex_init(malloc_mutex_t *mutex);
#endif /* JEMALLOC_H_EXTERNS */
/******************************************************************************/
#ifdef JEMALLOC_H_INLINES
#ifndef JEMALLOC_ENABLE_INLINE
void malloc_mutex_lock(malloc_mutex_t *mutex);
bool malloc_mutex_trylock(malloc_mutex_t *mutex);
void malloc_mutex_unlock(malloc_mutex_t *mutex);
#endif
#if (defined(JEMALLOC_ENABLE_INLINE) || defined(JEMALLOC_MUTEX_C_))
JEMALLOC_INLINE void
malloc_mutex_lock(malloc_mutex_t *mutex)
{
if (isthreaded)
pthread_mutex_lock(mutex);
}
JEMALLOC_INLINE bool
malloc_mutex_trylock(malloc_mutex_t *mutex)
{
if (isthreaded)
return (pthread_mutex_trylock(mutex) != 0);
else
return (false);
}
JEMALLOC_INLINE void
malloc_mutex_unlock(malloc_mutex_t *mutex)
{
if (isthreaded)
pthread_mutex_unlock(mutex);
}
#endif
#endif /* JEMALLOC_H_INLINES */
/******************************************************************************/

View File

@@ -0,0 +1,171 @@
#ifdef JEMALLOC_PROF
/******************************************************************************/
#ifdef JEMALLOC_H_TYPES
typedef struct prof_bt_s prof_bt_t;
typedef struct prof_cnt_s prof_cnt_t;
typedef struct prof_thr_cnt_s prof_thr_cnt_t;
typedef struct prof_ctx_s prof_ctx_t;
typedef struct prof_s prof_t;
/* Option defaults. */
#define LG_PROF_BT_MAX_DEFAULT 2
#define LG_PROF_SAMPLE_DEFAULT 0
#define LG_PROF_INTERVAL_DEFAULT 30
/*
* Hard limit on stack backtrace depth. Note that the version of
* prof_backtrace() that is based on __builtin_return_address() necessarily has
* a hard-coded number of backtrace frame handlers, so increasing
* LG_PROF_BT_MAX requires changing prof_backtrace().
*/
#define LG_PROF_BT_MAX 7 /* >= LG_PROF_BT_MAX_DEFAULT */
#define PROF_BT_MAX (1U << LG_PROF_BT_MAX)
/* Initial hash table size. */
#define PROF_CKH_MINITEMS 64
/* Size of memory buffer to use when writing dump files. */
#define PROF_DUMP_BUF_SIZE 65536
#endif /* JEMALLOC_H_TYPES */
/******************************************************************************/
#ifdef JEMALLOC_H_STRUCTS
struct prof_bt_s {
/* Backtrace, stored as len program counters. */
void **vec;
unsigned len;
};
#ifdef JEMALLOC_PROF_LIBGCC
/* Data structure passed to libgcc _Unwind_Backtrace() callback functions. */
typedef struct {
prof_bt_t *bt;
unsigned nignore;
unsigned max;
} prof_unwind_data_t;
#endif
struct prof_cnt_s {
/*
* Profiling counters. An allocation/deallocation pair can operate on
* different prof_thr_cnt_t objects that are linked into the same
* prof_ctx_t sets_ql, so it is possible for the cur* counters to go
* negative. In principle it is possible for the *bytes counters to
* overflow/underflow, but a general solution would require some form
* of 128-bit counter solution; this implementation doesn't bother to
* solve that problem.
*/
int64_t curobjs;
int64_t curbytes;
uint64_t accumobjs;
uint64_t accumbytes;
};
struct prof_thr_cnt_s {
/* Linkage into prof_ctx_t's sets_ql. */
ql_elm(prof_thr_cnt_t) link;
/*
* Associated context. If a thread frees an object that it did not
* allocate, it is possible that the context is not cached in the
* thread's hash table, in which case it must be able to look up the
* context, insert a new prof_thr_cnt_t into the thread's hash table,
* and link it into the prof_ctx_t's sets_ql.
*/
prof_ctx_t *ctx;
/*
* Threads use memory barriers to update the counters. Since there is
* only ever one writer, the only challenge is for the reader to get a
* consistent read of the counters.
*
* The writer uses this series of operations:
*
* 1) Increment epoch to an odd number.
* 2) Update counters.
* 3) Increment epoch to an even number.
*
* The reader must assure 1) that the epoch is even while it reads the
* counters, and 2) that the epoch doesn't change between the time it
* starts and finishes reading the counters.
*/
unsigned epoch;
/* Profiling counters. */
prof_cnt_t cnts;
};
struct prof_ctx_s {
/* Protects cnt_merged and sets_ql. */
malloc_mutex_t lock;
/* Temporary storage for aggregation during dump. */
prof_cnt_t cnt_dump;
/* When threads exit, they merge their stats into cnt_merged. */
prof_cnt_t cnt_merged;
/*
* List of profile counters, one for each thread that has allocated in
* this context.
*/
ql_head(prof_thr_cnt_t) cnts_ql;
};
#endif /* JEMALLOC_H_STRUCTS */
/******************************************************************************/
#ifdef JEMALLOC_H_EXTERNS
extern bool opt_prof;
/*
* Even if opt_prof is true, sampling can be temporarily disabled by setting
* opt_prof_active to false. No locking is used when updating opt_prof_active,
* so there are no guarantees regarding how long it will take for all threads
* to notice state changes.
*/
extern bool opt_prof_active;
extern size_t opt_lg_prof_bt_max; /* Maximum backtrace depth. */
extern size_t opt_lg_prof_sample; /* Mean bytes between samples. */
extern ssize_t opt_lg_prof_interval; /* lg(prof_interval). */
extern bool opt_prof_udump; /* High-water memory dumping. */
extern bool opt_prof_leak; /* Dump leak summary at exit. */
/*
* Profile dump interval, measured in bytes allocated. Each arena triggers a
* profile dump when it reaches this threshold. The effect is that the
* interval between profile dumps averages prof_interval, though the actual
* interval between dumps will tend to be sporadic, and the interval will be a
* maximum of approximately (prof_interval * narenas).
*/
extern uint64_t prof_interval;
/*
* If true, promote small sampled objects to large objects, since small run
* headers do not have embedded profile context pointers.
*/
extern bool prof_promote;
bool prof_init(prof_t *prof, bool master);
void prof_destroy(prof_t *prof);
prof_thr_cnt_t *prof_alloc_prep(size_t size);
prof_thr_cnt_t *prof_cnt_get(const void *ptr);
void prof_malloc(const void *ptr, prof_thr_cnt_t *cnt);
void prof_realloc(const void *ptr, prof_thr_cnt_t *cnt, const void *old_ptr,
size_t old_size, prof_thr_cnt_t *old_cnt);
void prof_free(const void *ptr);
void prof_idump(void);
bool prof_mdump(const char *filename);
void prof_udump(void);
void prof_boot0(void);
bool prof_boot1(void);
#endif /* JEMALLOC_H_EXTERNS */
/******************************************************************************/
#ifdef JEMALLOC_H_INLINES
#endif /* JEMALLOC_H_INLINES */
/******************************************************************************/
#endif /* JEMALLOC_PROF */

View File

@@ -0,0 +1,83 @@
/*
* List definitions.
*/
#define ql_head(a_type) \
struct { \
a_type *qlh_first; \
}
#define ql_head_initializer(a_head) {NULL}
#define ql_elm(a_type) qr(a_type)
/* List functions. */
#define ql_new(a_head) do { \
(a_head)->qlh_first = NULL; \
} while (0)
#define ql_elm_new(a_elm, a_field) qr_new((a_elm), a_field)
#define ql_first(a_head) ((a_head)->qlh_first)
#define ql_last(a_head, a_field) \
((ql_first(a_head) != NULL) \
? qr_prev(ql_first(a_head), a_field) : NULL)
#define ql_next(a_head, a_elm, a_field) \
((ql_last(a_head, a_field) != (a_elm)) \
? qr_next((a_elm), a_field) : NULL)
#define ql_prev(a_head, a_elm, a_field) \
((ql_first(a_head) != (a_elm)) ? qr_prev((a_elm), a_field) \
: NULL)
#define ql_before_insert(a_head, a_qlelm, a_elm, a_field) do { \
qr_before_insert((a_qlelm), (a_elm), a_field); \
if (ql_first(a_head) == (a_qlelm)) { \
ql_first(a_head) = (a_elm); \
} \
} while (0)
#define ql_after_insert(a_qlelm, a_elm, a_field) \
qr_after_insert((a_qlelm), (a_elm), a_field)
#define ql_head_insert(a_head, a_elm, a_field) do { \
if (ql_first(a_head) != NULL) { \
qr_before_insert(ql_first(a_head), (a_elm), a_field); \
} \
ql_first(a_head) = (a_elm); \
} while (0)
#define ql_tail_insert(a_head, a_elm, a_field) do { \
if (ql_first(a_head) != NULL) { \
qr_before_insert(ql_first(a_head), (a_elm), a_field); \
} \
ql_first(a_head) = qr_next((a_elm), a_field); \
} while (0)
#define ql_remove(a_head, a_elm, a_field) do { \
if (ql_first(a_head) == (a_elm)) { \
ql_first(a_head) = qr_next(ql_first(a_head), a_field); \
} \
if (ql_first(a_head) != (a_elm)) { \
qr_remove((a_elm), a_field); \
} else { \
ql_first(a_head) = NULL; \
} \
} while (0)
#define ql_head_remove(a_head, a_type, a_field) do { \
a_type *t = ql_first(a_head); \
ql_remove((a_head), t, a_field); \
} while (0)
#define ql_tail_remove(a_head, a_type, a_field) do { \
a_type *t = ql_last(a_head, a_field); \
ql_remove((a_head), t, a_field); \
} while (0)
#define ql_foreach(a_var, a_head, a_field) \
qr_foreach((a_var), ql_first(a_head), a_field)
#define ql_reverse_foreach(a_var, a_head, a_field) \
qr_reverse_foreach((a_var), ql_first(a_head), a_field)

View File

@@ -0,0 +1,67 @@
/* Ring definitions. */
#define qr(a_type) \
struct { \
a_type *qre_next; \
a_type *qre_prev; \
}
/* Ring functions. */
#define qr_new(a_qr, a_field) do { \
(a_qr)->a_field.qre_next = (a_qr); \
(a_qr)->a_field.qre_prev = (a_qr); \
} while (0)
#define qr_next(a_qr, a_field) ((a_qr)->a_field.qre_next)
#define qr_prev(a_qr, a_field) ((a_qr)->a_field.qre_prev)
#define qr_before_insert(a_qrelm, a_qr, a_field) do { \
(a_qr)->a_field.qre_prev = (a_qrelm)->a_field.qre_prev; \
(a_qr)->a_field.qre_next = (a_qrelm); \
(a_qr)->a_field.qre_prev->a_field.qre_next = (a_qr); \
(a_qrelm)->a_field.qre_prev = (a_qr); \
} while (0)
#define qr_after_insert(a_qrelm, a_qr, a_field) \
do \
{ \
(a_qr)->a_field.qre_next = (a_qrelm)->a_field.qre_next; \
(a_qr)->a_field.qre_prev = (a_qrelm); \
(a_qr)->a_field.qre_next->a_field.qre_prev = (a_qr); \
(a_qrelm)->a_field.qre_next = (a_qr); \
} while (0)
#define qr_meld(a_qr_a, a_qr_b, a_field) do { \
void *t; \
(a_qr_a)->a_field.qre_prev->a_field.qre_next = (a_qr_b); \
(a_qr_b)->a_field.qre_prev->a_field.qre_next = (a_qr_a); \
t = (a_qr_a)->a_field.qre_prev; \
(a_qr_a)->a_field.qre_prev = (a_qr_b)->a_field.qre_prev; \
(a_qr_b)->a_field.qre_prev = t; \
} while (0)
/* qr_meld() and qr_split() are functionally equivalent, so there's no need to
* have two copies of the code. */
#define qr_split(a_qr_a, a_qr_b, a_field) \
qr_meld((a_qr_a), (a_qr_b), a_field)
#define qr_remove(a_qr, a_field) do { \
(a_qr)->a_field.qre_prev->a_field.qre_next \
= (a_qr)->a_field.qre_next; \
(a_qr)->a_field.qre_next->a_field.qre_prev \
= (a_qr)->a_field.qre_prev; \
(a_qr)->a_field.qre_next = (a_qr); \
(a_qr)->a_field.qre_prev = (a_qr); \
} while (0)
#define qr_foreach(var, a_qr, a_field) \
for ((var) = (a_qr); \
(var) != NULL; \
(var) = (((var)->a_field.qre_next != (a_qr)) \
? (var)->a_field.qre_next : NULL))
#define qr_reverse_foreach(var, a_qr, a_field) \
for ((var) = ((a_qr) != NULL) ? qr_prev(a_qr, a_field) : NULL; \
(var) != NULL; \
(var) = (((var) != (a_qr)) \
? (var)->a_field.qre_prev : NULL))

973
externals/jemalloc/include/internal/rb.h vendored Normal file
View File

@@ -0,0 +1,973 @@
/*-
*******************************************************************************
*
* cpp macro implementation of left-leaning 2-3 red-black trees. Parent
* pointers are not used, and color bits are stored in the least significant
* bit of right-child pointers (if RB_COMPACT is defined), thus making node
* linkage as compact as is possible for red-black trees.
*
* Usage:
*
* #include <stdint.h>
* #include <stdbool.h>
* #define NDEBUG // (Optional, see assert(3).)
* #include <assert.h>
* #define RB_COMPACT // (Optional, embed color bits in right-child pointers.)
* #include <rb.h>
* ...
*
*******************************************************************************
*/
#ifndef RB_H_
#define RB_H_
#if 0
__FBSDID("$FreeBSD: head/lib/libc/stdlib/rb.h 204493 2010-02-28 22:57:13Z jasone $");
#endif
#ifdef RB_COMPACT
/* Node structure. */
#define rb_node(a_type) \
struct { \
a_type *rbn_left; \
a_type *rbn_right_red; \
}
#else
#define rb_node(a_type) \
struct { \
a_type *rbn_left; \
a_type *rbn_right; \
bool rbn_red; \
}
#endif
/* Root structure. */
#define rb_tree(a_type) \
struct { \
a_type *rbt_root; \
a_type rbt_nil; \
}
/* Left accessors. */
#define rbtn_left_get(a_type, a_field, a_node) \
((a_node)->a_field.rbn_left)
#define rbtn_left_set(a_type, a_field, a_node, a_left) do { \
(a_node)->a_field.rbn_left = a_left; \
} while (0)
#ifdef RB_COMPACT
/* Right accessors. */
#define rbtn_right_get(a_type, a_field, a_node) \
((a_type *) (((intptr_t) (a_node)->a_field.rbn_right_red) \
& ((ssize_t)-2)))
#define rbtn_right_set(a_type, a_field, a_node, a_right) do { \
(a_node)->a_field.rbn_right_red = (a_type *) (((uintptr_t) a_right) \
| (((uintptr_t) (a_node)->a_field.rbn_right_red) & ((size_t)1))); \
} while (0)
/* Color accessors. */
#define rbtn_red_get(a_type, a_field, a_node) \
((bool) (((uintptr_t) (a_node)->a_field.rbn_right_red) \
& ((size_t)1)))
#define rbtn_color_set(a_type, a_field, a_node, a_red) do { \
(a_node)->a_field.rbn_right_red = (a_type *) ((((intptr_t) \
(a_node)->a_field.rbn_right_red) & ((ssize_t)-2)) \
| ((ssize_t)a_red)); \
} while (0)
#define rbtn_red_set(a_type, a_field, a_node) do { \
(a_node)->a_field.rbn_right_red = (a_type *) (((uintptr_t) \
(a_node)->a_field.rbn_right_red) | ((size_t)1)); \
} while (0)
#define rbtn_black_set(a_type, a_field, a_node) do { \
(a_node)->a_field.rbn_right_red = (a_type *) (((intptr_t) \
(a_node)->a_field.rbn_right_red) & ((ssize_t)-2)); \
} while (0)
#else
/* Right accessors. */
#define rbtn_right_get(a_type, a_field, a_node) \
((a_node)->a_field.rbn_right)
#define rbtn_right_set(a_type, a_field, a_node, a_right) do { \
(a_node)->a_field.rbn_right = a_right; \
} while (0)
/* Color accessors. */
#define rbtn_red_get(a_type, a_field, a_node) \
((a_node)->a_field.rbn_red)
#define rbtn_color_set(a_type, a_field, a_node, a_red) do { \
(a_node)->a_field.rbn_red = (a_red); \
} while (0)
#define rbtn_red_set(a_type, a_field, a_node) do { \
(a_node)->a_field.rbn_red = true; \
} while (0)
#define rbtn_black_set(a_type, a_field, a_node) do { \
(a_node)->a_field.rbn_red = false; \
} while (0)
#endif
/* Node initializer. */
#define rbt_node_new(a_type, a_field, a_rbt, a_node) do { \
rbtn_left_set(a_type, a_field, (a_node), &(a_rbt)->rbt_nil); \
rbtn_right_set(a_type, a_field, (a_node), &(a_rbt)->rbt_nil); \
rbtn_red_set(a_type, a_field, (a_node)); \
} while (0)
/* Tree initializer. */
#define rb_new(a_type, a_field, a_rbt) do { \
(a_rbt)->rbt_root = &(a_rbt)->rbt_nil; \
rbt_node_new(a_type, a_field, a_rbt, &(a_rbt)->rbt_nil); \
rbtn_black_set(a_type, a_field, &(a_rbt)->rbt_nil); \
} while (0)
/* Internal utility macros. */
#define rbtn_first(a_type, a_field, a_rbt, a_root, r_node) do { \
(r_node) = (a_root); \
if ((r_node) != &(a_rbt)->rbt_nil) { \
for (; \
rbtn_left_get(a_type, a_field, (r_node)) != &(a_rbt)->rbt_nil;\
(r_node) = rbtn_left_get(a_type, a_field, (r_node))) { \
} \
} \
} while (0)
#define rbtn_last(a_type, a_field, a_rbt, a_root, r_node) do { \
(r_node) = (a_root); \
if ((r_node) != &(a_rbt)->rbt_nil) { \
for (; rbtn_right_get(a_type, a_field, (r_node)) != \
&(a_rbt)->rbt_nil; (r_node) = rbtn_right_get(a_type, a_field, \
(r_node))) { \
} \
} \
} while (0)
#define rbtn_rotate_left(a_type, a_field, a_node, r_node) do { \
(r_node) = rbtn_right_get(a_type, a_field, (a_node)); \
rbtn_right_set(a_type, a_field, (a_node), \
rbtn_left_get(a_type, a_field, (r_node))); \
rbtn_left_set(a_type, a_field, (r_node), (a_node)); \
} while (0)
#define rbtn_rotate_right(a_type, a_field, a_node, r_node) do { \
(r_node) = rbtn_left_get(a_type, a_field, (a_node)); \
rbtn_left_set(a_type, a_field, (a_node), \
rbtn_right_get(a_type, a_field, (r_node))); \
rbtn_right_set(a_type, a_field, (r_node), (a_node)); \
} while (0)
/*
* The rb_proto() macro generates function prototypes that correspond to the
* functions generated by an equivalently parameterized call to rb_gen().
*/
#define rb_proto(a_attr, a_prefix, a_rbt_type, a_type) \
a_attr void \
a_prefix##new(a_rbt_type *rbtree); \
a_attr a_type * \
a_prefix##first(a_rbt_type *rbtree); \
a_attr a_type * \
a_prefix##last(a_rbt_type *rbtree); \
a_attr a_type * \
a_prefix##next(a_rbt_type *rbtree, a_type *node); \
a_attr a_type * \
a_prefix##prev(a_rbt_type *rbtree, a_type *node); \
a_attr a_type * \
a_prefix##search(a_rbt_type *rbtree, a_type *key); \
a_attr a_type * \
a_prefix##nsearch(a_rbt_type *rbtree, a_type *key); \
a_attr a_type * \
a_prefix##psearch(a_rbt_type *rbtree, a_type *key); \
a_attr void \
a_prefix##insert(a_rbt_type *rbtree, a_type *node); \
a_attr void \
a_prefix##remove(a_rbt_type *rbtree, a_type *node); \
a_attr a_type * \
a_prefix##iter(a_rbt_type *rbtree, a_type *start, a_type *(*cb)( \
a_rbt_type *, a_type *, void *), void *arg); \
a_attr a_type * \
a_prefix##reverse_iter(a_rbt_type *rbtree, a_type *start, \
a_type *(*cb)(a_rbt_type *, a_type *, void *), void *arg);
/*
* The rb_gen() macro generates a type-specific red-black tree implementation,
* based on the above cpp macros.
*
* Arguments:
*
* a_attr : Function attribute for generated functions (ex: static).
* a_prefix : Prefix for generated functions (ex: ex_).
* a_rb_type : Type for red-black tree data structure (ex: ex_t).
* a_type : Type for red-black tree node data structure (ex: ex_node_t).
* a_field : Name of red-black tree node linkage (ex: ex_link).
* a_cmp : Node comparison function name, with the following prototype:
* int (a_cmp *)(a_type *a_node, a_type *a_other);
* ^^^^^^
* or a_key
* Interpretation of comparision function return values:
* -1 : a_node < a_other
* 0 : a_node == a_other
* 1 : a_node > a_other
* In all cases, the a_node or a_key macro argument is the first
* argument to the comparison function, which makes it possible
* to write comparison functions that treat the first argument
* specially.
*
* Assuming the following setup:
*
* typedef struct ex_node_s ex_node_t;
* struct ex_node_s {
* rb_node(ex_node_t) ex_link;
* };
* typedef rb_tree(ex_node_t) ex_t;
* rb_gen(static, ex_, ex_t, ex_node_t, ex_link, ex_cmp)
*
* The following API is generated:
*
* static void
* ex_new(ex_t *extree);
* Description: Initialize a red-black tree structure.
* Args:
* extree: Pointer to an uninitialized red-black tree object.
*
* static ex_node_t *
* ex_first(ex_t *extree);
* static ex_node_t *
* ex_last(ex_t *extree);
* Description: Get the first/last node in extree.
* Args:
* extree: Pointer to an initialized red-black tree object.
* Ret: First/last node in extree, or NULL if extree is empty.
*
* static ex_node_t *
* ex_next(ex_t *extree, ex_node_t *node);
* static ex_node_t *
* ex_prev(ex_t *extree, ex_node_t *node);
* Description: Get node's successor/predecessor.
* Args:
* extree: Pointer to an initialized red-black tree object.
* node : A node in extree.
* Ret: node's successor/predecessor in extree, or NULL if node is
* last/first.
*
* static ex_node_t *
* ex_search(ex_t *extree, ex_node_t *key);
* Description: Search for node that matches key.
* Args:
* extree: Pointer to an initialized red-black tree object.
* key : Search key.
* Ret: Node in extree that matches key, or NULL if no match.
*
* static ex_node_t *
* ex_nsearch(ex_t *extree, ex_node_t *key);
* static ex_node_t *
* ex_psearch(ex_t *extree, ex_node_t *key);
* Description: Search for node that matches key. If no match is found,
* return what would be key's successor/predecessor, were
* key in extree.
* Args:
* extree: Pointer to an initialized red-black tree object.
* key : Search key.
* Ret: Node in extree that matches key, or if no match, hypothetical
* node's successor/predecessor (NULL if no successor/predecessor).
*
* static void
* ex_insert(ex_t *extree, ex_node_t *node);
* Description: Insert node into extree.
* Args:
* extree: Pointer to an initialized red-black tree object.
* node : Node to be inserted into extree.
*
* static void
* ex_remove(ex_t *extree, ex_node_t *node);
* Description: Remove node from extree.
* Args:
* extree: Pointer to an initialized red-black tree object.
* node : Node in extree to be removed.
*
* static ex_node_t *
* ex_iter(ex_t *extree, ex_node_t *start, ex_node_t *(*cb)(ex_t *,
* ex_node_t *, void *), void *arg);
* static ex_node_t *
* ex_reverse_iter(ex_t *extree, ex_node_t *start, ex_node *(*cb)(ex_t *,
* ex_node_t *, void *), void *arg);
* Description: Iterate forward/backward over extree, starting at node.
* If extree is modified, iteration must be immediately
* terminated by the callback function that causes the
* modification.
* Args:
* extree: Pointer to an initialized red-black tree object.
* start : Node at which to start iteration, or NULL to start at
* first/last node.
* cb : Callback function, which is called for each node during
* iteration. Under normal circumstances the callback function
* should return NULL, which causes iteration to continue. If a
* callback function returns non-NULL, iteration is immediately
* terminated and the non-NULL return value is returned by the
* iterator. This is useful for re-starting iteration after
* modifying extree.
* arg : Opaque pointer passed to cb().
* Ret: NULL if iteration completed, or the non-NULL callback return value
* that caused termination of the iteration.
*/
#define rb_gen(a_attr, a_prefix, a_rbt_type, a_type, a_field, a_cmp) \
a_attr void \
a_prefix##new(a_rbt_type *rbtree) { \
rb_new(a_type, a_field, rbtree); \
} \
a_attr a_type * \
a_prefix##first(a_rbt_type *rbtree) { \
a_type *ret; \
rbtn_first(a_type, a_field, rbtree, rbtree->rbt_root, ret); \
if (ret == &rbtree->rbt_nil) { \
ret = NULL; \
} \
return (ret); \
} \
a_attr a_type * \
a_prefix##last(a_rbt_type *rbtree) { \
a_type *ret; \
rbtn_last(a_type, a_field, rbtree, rbtree->rbt_root, ret); \
if (ret == &rbtree->rbt_nil) { \
ret = NULL; \
} \
return (ret); \
} \
a_attr a_type * \
a_prefix##next(a_rbt_type *rbtree, a_type *node) { \
a_type *ret; \
if (rbtn_right_get(a_type, a_field, node) != &rbtree->rbt_nil) { \
rbtn_first(a_type, a_field, rbtree, rbtn_right_get(a_type, \
a_field, node), ret); \
} else { \
a_type *tnode = rbtree->rbt_root; \
assert(tnode != &rbtree->rbt_nil); \
ret = &rbtree->rbt_nil; \
while (true) { \
int cmp = (a_cmp)(node, tnode); \
if (cmp < 0) { \
ret = tnode; \
tnode = rbtn_left_get(a_type, a_field, tnode); \
} else if (cmp > 0) { \
tnode = rbtn_right_get(a_type, a_field, tnode); \
} else { \
break; \
} \
assert(tnode != &rbtree->rbt_nil); \
} \
} \
if (ret == &rbtree->rbt_nil) { \
ret = (NULL); \
} \
return (ret); \
} \
a_attr a_type * \
a_prefix##prev(a_rbt_type *rbtree, a_type *node) { \
a_type *ret; \
if (rbtn_left_get(a_type, a_field, node) != &rbtree->rbt_nil) { \
rbtn_last(a_type, a_field, rbtree, rbtn_left_get(a_type, \
a_field, node), ret); \
} else { \
a_type *tnode = rbtree->rbt_root; \
assert(tnode != &rbtree->rbt_nil); \
ret = &rbtree->rbt_nil; \
while (true) { \
int cmp = (a_cmp)(node, tnode); \
if (cmp < 0) { \
tnode = rbtn_left_get(a_type, a_field, tnode); \
} else if (cmp > 0) { \
ret = tnode; \
tnode = rbtn_right_get(a_type, a_field, tnode); \
} else { \
break; \
} \
assert(tnode != &rbtree->rbt_nil); \
} \
} \
if (ret == &rbtree->rbt_nil) { \
ret = (NULL); \
} \
return (ret); \
} \
a_attr a_type * \
a_prefix##search(a_rbt_type *rbtree, a_type *key) { \
a_type *ret; \
int cmp; \
ret = rbtree->rbt_root; \
while (ret != &rbtree->rbt_nil \
&& (cmp = (a_cmp)(key, ret)) != 0) { \
if (cmp < 0) { \
ret = rbtn_left_get(a_type, a_field, ret); \
} else { \
ret = rbtn_right_get(a_type, a_field, ret); \
} \
} \
if (ret == &rbtree->rbt_nil) { \
ret = (NULL); \
} \
return (ret); \
} \
a_attr a_type * \
a_prefix##nsearch(a_rbt_type *rbtree, a_type *key) { \
a_type *ret; \
a_type *tnode = rbtree->rbt_root; \
ret = &rbtree->rbt_nil; \
while (tnode != &rbtree->rbt_nil) { \
int cmp = (a_cmp)(key, tnode); \
if (cmp < 0) { \
ret = tnode; \
tnode = rbtn_left_get(a_type, a_field, tnode); \
} else if (cmp > 0) { \
tnode = rbtn_right_get(a_type, a_field, tnode); \
} else { \
ret = tnode; \
break; \
} \
} \
if (ret == &rbtree->rbt_nil) { \
ret = (NULL); \
} \
return (ret); \
} \
a_attr a_type * \
a_prefix##psearch(a_rbt_type *rbtree, a_type *key) { \
a_type *ret; \
a_type *tnode = rbtree->rbt_root; \
ret = &rbtree->rbt_nil; \
while (tnode != &rbtree->rbt_nil) { \
int cmp = (a_cmp)(key, tnode); \
if (cmp < 0) { \
tnode = rbtn_left_get(a_type, a_field, tnode); \
} else if (cmp > 0) { \
ret = tnode; \
tnode = rbtn_right_get(a_type, a_field, tnode); \
} else { \
ret = tnode; \
break; \
} \
} \
if (ret == &rbtree->rbt_nil) { \
ret = (NULL); \
} \
return (ret); \
} \
a_attr void \
a_prefix##insert(a_rbt_type *rbtree, a_type *node) { \
struct { \
a_type *node; \
int cmp; \
} path[sizeof(void *) << 4], *pathp; \
rbt_node_new(a_type, a_field, rbtree, node); \
/* Wind. */ \
path->node = rbtree->rbt_root; \
for (pathp = path; pathp->node != &rbtree->rbt_nil; pathp++) { \
int cmp = pathp->cmp = a_cmp(node, pathp->node); \
assert(cmp != 0); \
if (cmp < 0) { \
pathp[1].node = rbtn_left_get(a_type, a_field, \
pathp->node); \
} else { \
pathp[1].node = rbtn_right_get(a_type, a_field, \
pathp->node); \
} \
} \
pathp->node = node; \
/* Unwind. */ \
for (pathp--; (uintptr_t)pathp >= (uintptr_t)path; pathp--) { \
a_type *cnode = pathp->node; \
if (pathp->cmp < 0) { \
a_type *left = pathp[1].node; \
rbtn_left_set(a_type, a_field, cnode, left); \
if (rbtn_red_get(a_type, a_field, left)) { \
a_type *leftleft = rbtn_left_get(a_type, a_field, left);\
if (rbtn_red_get(a_type, a_field, leftleft)) { \
/* Fix up 4-node. */ \
a_type *tnode; \
rbtn_black_set(a_type, a_field, leftleft); \
rbtn_rotate_right(a_type, a_field, cnode, tnode); \
cnode = tnode; \
} \
} else { \
return; \
} \
} else { \
a_type *right = pathp[1].node; \
rbtn_right_set(a_type, a_field, cnode, right); \
if (rbtn_red_get(a_type, a_field, right)) { \
a_type *left = rbtn_left_get(a_type, a_field, cnode); \
if (rbtn_red_get(a_type, a_field, left)) { \
/* Split 4-node. */ \
rbtn_black_set(a_type, a_field, left); \
rbtn_black_set(a_type, a_field, right); \
rbtn_red_set(a_type, a_field, cnode); \
} else { \
/* Lean left. */ \
a_type *tnode; \
bool tred = rbtn_red_get(a_type, a_field, cnode); \
rbtn_rotate_left(a_type, a_field, cnode, tnode); \
rbtn_color_set(a_type, a_field, tnode, tred); \
rbtn_red_set(a_type, a_field, cnode); \
cnode = tnode; \
} \
} else { \
return; \
} \
} \
pathp->node = cnode; \
} \
/* Set root, and make it black. */ \
rbtree->rbt_root = path->node; \
rbtn_black_set(a_type, a_field, rbtree->rbt_root); \
} \
a_attr void \
a_prefix##remove(a_rbt_type *rbtree, a_type *node) { \
struct { \
a_type *node; \
int cmp; \
} *pathp, *nodep, path[sizeof(void *) << 4]; \
/* Wind. */ \
nodep = NULL; /* Silence compiler warning. */ \
path->node = rbtree->rbt_root; \
for (pathp = path; pathp->node != &rbtree->rbt_nil; pathp++) { \
int cmp = pathp->cmp = a_cmp(node, pathp->node); \
if (cmp < 0) { \
pathp[1].node = rbtn_left_get(a_type, a_field, \
pathp->node); \
} else { \
pathp[1].node = rbtn_right_get(a_type, a_field, \
pathp->node); \
if (cmp == 0) { \
/* Find node's successor, in preparation for swap. */ \
pathp->cmp = 1; \
nodep = pathp; \
for (pathp++; pathp->node != &rbtree->rbt_nil; \
pathp++) { \
pathp->cmp = -1; \
pathp[1].node = rbtn_left_get(a_type, a_field, \
pathp->node); \
} \
break; \
} \
} \
} \
assert(nodep->node == node); \
pathp--; \
if (pathp->node != node) { \
/* Swap node with its successor. */ \
bool tred = rbtn_red_get(a_type, a_field, pathp->node); \
rbtn_color_set(a_type, a_field, pathp->node, \
rbtn_red_get(a_type, a_field, node)); \
rbtn_left_set(a_type, a_field, pathp->node, \
rbtn_left_get(a_type, a_field, node)); \
/* If node's successor is its right child, the following code */\
/* will do the wrong thing for the right child pointer. */\
/* However, it doesn't matter, because the pointer will be */\
/* properly set when the successor is pruned. */\
rbtn_right_set(a_type, a_field, pathp->node, \
rbtn_right_get(a_type, a_field, node)); \
rbtn_color_set(a_type, a_field, node, tred); \
/* The pruned leaf node's child pointers are never accessed */\
/* again, so don't bother setting them to nil. */\
nodep->node = pathp->node; \
pathp->node = node; \
if (nodep == path) { \
rbtree->rbt_root = nodep->node; \
} else { \
if (nodep[-1].cmp < 0) { \
rbtn_left_set(a_type, a_field, nodep[-1].node, \
nodep->node); \
} else { \
rbtn_right_set(a_type, a_field, nodep[-1].node, \
nodep->node); \
} \
} \
} else { \
a_type *left = rbtn_left_get(a_type, a_field, node); \
if (left != &rbtree->rbt_nil) { \
/* node has no successor, but it has a left child. */\
/* Splice node out, without losing the left child. */\
assert(rbtn_red_get(a_type, a_field, node) == false); \
assert(rbtn_red_get(a_type, a_field, left)); \
rbtn_black_set(a_type, a_field, left); \
if (pathp == path) { \
rbtree->rbt_root = left; \
} else { \
if (pathp[-1].cmp < 0) { \
rbtn_left_set(a_type, a_field, pathp[-1].node, \
left); \
} else { \
rbtn_right_set(a_type, a_field, pathp[-1].node, \
left); \
} \
} \
return; \
} else if (pathp == path) { \
/* The tree only contained one node. */ \
rbtree->rbt_root = &rbtree->rbt_nil; \
return; \
} \
} \
if (rbtn_red_get(a_type, a_field, pathp->node)) { \
/* Prune red node, which requires no fixup. */ \
assert(pathp[-1].cmp < 0); \
rbtn_left_set(a_type, a_field, pathp[-1].node, \
&rbtree->rbt_nil); \
return; \
} \
/* The node to be pruned is black, so unwind until balance is */\
/* restored. */\
pathp->node = &rbtree->rbt_nil; \
for (pathp--; (uintptr_t)pathp >= (uintptr_t)path; pathp--) { \
assert(pathp->cmp != 0); \
if (pathp->cmp < 0) { \
rbtn_left_set(a_type, a_field, pathp->node, \
pathp[1].node); \
assert(rbtn_red_get(a_type, a_field, pathp[1].node) \
== false); \
if (rbtn_red_get(a_type, a_field, pathp->node)) { \
a_type *right = rbtn_right_get(a_type, a_field, \
pathp->node); \
a_type *rightleft = rbtn_left_get(a_type, a_field, \
right); \
a_type *tnode; \
if (rbtn_red_get(a_type, a_field, rightleft)) { \
/* In the following diagrams, ||, //, and \\ */\
/* indicate the path to the removed node. */\
/* */\
/* || */\
/* pathp(r) */\
/* // \ */\
/* (b) (b) */\
/* / */\
/* (r) */\
/* */\
rbtn_black_set(a_type, a_field, pathp->node); \
rbtn_rotate_right(a_type, a_field, right, tnode); \
rbtn_right_set(a_type, a_field, pathp->node, tnode);\
rbtn_rotate_left(a_type, a_field, pathp->node, \
tnode); \
} else { \
/* || */\
/* pathp(r) */\
/* // \ */\
/* (b) (b) */\
/* / */\
/* (b) */\
/* */\
rbtn_rotate_left(a_type, a_field, pathp->node, \
tnode); \
} \
/* Balance restored, but rotation modified subtree */\
/* root. */\
assert((uintptr_t)pathp > (uintptr_t)path); \
if (pathp[-1].cmp < 0) { \
rbtn_left_set(a_type, a_field, pathp[-1].node, \
tnode); \
} else { \
rbtn_right_set(a_type, a_field, pathp[-1].node, \
tnode); \
} \
return; \
} else { \
a_type *right = rbtn_right_get(a_type, a_field, \
pathp->node); \
a_type *rightleft = rbtn_left_get(a_type, a_field, \
right); \
if (rbtn_red_get(a_type, a_field, rightleft)) { \
/* || */\
/* pathp(b) */\
/* // \ */\
/* (b) (b) */\
/* / */\
/* (r) */\
a_type *tnode; \
rbtn_black_set(a_type, a_field, rightleft); \
rbtn_rotate_right(a_type, a_field, right, tnode); \
rbtn_right_set(a_type, a_field, pathp->node, tnode);\
rbtn_rotate_left(a_type, a_field, pathp->node, \
tnode); \
/* Balance restored, but rotation modified */\
/* subree root, which may actually be the tree */\
/* root. */\
if (pathp == path) { \
/* Set root. */ \
rbtree->rbt_root = tnode; \
} else { \
if (pathp[-1].cmp < 0) { \
rbtn_left_set(a_type, a_field, \
pathp[-1].node, tnode); \
} else { \
rbtn_right_set(a_type, a_field, \
pathp[-1].node, tnode); \
} \
} \
return; \
} else { \
/* || */\
/* pathp(b) */\
/* // \ */\
/* (b) (b) */\
/* / */\
/* (b) */\
a_type *tnode; \
rbtn_red_set(a_type, a_field, pathp->node); \
rbtn_rotate_left(a_type, a_field, pathp->node, \
tnode); \
pathp->node = tnode; \
} \
} \
} else { \
a_type *left; \
rbtn_right_set(a_type, a_field, pathp->node, \
pathp[1].node); \
left = rbtn_left_get(a_type, a_field, pathp->node); \
if (rbtn_red_get(a_type, a_field, left)) { \
a_type *tnode; \
a_type *leftright = rbtn_right_get(a_type, a_field, \
left); \
a_type *leftrightleft = rbtn_left_get(a_type, a_field, \
leftright); \
if (rbtn_red_get(a_type, a_field, leftrightleft)) { \
/* || */\
/* pathp(b) */\
/* / \\ */\
/* (r) (b) */\
/* \ */\
/* (b) */\
/* / */\
/* (r) */\
a_type *unode; \
rbtn_black_set(a_type, a_field, leftrightleft); \
rbtn_rotate_right(a_type, a_field, pathp->node, \
unode); \
rbtn_rotate_right(a_type, a_field, pathp->node, \
tnode); \
rbtn_right_set(a_type, a_field, unode, tnode); \
rbtn_rotate_left(a_type, a_field, unode, tnode); \
} else { \
/* || */\
/* pathp(b) */\
/* / \\ */\
/* (r) (b) */\
/* \ */\
/* (b) */\
/* / */\
/* (b) */\
assert(leftright != &rbtree->rbt_nil); \
rbtn_red_set(a_type, a_field, leftright); \
rbtn_rotate_right(a_type, a_field, pathp->node, \
tnode); \
rbtn_black_set(a_type, a_field, tnode); \
} \
/* Balance restored, but rotation modified subtree */\
/* root, which may actually be the tree root. */\
if (pathp == path) { \
/* Set root. */ \
rbtree->rbt_root = tnode; \
} else { \
if (pathp[-1].cmp < 0) { \
rbtn_left_set(a_type, a_field, pathp[-1].node, \
tnode); \
} else { \
rbtn_right_set(a_type, a_field, pathp[-1].node, \
tnode); \
} \
} \
return; \
} else if (rbtn_red_get(a_type, a_field, pathp->node)) { \
a_type *leftleft = rbtn_left_get(a_type, a_field, left);\
if (rbtn_red_get(a_type, a_field, leftleft)) { \
/* || */\
/* pathp(r) */\
/* / \\ */\
/* (b) (b) */\
/* / */\
/* (r) */\
a_type *tnode; \
rbtn_black_set(a_type, a_field, pathp->node); \
rbtn_red_set(a_type, a_field, left); \
rbtn_black_set(a_type, a_field, leftleft); \
rbtn_rotate_right(a_type, a_field, pathp->node, \
tnode); \
/* Balance restored, but rotation modified */\
/* subtree root. */\
assert((uintptr_t)pathp > (uintptr_t)path); \
if (pathp[-1].cmp < 0) { \
rbtn_left_set(a_type, a_field, pathp[-1].node, \
tnode); \
} else { \
rbtn_right_set(a_type, a_field, pathp[-1].node, \
tnode); \
} \
return; \
} else { \
/* || */\
/* pathp(r) */\
/* / \\ */\
/* (b) (b) */\
/* / */\
/* (b) */\
rbtn_red_set(a_type, a_field, left); \
rbtn_black_set(a_type, a_field, pathp->node); \
/* Balance restored. */ \
return; \
} \
} else { \
a_type *leftleft = rbtn_left_get(a_type, a_field, left);\
if (rbtn_red_get(a_type, a_field, leftleft)) { \
/* || */\
/* pathp(b) */\
/* / \\ */\
/* (b) (b) */\
/* / */\
/* (r) */\
a_type *tnode; \
rbtn_black_set(a_type, a_field, leftleft); \
rbtn_rotate_right(a_type, a_field, pathp->node, \
tnode); \
/* Balance restored, but rotation modified */\
/* subtree root, which may actually be the tree */\
/* root. */\
if (pathp == path) { \
/* Set root. */ \
rbtree->rbt_root = tnode; \
} else { \
if (pathp[-1].cmp < 0) { \
rbtn_left_set(a_type, a_field, \
pathp[-1].node, tnode); \
} else { \
rbtn_right_set(a_type, a_field, \
pathp[-1].node, tnode); \
} \
} \
return; \
} else { \
/* || */\
/* pathp(b) */\
/* / \\ */\
/* (b) (b) */\
/* / */\
/* (b) */\
rbtn_red_set(a_type, a_field, left); \
} \
} \
} \
} \
/* Set root. */ \
rbtree->rbt_root = path->node; \
assert(rbtn_red_get(a_type, a_field, rbtree->rbt_root) == false); \
} \
a_attr a_type * \
a_prefix##iter_recurse(a_rbt_type *rbtree, a_type *node, \
a_type *(*cb)(a_rbt_type *, a_type *, void *), void *arg) { \
if (node == &rbtree->rbt_nil) { \
return (&rbtree->rbt_nil); \
} else { \
a_type *ret; \
if ((ret = a_prefix##iter_recurse(rbtree, rbtn_left_get(a_type, \
a_field, node), cb, arg)) != &rbtree->rbt_nil \
|| (ret = cb(rbtree, node, arg)) != NULL) { \
return (ret); \
} \
return (a_prefix##iter_recurse(rbtree, rbtn_right_get(a_type, \
a_field, node), cb, arg)); \
} \
} \
a_attr a_type * \
a_prefix##iter_start(a_rbt_type *rbtree, a_type *start, a_type *node, \
a_type *(*cb)(a_rbt_type *, a_type *, void *), void *arg) { \
int cmp = a_cmp(start, node); \
if (cmp < 0) { \
a_type *ret; \
if ((ret = a_prefix##iter_start(rbtree, start, \
rbtn_left_get(a_type, a_field, node), cb, arg)) != \
&rbtree->rbt_nil || (ret = cb(rbtree, node, arg)) != NULL) { \
return (ret); \
} \
return (a_prefix##iter_recurse(rbtree, rbtn_right_get(a_type, \
a_field, node), cb, arg)); \
} else if (cmp > 0) { \
return (a_prefix##iter_start(rbtree, start, \
rbtn_right_get(a_type, a_field, node), cb, arg)); \
} else { \
a_type *ret; \
if ((ret = cb(rbtree, node, arg)) != NULL) { \
return (ret); \
} \
return (a_prefix##iter_recurse(rbtree, rbtn_right_get(a_type, \
a_field, node), cb, arg)); \
} \
} \
a_attr a_type * \
a_prefix##iter(a_rbt_type *rbtree, a_type *start, a_type *(*cb)( \
a_rbt_type *, a_type *, void *), void *arg) { \
a_type *ret; \
if (start != NULL) { \
ret = a_prefix##iter_start(rbtree, start, rbtree->rbt_root, \
cb, arg); \
} else { \
ret = a_prefix##iter_recurse(rbtree, rbtree->rbt_root, cb, arg);\
} \
if (ret == &rbtree->rbt_nil) { \
ret = NULL; \
} \
return (ret); \
} \
a_attr a_type * \
a_prefix##reverse_iter_recurse(a_rbt_type *rbtree, a_type *node, \
a_type *(*cb)(a_rbt_type *, a_type *, void *), void *arg) { \
if (node == &rbtree->rbt_nil) { \
return (&rbtree->rbt_nil); \
} else { \
a_type *ret; \
if ((ret = a_prefix##reverse_iter_recurse(rbtree, \
rbtn_right_get(a_type, a_field, node), cb, arg)) != \
&rbtree->rbt_nil || (ret = cb(rbtree, node, arg)) != NULL) { \
return (ret); \
} \
return (a_prefix##reverse_iter_recurse(rbtree, \
rbtn_left_get(a_type, a_field, node), cb, arg)); \
} \
} \
a_attr a_type * \
a_prefix##reverse_iter_start(a_rbt_type *rbtree, a_type *start, \
a_type *node, a_type *(*cb)(a_rbt_type *, a_type *, void *), \
void *arg) { \
int cmp = a_cmp(start, node); \
if (cmp > 0) { \
a_type *ret; \
if ((ret = a_prefix##reverse_iter_start(rbtree, start, \
rbtn_right_get(a_type, a_field, node), cb, arg)) != \
&rbtree->rbt_nil || (ret = cb(rbtree, node, arg)) != NULL) { \
return (ret); \
} \
return (a_prefix##reverse_iter_recurse(rbtree, \
rbtn_left_get(a_type, a_field, node), cb, arg)); \
} else if (cmp < 0) { \
return (a_prefix##reverse_iter_start(rbtree, start, \
rbtn_left_get(a_type, a_field, node), cb, arg)); \
} else { \
a_type *ret; \
if ((ret = cb(rbtree, node, arg)) != NULL) { \
return (ret); \
} \
return (a_prefix##reverse_iter_recurse(rbtree, \
rbtn_left_get(a_type, a_field, node), cb, arg)); \
} \
} \
a_attr a_type * \
a_prefix##reverse_iter(a_rbt_type *rbtree, a_type *start, \
a_type *(*cb)(a_rbt_type *, a_type *, void *), void *arg) { \
a_type *ret; \
if (start != NULL) { \
ret = a_prefix##reverse_iter_start(rbtree, start, \
rbtree->rbt_root, cb, arg); \
} else { \
ret = a_prefix##reverse_iter_recurse(rbtree, rbtree->rbt_root, \
cb, arg); \
} \
if (ret == &rbtree->rbt_nil) { \
ret = NULL; \
} \
return (ret); \
}
#endif /* RB_H_ */

View File

@@ -0,0 +1,174 @@
/******************************************************************************/
#ifdef JEMALLOC_H_TYPES
#define UMAX2S_BUFSIZE 65
#ifdef JEMALLOC_STATS
typedef struct tcache_bin_stats_s tcache_bin_stats_t;
typedef struct malloc_bin_stats_s malloc_bin_stats_t;
typedef struct malloc_large_stats_s malloc_large_stats_t;
typedef struct arena_stats_s arena_stats_t;
#endif
#if (defined(JEMALLOC_STATS) || defined(JEMALLOC_PROF))
typedef struct chunk_stats_s chunk_stats_t;
#endif
#endif /* JEMALLOC_H_TYPES */
/******************************************************************************/
#ifdef JEMALLOC_H_STRUCTS
#ifdef JEMALLOC_STATS
#ifdef JEMALLOC_TCACHE
struct tcache_bin_stats_s {
/*
* Number of allocation requests that corresponded to the size of this
* bin.
*/
uint64_t nrequests;
};
#endif
struct malloc_bin_stats_s {
/*
* Current number of bytes allocated, including objects currently
* cached by tcache.
*/
size_t allocated;
/*
* Total number of allocation/deallocation requests served directly by
* the bin. Note that tcache may allocate an object, then recycle it
* many times, resulting many increments to nrequests, but only one
* each to nmalloc and ndalloc.
*/
uint64_t nmalloc;
uint64_t ndalloc;
/*
* Number of allocation requests that correspond to the size of this
* bin. This includes requests served by tcache, though tcache only
* periodically merges into this counter.
*/
uint64_t nrequests;
#ifdef JEMALLOC_TCACHE
/* Number of tcache fills from this bin. */
uint64_t nfills;
/* Number of tcache flushes to this bin. */
uint64_t nflushes;
#endif
/* Total number of runs created for this bin's size class. */
uint64_t nruns;
/*
* Total number of runs reused by extracting them from the runs tree for
* this bin's size class.
*/
uint64_t reruns;
/* High-water mark for this bin. */
size_t highruns;
/* Current number of runs in this bin. */
size_t curruns;
};
struct malloc_large_stats_s {
/*
* Total number of allocation/deallocation requests served directly by
* the arena. Note that tcache may allocate an object, then recycle it
* many times, resulting many increments to nrequests, but only one
* each to nmalloc and ndalloc.
*/
uint64_t nmalloc;
uint64_t ndalloc;
/*
* Number of allocation requests that correspond to this size class.
* This includes requests served by tcache, though tcache only
* periodically merges into this counter.
*/
uint64_t nrequests;
/* High-water mark for this size class. */
size_t highruns;
/* Current number of runs of this size class. */
size_t curruns;
};
struct arena_stats_s {
/* Number of bytes currently mapped. */
size_t mapped;
/*
* Total number of purge sweeps, total number of madvise calls made,
* and total pages purged in order to keep dirty unused memory under
* control.
*/
uint64_t npurge;
uint64_t nmadvise;
uint64_t purged;
/* Per-size-category statistics. */
size_t allocated_large;
uint64_t nmalloc_large;
uint64_t ndalloc_large;
uint64_t nrequests_large;
/*
* One element for each possible size class, including sizes that
* overlap with bin size classes. This is necessary because ipalloc()
* sometimes has to use such large objects in order to assure proper
* alignment.
*/
malloc_large_stats_t *lstats;
};
#endif /* JEMALLOC_STATS */
#if (defined(JEMALLOC_STATS) || defined(JEMALLOC_PROF))
struct chunk_stats_s {
# ifdef JEMALLOC_STATS
/* Number of chunks that were allocated. */
uint64_t nchunks;
# endif
/* High-water mark for number of chunks allocated. */
size_t highchunks;
/*
* Current number of chunks allocated. This value isn't maintained for
* any other purpose, so keep track of it in order to be able to set
* highchunks.
*/
size_t curchunks;
};
#endif /* JEMALLOC_STATS */
#endif /* JEMALLOC_H_STRUCTS */
/******************************************************************************/
#ifdef JEMALLOC_H_EXTERNS
extern bool opt_stats_print;
char *umax2s(uintmax_t x, unsigned base, char *s);
#ifdef JEMALLOC_STATS
void malloc_cprintf(void (*write)(void *, const char *), void *cbopaque,
const char *format, ...) JEMALLOC_ATTR(format(printf, 3, 4));
void malloc_printf(const char *format, ...)
JEMALLOC_ATTR(format(printf, 1, 2));
#endif
void stats_print(void (*write)(void *, const char *), void *cbopaque,
const char *opts);
#endif /* JEMALLOC_H_EXTERNS */
/******************************************************************************/
#ifdef JEMALLOC_STATS
#ifdef JEMALLOC_H_INLINES
#endif /* JEMALLOC_H_INLINES */
#endif /* JEMALLOC_STATS */
/******************************************************************************/

View File

@@ -0,0 +1,380 @@
#ifdef JEMALLOC_TCACHE
/******************************************************************************/
#ifdef JEMALLOC_H_TYPES
typedef struct tcache_bin_s tcache_bin_t;
typedef struct tcache_s tcache_t;
/*
* Absolute maximum number of cache slots for each small bin in the thread
* cache. This is an additional constraint beyond that imposed as: twice the
* number of regions per run for this size class.
*
* This constant must be an even number.
*/
#define TCACHE_NSLOTS_SMALL_MAX 200
/* Number of cache slots for large size classes. */
#define TCACHE_NSLOTS_LARGE 20
/* (1U << opt_lg_tcache_maxclass) is used to compute tcache_maxclass. */
#define LG_TCACHE_MAXCLASS_DEFAULT 15
/*
* (1U << opt_lg_tcache_gc_sweep) is the approximate number of allocation
* events between full GC sweeps (-1: disabled). Integer rounding may cause
* the actual number to be slightly higher, since GC is performed
* incrementally.
*/
#define LG_TCACHE_GC_SWEEP_DEFAULT 13
#endif /* JEMALLOC_H_TYPES */
/******************************************************************************/
#ifdef JEMALLOC_H_STRUCTS
struct tcache_bin_s {
# ifdef JEMALLOC_STATS
tcache_bin_stats_t tstats;
# endif
unsigned low_water; /* Min # cached since last GC. */
unsigned high_water; /* Max # cached since last GC. */
unsigned ncached; /* # of cached objects. */
unsigned ncached_max; /* Upper limit on ncached. */
void *avail; /* Chain of available objects. */
};
struct tcache_s {
# ifdef JEMALLOC_STATS
ql_elm(tcache_t) link; /* Used for aggregating stats. */
# endif
# ifdef JEMALLOC_PROF
uint64_t prof_accumbytes;/* Cleared after arena_prof_accum() */
# endif
arena_t *arena; /* This thread's arena. */
unsigned ev_cnt; /* Event count since incremental GC. */
unsigned next_gc_bin; /* Next bin to GC. */
tcache_bin_t tbins[1]; /* Dynamically sized. */
};
#endif /* JEMALLOC_H_STRUCTS */
/******************************************************************************/
#ifdef JEMALLOC_H_EXTERNS
extern bool opt_tcache;
extern ssize_t opt_lg_tcache_maxclass;
extern ssize_t opt_lg_tcache_gc_sweep;
/* Map of thread-specific caches. */
extern __thread tcache_t *tcache_tls
JEMALLOC_ATTR(tls_model("initial-exec"));
/*
* Number of tcache bins. There are nbins small-object bins, plus 0 or more
* large-object bins.
*/
extern size_t nhbins;
/* Maximum cached size class. */
extern size_t tcache_maxclass;
/* Number of tcache allocation/deallocation events between incremental GCs. */
extern unsigned tcache_gc_incr;
void tcache_bin_flush_small(tcache_bin_t *tbin, size_t binind, unsigned rem
#if (defined(JEMALLOC_STATS) || defined(JEMALLOC_PROF))
, tcache_t *tcache
#endif
);
void tcache_bin_flush_large(tcache_bin_t *tbin, size_t binind, unsigned rem
#if (defined(JEMALLOC_STATS) || defined(JEMALLOC_PROF))
, tcache_t *tcache
#endif
);
tcache_t *tcache_create(arena_t *arena);
void *tcache_alloc_small_hard(tcache_t *tcache, tcache_bin_t *tbin,
size_t binind);
void tcache_destroy(tcache_t *tcache);
#ifdef JEMALLOC_STATS
void tcache_stats_merge(tcache_t *tcache, arena_t *arena);
#endif
void tcache_boot(void);
#endif /* JEMALLOC_H_EXTERNS */
/******************************************************************************/
#ifdef JEMALLOC_H_INLINES
#ifndef JEMALLOC_ENABLE_INLINE
void tcache_event(tcache_t *tcache);
tcache_t *tcache_get(void);
void *tcache_alloc_easy(tcache_bin_t *tbin);
void *tcache_alloc_small(tcache_t *tcache, size_t size, bool zero);
void *tcache_alloc_large(tcache_t *tcache, size_t size, bool zero);
void tcache_dalloc_small(tcache_t *tcache, void *ptr);
void tcache_dalloc_large(tcache_t *tcache, void *ptr, size_t size);
#endif
#if (defined(JEMALLOC_ENABLE_INLINE) || defined(JEMALLOC_TCACHE_C_))
JEMALLOC_INLINE tcache_t *
tcache_get(void)
{
tcache_t *tcache;
if ((isthreaded & opt_tcache) == false)
return (NULL);
tcache = tcache_tls;
if ((uintptr_t)tcache <= (uintptr_t)1) {
if (tcache == NULL) {
tcache = tcache_create(choose_arena());
if (tcache == NULL)
return (NULL);
} else
return (NULL);
}
return (tcache);
}
JEMALLOC_INLINE void
tcache_event(tcache_t *tcache)
{
if (tcache_gc_incr == 0)
return;
tcache->ev_cnt++;
assert(tcache->ev_cnt <= tcache_gc_incr);
if (tcache->ev_cnt == tcache_gc_incr) {
size_t binind = tcache->next_gc_bin;
tcache_bin_t *tbin = &tcache->tbins[binind];
if (tbin->low_water > 0) {
/*
* Flush (ceiling) 3/4 of the objects below the low
* water mark.
*/
if (binind < nbins) {
tcache_bin_flush_small(tbin, binind,
tbin->ncached - tbin->low_water +
(tbin->low_water >> 2)
#if (defined(JEMALLOC_STATS) || defined(JEMALLOC_PROF))
, tcache
#endif
);
} else {
tcache_bin_flush_large(tbin, binind,
tbin->ncached - tbin->low_water +
(tbin->low_water >> 2)
#if (defined(JEMALLOC_STATS) || defined(JEMALLOC_PROF))
, tcache
#endif
);
}
}
tbin->low_water = tbin->ncached;
tbin->high_water = tbin->ncached;
tcache->next_gc_bin++;
if (tcache->next_gc_bin == nhbins)
tcache->next_gc_bin = 0;
tcache->ev_cnt = 0;
}
}
JEMALLOC_INLINE void *
tcache_alloc_easy(tcache_bin_t *tbin)
{
void *ret;
if (tbin->ncached == 0)
return (NULL);
tbin->ncached--;
if (tbin->ncached < tbin->low_water)
tbin->low_water = tbin->ncached;
ret = tbin->avail;
tbin->avail = *(void **)ret;
return (ret);
}
JEMALLOC_INLINE void *
tcache_alloc_small(tcache_t *tcache, size_t size, bool zero)
{
void *ret;
size_t binind;
tcache_bin_t *tbin;
binind = small_size2bin[size];
assert(binind < nbins);
tbin = &tcache->tbins[binind];
ret = tcache_alloc_easy(tbin);
if (ret == NULL) {
ret = tcache_alloc_small_hard(tcache, tbin, binind);
if (ret == NULL)
return (NULL);
}
assert(arena_salloc(ret) == tcache->arena->bins[binind].reg_size);
if (zero == false) {
#ifdef JEMALLOC_FILL
if (opt_junk)
memset(ret, 0xa5, size);
else if (opt_zero)
memset(ret, 0, size);
#endif
} else
memset(ret, 0, size);
#ifdef JEMALLOC_STATS
tbin->tstats.nrequests++;
#endif
#ifdef JEMALLOC_PROF
tcache->prof_accumbytes += tcache->arena->bins[binind].reg_size;
#endif
tcache_event(tcache);
return (ret);
}
JEMALLOC_INLINE void *
tcache_alloc_large(tcache_t *tcache, size_t size, bool zero)
{
void *ret;
size_t binind;
tcache_bin_t *tbin;
size = PAGE_CEILING(size);
assert(size <= tcache_maxclass);
binind = nbins + (size >> PAGE_SHIFT) - 1;
assert(binind < nhbins);
tbin = &tcache->tbins[binind];
ret = tcache_alloc_easy(tbin);
if (ret == NULL) {
/*
* Only allocate one large object at a time, because it's quite
* expensive to create one and not use it.
*/
ret = arena_malloc_large(tcache->arena, size, zero);
if (ret == NULL)
return (NULL);
} else {
#ifdef JEMALLOC_PROF
arena_chunk_t *chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ret);
size_t pageind = (unsigned)(((uintptr_t)ret - (uintptr_t)chunk)
>> PAGE_SHIFT);
chunk->map[pageind].bits |= CHUNK_MAP_CLASS_MASK;
#endif
if (zero == false) {
#ifdef JEMALLOC_FILL
if (opt_junk)
memset(ret, 0xa5, size);
else if (opt_zero)
memset(ret, 0, size);
#endif
} else
memset(ret, 0, size);
#ifdef JEMALLOC_STATS
tbin->tstats.nrequests++;
#endif
#ifdef JEMALLOC_PROF
tcache->prof_accumbytes += size;
#endif
}
tcache_event(tcache);
return (ret);
}
JEMALLOC_INLINE void
tcache_dalloc_small(tcache_t *tcache, void *ptr)
{
arena_t *arena;
arena_chunk_t *chunk;
arena_run_t *run;
arena_bin_t *bin;
tcache_bin_t *tbin;
size_t pageind, binind;
arena_chunk_map_t *mapelm;
assert(arena_salloc(ptr) <= small_maxclass);
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
arena = chunk->arena;
pageind = (((uintptr_t)ptr - (uintptr_t)chunk) >> PAGE_SHIFT);
mapelm = &chunk->map[pageind];
run = (arena_run_t *)((uintptr_t)chunk + (uintptr_t)((pageind -
(mapelm->bits >> PAGE_SHIFT)) << PAGE_SHIFT));
assert(run->magic == ARENA_RUN_MAGIC);
bin = run->bin;
binind = ((uintptr_t)bin - (uintptr_t)&arena->bins) /
sizeof(arena_bin_t);
assert(binind < nbins);
#ifdef JEMALLOC_FILL
if (opt_junk)
memset(ptr, 0x5a, bin->reg_size);
#endif
tbin = &tcache->tbins[binind];
if (tbin->ncached == tbin->ncached_max) {
tcache_bin_flush_small(tbin, binind, (tbin->ncached_max >> 1)
#if (defined(JEMALLOC_STATS) || defined(JEMALLOC_PROF))
, tcache
#endif
);
}
assert(tbin->ncached < tbin->ncached_max);
*(void **)ptr = tbin->avail;
tbin->avail = ptr;
tbin->ncached++;
if (tbin->ncached > tbin->high_water)
tbin->high_water = tbin->ncached;
tcache_event(tcache);
}
JEMALLOC_INLINE void
tcache_dalloc_large(tcache_t *tcache, void *ptr, size_t size)
{
arena_t *arena;
arena_chunk_t *chunk;
size_t pageind, binind;
tcache_bin_t *tbin;
arena_chunk_map_t *mapelm;
assert((size & PAGE_MASK) == 0);
assert(arena_salloc(ptr) > small_maxclass);
assert(arena_salloc(ptr) <= tcache_maxclass);
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
arena = chunk->arena;
pageind = (((uintptr_t)ptr - (uintptr_t)chunk) >> PAGE_SHIFT);
mapelm = &chunk->map[pageind];
binind = nbins + (size >> PAGE_SHIFT) - 1;
#ifdef JEMALLOC_FILL
if (opt_junk)
memset(ptr, 0x5a, bin->reg_size);
#endif
tbin = &tcache->tbins[binind];
if (tbin->ncached == tbin->ncached_max) {
tcache_bin_flush_large(tbin, binind, (tbin->ncached_max >> 1)
#if (defined(JEMALLOC_STATS) || defined(JEMALLOC_PROF))
, tcache
#endif
);
}
assert(tbin->ncached < tbin->ncached_max);
*(void **)ptr = tbin->avail;
tbin->avail = ptr;
tbin->ncached++;
if (tbin->ncached > tbin->high_water)
tbin->high_water = tbin->ncached;
tcache_event(tcache);
}
#endif
#endif /* JEMALLOC_H_INLINES */
/******************************************************************************/
#endif /* JEMALLOC_TCACHE */

View File

@@ -0,0 +1,60 @@
/******************************************************************************/
#ifdef JEMALLOC_H_TYPES
/*
* Simple linear congruential pseudo-random number generator:
*
* prn(y) = (a*x + c) % m
*
* where the following constants ensure maximal period:
*
* a == Odd number (relatively prime to 2^n), and (a-1) is a multiple of 4.
* c == Odd number (relatively prime to 2^n).
* m == 2^32
*
* See Knuth's TAOCP 3rd Ed., Vol. 2, pg. 17 for details on these constraints.
*
* This choice of m has the disadvantage that the quality of the bits is
* proportional to bit position. For example. the lowest bit has a cycle of 2,
* the next has a cycle of 4, etc. For this reason, we prefer to use the upper
* bits.
*
* Macro parameters:
* uint32_t r : Result.
* unsigned lg_range : (0..32], number of least significant bits to return.
* uint32_t state : Seed value.
* const uint32_t a, c : See above discussion.
*/
#define prn32(r, lg_range, state, a, c) do { \
assert(lg_range > 0); \
assert(lg_range <= 32); \
\
r = (state * (a)) + (c); \
state = r; \
r >>= (32 - lg_range); \
} while (false)
/* Same as prn32(), but 64 bits of pseudo-randomness, using uint64_t. */
#define prn64(r, lg_range, state, a, c) do { \
assert(lg_range > 0); \
assert(lg_range <= 64); \
\
r = (state * (a)) + (c); \
state = r; \
r >>= (64 - lg_range); \
} while (false)
#endif /* JEMALLOC_H_TYPES */
/******************************************************************************/
#ifdef JEMALLOC_H_STRUCTS
#endif /* JEMALLOC_H_STRUCTS */
/******************************************************************************/
#ifdef JEMALLOC_H_EXTERNS
#endif /* JEMALLOC_H_EXTERNS */
/******************************************************************************/
#ifdef JEMALLOC_H_INLINES
#endif /* JEMALLOC_H_INLINES */
/******************************************************************************/

42
externals/jemalloc/include/jemalloc.h vendored Normal file
View File

@@ -0,0 +1,42 @@
#ifndef JEMALLOC_H_
#define JEMALLOC_H_
#ifdef __cplusplus
extern "C" {
#endif
#define JEMALLOC_VERSION "1.0.0-0-g5523399"
#define JEMALLOC_VERSION_MAJOR 1
#define JEMALLOC_VERSION_MINOR 0
#define JEMALLOC_VERSION_BUGFIX 0
#define JEMALLOC_VERSION_NREV 0
#define JEMALLOC_VERSION_GID "5523399"
#include "jemalloc_defs.h"
#ifndef JEMALLOC_P
# define JEMALLOC_P(s) s
#endif
extern const char *JEMALLOC_P(malloc_options);
extern void (*JEMALLOC_P(malloc_message))(void *, const char *);
void *JEMALLOC_P(malloc)(size_t size) JEMALLOC_ATTR(malloc);
void *JEMALLOC_P(calloc)(size_t num, size_t size) JEMALLOC_ATTR(malloc);
int JEMALLOC_P(posix_memalign)(void **memptr, size_t alignment, size_t size)
JEMALLOC_ATTR(nonnull(1));
void *JEMALLOC_P(realloc)(void *ptr, size_t size);
void JEMALLOC_P(free)(void *ptr);
size_t JEMALLOC_P(malloc_usable_size)(const void *ptr);
void JEMALLOC_P(malloc_stats_print)(void (*write_cb)(void *, const char *),
void *cbopaque, const char *opts);
int JEMALLOC_P(mallctl)(const char *name, void *oldp, size_t *oldlenp,
void *newp, size_t newlen);
int JEMALLOC_P(mallctlnametomib)(const char *name, size_t *mibp,
size_t *miblenp);
int JEMALLOC_P(mallctlbymib)(const size_t *mib, size_t miblen, void *oldp,
size_t *oldlenp, void *newp, size_t newlen);
#ifdef __cplusplus
};
#endif
#endif /* JEMALLOC_H_ */

View File

@@ -0,0 +1,42 @@
#ifndef JEMALLOC_H_
#define JEMALLOC_H_
#ifdef __cplusplus
extern "C" {
#endif
#define JEMALLOC_VERSION "@jemalloc_version@"
#define JEMALLOC_VERSION_MAJOR @jemalloc_version_major@
#define JEMALLOC_VERSION_MINOR @jemalloc_version_minor@
#define JEMALLOC_VERSION_BUGFIX @jemalloc_version_bugfix@
#define JEMALLOC_VERSION_NREV @jemalloc_version_nrev@
#define JEMALLOC_VERSION_GID "@jemalloc_version_gid@"
#include "jemalloc_defs@install_suffix@.h"
#ifndef JEMALLOC_P
# define JEMALLOC_P(s) s
#endif
extern const char *JEMALLOC_P(malloc_options);
extern void (*JEMALLOC_P(malloc_message))(void *, const char *);
void *JEMALLOC_P(malloc)(size_t size) JEMALLOC_ATTR(malloc);
void *JEMALLOC_P(calloc)(size_t num, size_t size) JEMALLOC_ATTR(malloc);
int JEMALLOC_P(posix_memalign)(void **memptr, size_t alignment, size_t size)
JEMALLOC_ATTR(nonnull(1));
void *JEMALLOC_P(realloc)(void *ptr, size_t size);
void JEMALLOC_P(free)(void *ptr);
size_t JEMALLOC_P(malloc_usable_size)(const void *ptr);
void JEMALLOC_P(malloc_stats_print)(void (*write_cb)(void *, const char *),
void *cbopaque, const char *opts);
int JEMALLOC_P(mallctl)(const char *name, void *oldp, size_t *oldlenp,
void *newp, size_t newlen);
int JEMALLOC_P(mallctlnametomib)(const char *name, size_t *mibp,
size_t *miblenp);
int JEMALLOC_P(mallctlbymib)(const size_t *mib, size_t miblen, void *oldp,
size_t *oldlenp, void *newp, size_t newlen);
#ifdef __cplusplus
};
#endif
#endif /* JEMALLOC_H_ */

View File

@@ -0,0 +1,102 @@
/* include/jemalloc/jemalloc_defs.h. Generated from jemalloc_defs.h.in by configure. */
#ifndef JEMALLOC_DEFS_H_
#define JEMALLOC_DEFS_H_
/*
* If JEMALLOC_PREFIX is defined, it will cause all public APIs to be prefixed.
* This makes it possible, with some care, to use multiple allocators
* simultaneously.
*
* In many cases it is more convenient to manually prefix allocator function
* calls than to let macros do it automatically, particularly when using
* multiple allocators simultaneously. Define JEMALLOC_MANGLE before
* #include'ing jemalloc.h in order to cause name mangling that corresponds to
* the API prefixing.
*/
/* #undef JEMALLOC_PREFIX */
#if (defined(JEMALLOC_PREFIX) && defined(JEMALLOC_MANGLE))
/* #undef JEMALLOC_P */
#endif
/*
* Hyper-threaded CPUs may need a special instruction inside spin loops in
* order to yield to another virtual CPU.
*/
#define CPU_SPINWAIT __asm__ volatile("pause")
/* Defined if __attribute__((...)) syntax is supported. */
#define JEMALLOC_HAVE_ATTR
#ifdef JEMALLOC_HAVE_ATTR
# define JEMALLOC_ATTR(s) __attribute__((s))
#else
# define JEMALLOC_ATTR(s)
#endif
/*
* JEMALLOC_DEBUG enables assertions and other sanity checks, and disables
* inline functions.
*/
/* #undef JEMALLOC_DEBUG */
/* JEMALLOC_STATS enables statistics calculation. */
/* #undef JEMALLOC_STATS */
/* JEMALLOC_PROF enables allocation profiling. */
/* #undef JEMALLOC_PROF */
/* Use libunwind for profile backtracing if defined. */
/* #undef JEMALLOC_PROF_LIBUNWIND */
/* Use libgcc for profile backtracing if defined. */
/* #undef JEMALLOC_PROF_LIBGCC */
/*
* JEMALLOC_TINY enables support for tiny objects, which are smaller than one
* quantum.
*/
#define JEMALLOC_TINY
/*
* JEMALLOC_TCACHE enables a thread-specific caching layer for small objects.
* This makes it possible to allocate/deallocate objects without any locking
* when the cache is in the steady state.
*/
#define JEMALLOC_TCACHE
/*
* JEMALLOC_DSS enables use of sbrk(2) to allocate chunks from the data storage
* segment (DSS).
*/
/* #undef JEMALLOC_DSS */
/* JEMALLOC_SWAP enables mmap()ed swap file support. */
/* #undef JEMALLOC_SWAP */
/* Support memory filling (junk/zero). */
/* #undef JEMALLOC_FILL */
/* Support optional abort() on OOM. */
/* #undef JEMALLOC_XMALLOC */
/* Support SYSV semantics. */
/* #undef JEMALLOC_SYSV */
/* Support lazy locking (avoid locking unless a second thread is launched). */
#define JEMALLOC_LAZY_LOCK
/* Determine page size at run time if defined. */
/* #undef DYNAMIC_PAGE_SHIFT */
/* One page is 2^STATIC_PAGE_SHIFT bytes. */
#define STATIC_PAGE_SHIFT 12
/* TLS is used to map arenas and magazine caches to threads. */
/* #undef NO_TLS */
/* sizeof(void *) == 2^LG_SIZEOF_PTR. */
#define LG_SIZEOF_PTR 3
/* sizeof(int) == 2^LG_SIZEOF_INT. */
#define LG_SIZEOF_INT 2
#endif /* JEMALLOC_DEFS_H_ */

View File

@@ -0,0 +1,101 @@
#ifndef JEMALLOC_DEFS_H_
#define JEMALLOC_DEFS_H_
/*
* If JEMALLOC_PREFIX is defined, it will cause all public APIs to be prefixed.
* This makes it possible, with some care, to use multiple allocators
* simultaneously.
*
* In many cases it is more convenient to manually prefix allocator function
* calls than to let macros do it automatically, particularly when using
* multiple allocators simultaneously. Define JEMALLOC_MANGLE before
* #include'ing jemalloc.h in order to cause name mangling that corresponds to
* the API prefixing.
*/
#undef JEMALLOC_PREFIX
#if (defined(JEMALLOC_PREFIX) && defined(JEMALLOC_MANGLE))
#undef JEMALLOC_P
#endif
/*
* Hyper-threaded CPUs may need a special instruction inside spin loops in
* order to yield to another virtual CPU.
*/
#undef CPU_SPINWAIT
/* Defined if __attribute__((...)) syntax is supported. */
#undef JEMALLOC_HAVE_ATTR
#ifdef JEMALLOC_HAVE_ATTR
# define JEMALLOC_ATTR(s) __attribute__((s))
#else
# define JEMALLOC_ATTR(s)
#endif
/*
* JEMALLOC_DEBUG enables assertions and other sanity checks, and disables
* inline functions.
*/
#undef JEMALLOC_DEBUG
/* JEMALLOC_STATS enables statistics calculation. */
#undef JEMALLOC_STATS
/* JEMALLOC_PROF enables allocation profiling. */
#undef JEMALLOC_PROF
/* Use libunwind for profile backtracing if defined. */
#undef JEMALLOC_PROF_LIBUNWIND
/* Use libgcc for profile backtracing if defined. */
#undef JEMALLOC_PROF_LIBGCC
/*
* JEMALLOC_TINY enables support for tiny objects, which are smaller than one
* quantum.
*/
#undef JEMALLOC_TINY
/*
* JEMALLOC_TCACHE enables a thread-specific caching layer for small objects.
* This makes it possible to allocate/deallocate objects without any locking
* when the cache is in the steady state.
*/
#undef JEMALLOC_TCACHE
/*
* JEMALLOC_DSS enables use of sbrk(2) to allocate chunks from the data storage
* segment (DSS).
*/
#undef JEMALLOC_DSS
/* JEMALLOC_SWAP enables mmap()ed swap file support. */
#undef JEMALLOC_SWAP
/* Support memory filling (junk/zero). */
#undef JEMALLOC_FILL
/* Support optional abort() on OOM. */
#undef JEMALLOC_XMALLOC
/* Support SYSV semantics. */
#undef JEMALLOC_SYSV
/* Support lazy locking (avoid locking unless a second thread is launched). */
#undef JEMALLOC_LAZY_LOCK
/* Determine page size at run time if defined. */
#undef DYNAMIC_PAGE_SHIFT
/* One page is 2^STATIC_PAGE_SHIFT bytes. */
#undef STATIC_PAGE_SHIFT
/* TLS is used to map arenas and magazine caches to threads. */
#undef NO_TLS
/* sizeof(void *) == 2^LG_SIZEOF_PTR. */
#undef LG_SIZEOF_PTR
/* sizeof(int) == 2^LG_SIZEOF_INT. */
#undef LG_SIZEOF_INT
#endif /* JEMALLOC_DEFS_H_ */

1349
externals/jemalloc/jemalloc.c vendored Normal file

File diff suppressed because it is too large Load Diff

2
externals/jemalloc/mb.c vendored Normal file
View File

@@ -0,0 +1,2 @@
#define MB_C_
#include "jemalloc/internal/jemalloc_internal.h"

70
externals/jemalloc/mutex.c vendored Normal file
View File

@@ -0,0 +1,70 @@
#define JEMALLOC_MUTEX_C_
#include "jemalloc/internal/jemalloc_internal.h"
/******************************************************************************/
/* Data. */
#ifdef JEMALLOC_LAZY_LOCK
bool isthreaded = false;
#endif
#ifdef JEMALLOC_LAZY_LOCK
static void pthread_create_once(void);
#endif
/******************************************************************************/
/*
* We intercept pthread_create() calls in order to toggle isthreaded if the
* process goes multi-threaded.
*/
#ifdef JEMALLOC_LAZY_LOCK
static int (*pthread_create_fptr)(pthread_t *__restrict, const pthread_attr_t *,
void *(*)(void *), void *__restrict);
static void
pthread_create_once(void)
{
pthread_create_fptr = dlsym(RTLD_NEXT, "pthread_create");
if (pthread_create_fptr == NULL) {
malloc_write("<jemalloc>: Error in dlsym(RTLD_NEXT, "
"\"pthread_create\")\n");
abort();
}
isthreaded = true;
}
JEMALLOC_ATTR(visibility("default"))
int
pthread_create(pthread_t *__restrict thread,
const pthread_attr_t *__restrict attr, void *(*start_routine)(void *),
void *__restrict arg)
{
static pthread_once_t once_control = PTHREAD_ONCE_INIT;
pthread_once(&once_control, pthread_create_once);
return (pthread_create_fptr(thread, attr, start_routine, arg));
}
#endif
/******************************************************************************/
bool
malloc_mutex_init(malloc_mutex_t *mutex)
{
pthread_mutexattr_t attr;
if (pthread_mutexattr_init(&attr) != 0)
return (true);
pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ADAPTIVE_NP);
if (pthread_mutex_init(mutex, &attr) != 0) {
pthread_mutexattr_destroy(&attr);
return (true);
}
pthread_mutexattr_destroy(&attr);
return (false);
}

1328
externals/jemalloc/prof.c vendored Normal file

File diff suppressed because it is too large Load Diff

717
externals/jemalloc/stats.c vendored Normal file
View File

@@ -0,0 +1,717 @@
#define JEMALLOC_STATS_C_
#include "jemalloc/internal/jemalloc_internal.h"
#define CTL_GET(n, v, t) do { \
size_t sz = sizeof(t); \
xmallctl(n, v, &sz, NULL, 0); \
} while (0)
#define CTL_I_GET(n, v, t) do { \
size_t mib[6]; \
size_t miblen = sizeof(mib) / sizeof(size_t); \
size_t sz = sizeof(t); \
xmallctlnametomib(n, mib, &miblen); \
mib[2] = i; \
xmallctlbymib(mib, miblen, v, &sz, NULL, 0); \
} while (0)
#define CTL_J_GET(n, v, t) do { \
size_t mib[6]; \
size_t miblen = sizeof(mib) / sizeof(size_t); \
size_t sz = sizeof(t); \
xmallctlnametomib(n, mib, &miblen); \
mib[2] = j; \
xmallctlbymib(mib, miblen, v, &sz, NULL, 0); \
} while (0)
#define CTL_IJ_GET(n, v, t) do { \
size_t mib[6]; \
size_t miblen = sizeof(mib) / sizeof(size_t); \
size_t sz = sizeof(t); \
xmallctlnametomib(n, mib, &miblen); \
mib[2] = i; \
mib[4] = j; \
xmallctlbymib(mib, miblen, v, &sz, NULL, 0); \
} while (0)
/******************************************************************************/
/* Data. */
bool opt_stats_print = false;
/******************************************************************************/
/* Function prototypes for non-inline static functions. */
#ifdef JEMALLOC_STATS
static void malloc_vcprintf(void (*write_cb)(void *, const char *),
void *cbopaque, const char *format, va_list ap);
static void stats_arena_bins_print(void (*write_cb)(void *, const char *),
void *cbopaque, unsigned i);
static void stats_arena_lruns_print(void (*write_cb)(void *, const char *),
void *cbopaque, unsigned i);
static void stats_arena_print(void (*write_cb)(void *, const char *),
void *cbopaque, unsigned i);
#endif
/******************************************************************************/
/*
* We don't want to depend on vsnprintf() for production builds, since that can
* cause unnecessary bloat for static binaries. umax2s() provides minimal
* integer printing functionality, so that malloc_printf() use can be limited to
* JEMALLOC_STATS code.
*/
char *
umax2s(uintmax_t x, unsigned base, char *s)
{
unsigned i;
i = UMAX2S_BUFSIZE - 1;
s[i] = '\0';
switch (base) {
case 10:
do {
i--;
s[i] = "0123456789"[x % 10];
x /= 10;
} while (x > 0);
break;
case 16:
do {
i--;
s[i] = "0123456789abcdef"[x & 0xf];
x >>= 4;
} while (x > 0);
break;
default:
do {
i--;
s[i] = "0123456789abcdefghijklmnopqrstuvwxyz"[x % base];
x /= base;
} while (x > 0);
}
return (&s[i]);
}
#ifdef JEMALLOC_STATS
static void
malloc_vcprintf(void (*write_cb)(void *, const char *), void *cbopaque,
const char *format, va_list ap)
{
char buf[4096];
if (write_cb == NULL) {
/*
* The caller did not provide an alternate write_cb callback
* function, so use the default one. malloc_write() is an
* inline function, so use malloc_message() directly here.
*/
write_cb = JEMALLOC_P(malloc_message);
cbopaque = NULL;
}
vsnprintf(buf, sizeof(buf), format, ap);
write_cb(cbopaque, buf);
}
/*
* Print to a callback function in such a way as to (hopefully) avoid memory
* allocation.
*/
JEMALLOC_ATTR(format(printf, 3, 4))
void
malloc_cprintf(void (*write_cb)(void *, const char *), void *cbopaque,
const char *format, ...)
{
va_list ap;
va_start(ap, format);
malloc_vcprintf(write_cb, cbopaque, format, ap);
va_end(ap);
}
/*
* Print to stderr in such a way as to (hopefully) avoid memory allocation.
*/
JEMALLOC_ATTR(format(printf, 1, 2))
void
malloc_printf(const char *format, ...)
{
va_list ap;
va_start(ap, format);
malloc_vcprintf(NULL, NULL, format, ap);
va_end(ap);
}
#endif
#ifdef JEMALLOC_STATS
static void
stats_arena_bins_print(void (*write_cb)(void *, const char *), void *cbopaque,
unsigned i)
{
size_t pagesize;
bool config_tcache;
unsigned nbins, j, gap_start;
CTL_GET("arenas.pagesize", &pagesize, size_t);
CTL_GET("config.tcache", &config_tcache, bool);
if (config_tcache) {
malloc_cprintf(write_cb, cbopaque,
"bins: bin size regs pgs allocated nmalloc"
" ndalloc nrequests nfills nflushes"
" newruns reruns maxruns curruns\n");
} else {
malloc_cprintf(write_cb, cbopaque,
"bins: bin size regs pgs allocated nmalloc"
" ndalloc newruns reruns maxruns"
" curruns\n");
}
CTL_GET("arenas.nbins", &nbins, unsigned);
for (j = 0, gap_start = UINT_MAX; j < nbins; j++) {
uint64_t nruns;
CTL_IJ_GET("stats.arenas.0.bins.0.nruns", &nruns, uint64_t);
if (nruns == 0) {
if (gap_start == UINT_MAX)
gap_start = j;
} else {
unsigned ntbins_, nqbins, ncbins, nsbins;
size_t reg_size, run_size, allocated;
uint32_t nregs;
uint64_t nmalloc, ndalloc, nrequests, nfills, nflushes;
uint64_t reruns;
size_t highruns, curruns;
if (gap_start != UINT_MAX) {
if (j > gap_start + 1) {
/* Gap of more than one size class. */
malloc_cprintf(write_cb, cbopaque,
"[%u..%u]\n", gap_start,
j - 1);
} else {
/* Gap of one size class. */
malloc_cprintf(write_cb, cbopaque,
"[%u]\n", gap_start);
}
gap_start = UINT_MAX;
}
CTL_GET("arenas.ntbins", &ntbins_, unsigned);
CTL_GET("arenas.nqbins", &nqbins, unsigned);
CTL_GET("arenas.ncbins", &ncbins, unsigned);
CTL_GET("arenas.nsbins", &nsbins, unsigned);
CTL_J_GET("arenas.bin.0.size", &reg_size, size_t);
CTL_J_GET("arenas.bin.0.nregs", &nregs, uint32_t);
CTL_J_GET("arenas.bin.0.run_size", &run_size, size_t);
CTL_IJ_GET("stats.arenas.0.bins.0.allocated",
&allocated, size_t);
CTL_IJ_GET("stats.arenas.0.bins.0.nmalloc",
&nmalloc, uint64_t);
CTL_IJ_GET("stats.arenas.0.bins.0.ndalloc",
&ndalloc, uint64_t);
if (config_tcache) {
CTL_IJ_GET("stats.arenas.0.bins.0.nrequests",
&nrequests, uint64_t);
CTL_IJ_GET("stats.arenas.0.bins.0.nfills",
&nfills, uint64_t);
CTL_IJ_GET("stats.arenas.0.bins.0.nflushes",
&nflushes, uint64_t);
}
CTL_IJ_GET("stats.arenas.0.bins.0.nreruns", &reruns,
uint64_t);
CTL_IJ_GET("stats.arenas.0.bins.0.highruns", &highruns,
size_t);
CTL_IJ_GET("stats.arenas.0.bins.0.curruns", &curruns,
size_t);
if (config_tcache) {
malloc_cprintf(write_cb, cbopaque,
"%13u %1s %5zu %4u %3zu %12zu %12"PRIu64
" %12"PRIu64" %12"PRIu64" %12"PRIu64
" %12"PRIu64" %12"PRIu64" %12"PRIu64
" %12zu %12zu\n",
j,
j < ntbins_ ? "T" : j < ntbins_ + nqbins ?
"Q" : j < ntbins_ + nqbins + ncbins ? "C" :
"S",
reg_size, nregs, run_size / pagesize,
allocated, nmalloc, ndalloc, nrequests,
nfills, nflushes, nruns, reruns, highruns,
curruns);
} else {
malloc_cprintf(write_cb, cbopaque,
"%13u %1s %5zu %4u %3zu %12zu %12"PRIu64
" %12"PRIu64" %12"PRIu64" %12"PRIu64
" %12zu %12zu\n",
j,
j < ntbins_ ? "T" : j < ntbins_ + nqbins ?
"Q" : j < ntbins_ + nqbins + ncbins ? "C" :
"S",
reg_size, nregs, run_size / pagesize,
allocated, nmalloc, ndalloc, nruns, reruns,
highruns, curruns);
}
}
}
if (gap_start != UINT_MAX) {
if (j > gap_start + 1) {
/* Gap of more than one size class. */
malloc_cprintf(write_cb, cbopaque, "[%u..%u]\n",
gap_start, j - 1);
} else {
/* Gap of one size class. */
malloc_cprintf(write_cb, cbopaque, "[%u]\n", gap_start);
}
}
}
static void
stats_arena_lruns_print(void (*write_cb)(void *, const char *), void *cbopaque,
unsigned i)
{
size_t pagesize, nlruns, j;
ssize_t gap_start;
CTL_GET("arenas.pagesize", &pagesize, size_t);
malloc_cprintf(write_cb, cbopaque,
"large: size pages nmalloc ndalloc nrequests"
" maxruns curruns\n");
CTL_GET("arenas.nlruns", &nlruns, size_t);
for (j = 0, gap_start = -1; j < nlruns; j++) {
uint64_t nmalloc, ndalloc, nrequests;
size_t run_size, highruns, curruns;
CTL_IJ_GET("stats.arenas.0.lruns.0.nmalloc", &nmalloc,
uint64_t);
CTL_IJ_GET("stats.arenas.0.lruns.0.ndalloc", &ndalloc,
uint64_t);
CTL_IJ_GET("stats.arenas.0.lruns.0.nrequests", &nrequests,
uint64_t);
if (nrequests == 0) {
if (gap_start == -1)
gap_start = j;
} else {
CTL_J_GET("arenas.lrun.0.size", &run_size, size_t);
CTL_IJ_GET("stats.arenas.0.lruns.0.highruns", &highruns,
size_t);
CTL_IJ_GET("stats.arenas.0.lruns.0.curruns", &curruns,
size_t);
if (gap_start != -1) {
malloc_cprintf(write_cb, cbopaque, "[%zu]\n",
j - gap_start);
gap_start = -1;
}
malloc_cprintf(write_cb, cbopaque,
"%13zu %5zu %12"PRIu64" %12"PRIu64" %12"PRIu64
" %12zu %12zu\n",
run_size, run_size / pagesize, nmalloc, ndalloc,
nrequests, highruns, curruns);
}
}
if (gap_start != -1)
malloc_cprintf(write_cb, cbopaque, "[%zu]\n", j - gap_start);
}
static void
stats_arena_print(void (*write_cb)(void *, const char *), void *cbopaque,
unsigned i)
{
size_t pagesize, pactive, pdirty, mapped;
uint64_t npurge, nmadvise, purged;
size_t small_allocated;
uint64_t small_nmalloc, small_ndalloc, small_nrequests;
size_t large_allocated;
uint64_t large_nmalloc, large_ndalloc, large_nrequests;
CTL_GET("arenas.pagesize", &pagesize, size_t);
CTL_I_GET("stats.arenas.0.pactive", &pactive, size_t);
CTL_I_GET("stats.arenas.0.pdirty", &pdirty, size_t);
CTL_I_GET("stats.arenas.0.npurge", &npurge, uint64_t);
CTL_I_GET("stats.arenas.0.nmadvise", &nmadvise, uint64_t);
CTL_I_GET("stats.arenas.0.purged", &purged, uint64_t);
malloc_cprintf(write_cb, cbopaque,
"dirty pages: %zu:%zu active:dirty, %"PRIu64" sweep%s,"
" %"PRIu64" madvise%s, %"PRIu64" purged\n",
pactive, pdirty, npurge, npurge == 1 ? "" : "s",
nmadvise, nmadvise == 1 ? "" : "s", purged);
malloc_cprintf(write_cb, cbopaque,
" allocated nmalloc ndalloc nrequests\n");
CTL_I_GET("stats.arenas.0.small.allocated", &small_allocated, size_t);
CTL_I_GET("stats.arenas.0.small.nmalloc", &small_nmalloc, uint64_t);
CTL_I_GET("stats.arenas.0.small.ndalloc", &small_ndalloc, uint64_t);
CTL_I_GET("stats.arenas.0.small.nrequests", &small_nrequests, uint64_t);
malloc_cprintf(write_cb, cbopaque,
"small: %12zu %12"PRIu64" %12"PRIu64" %12"PRIu64"\n",
small_allocated, small_nmalloc, small_ndalloc, small_nrequests);
CTL_I_GET("stats.arenas.0.large.allocated", &large_allocated, size_t);
CTL_I_GET("stats.arenas.0.large.nmalloc", &large_nmalloc, uint64_t);
CTL_I_GET("stats.arenas.0.large.ndalloc", &large_ndalloc, uint64_t);
CTL_I_GET("stats.arenas.0.large.nrequests", &large_nrequests, uint64_t);
malloc_cprintf(write_cb, cbopaque,
"large: %12zu %12"PRIu64" %12"PRIu64" %12"PRIu64"\n",
large_allocated, large_nmalloc, large_ndalloc, large_nrequests);
malloc_cprintf(write_cb, cbopaque,
"total: %12zu %12"PRIu64" %12"PRIu64" %12"PRIu64"\n",
small_allocated + large_allocated,
small_nmalloc + large_nmalloc,
small_ndalloc + large_ndalloc,
small_nrequests + large_nrequests);
malloc_cprintf(write_cb, cbopaque, "active: %12zu\n",
pactive * pagesize );
CTL_I_GET("stats.arenas.0.mapped", &mapped, size_t);
malloc_cprintf(write_cb, cbopaque, "mapped: %12zu\n", mapped);
stats_arena_bins_print(write_cb, cbopaque, i);
stats_arena_lruns_print(write_cb, cbopaque, i);
}
#endif
void
stats_print(void (*write_cb)(void *, const char *), void *cbopaque,
const char *opts)
{
uint64_t epoch;
size_t u64sz;
char s[UMAX2S_BUFSIZE];
bool general = true;
bool merged = true;
bool unmerged = true;
bool bins = true;
bool large = true;
/* Refresh stats, in case mallctl() was called by the application. */
epoch = 1;
u64sz = sizeof(uint64_t);
xmallctl("epoch", &epoch, &u64sz, &epoch, sizeof(uint64_t));
if (write_cb == NULL) {
/*
* The caller did not provide an alternate write_cb callback
* function, so use the default one. malloc_write() is an
* inline function, so use malloc_message() directly here.
*/
write_cb = JEMALLOC_P(malloc_message);
cbopaque = NULL;
}
if (opts != NULL) {
unsigned i;
for (i = 0; opts[i] != '\0'; i++) {
switch (opts[i]) {
case 'g':
general = false;
break;
case 'm':
merged = false;
break;
case 'a':
unmerged = false;
break;
case 'b':
bins = false;
break;
case 'l':
large = false;
break;
default:;
}
}
}
write_cb(cbopaque, "___ Begin jemalloc statistics ___\n");
if (general) {
int err;
const char *cpv;
bool bv;
unsigned uv;
ssize_t ssv;
size_t sv, bsz, ssz;
bsz = sizeof(bool);
ssz = sizeof(size_t);
CTL_GET("version", &cpv, const char *);
write_cb(cbopaque, "Version: ");
write_cb(cbopaque, cpv);
write_cb(cbopaque, "\n");
CTL_GET("config.debug", &bv, bool);
write_cb(cbopaque, "Assertions ");
write_cb(cbopaque, bv ? "enabled" : "disabled");
write_cb(cbopaque, "\n");
write_cb(cbopaque, "Boolean JEMALLOC_OPTIONS: ");
if ((err = JEMALLOC_P(mallctl)("opt.abort", &bv, &bsz, NULL, 0))
== 0)
write_cb(cbopaque, bv ? "A" : "a");
if ((err = JEMALLOC_P(mallctl)("prof.active", &bv, &bsz,
NULL, 0)) == 0)
write_cb(cbopaque, bv ? "E" : "e");
if ((err = JEMALLOC_P(mallctl)("opt.prof", &bv, &bsz, NULL, 0))
== 0)
write_cb(cbopaque, bv ? "F" : "f");
if ((err = JEMALLOC_P(mallctl)("opt.tcache", &bv, &bsz, NULL,
0)) == 0)
write_cb(cbopaque, bv ? "H" : "h");
if ((err = JEMALLOC_P(mallctl)("opt.junk", &bv, &bsz, NULL, 0))
== 0)
write_cb(cbopaque, bv ? "J" : "j");
if ((err = JEMALLOC_P(mallctl)("opt.prof_leak", &bv, &bsz, NULL,
0)) == 0)
write_cb(cbopaque, bv ? "L" : "l");
if ((err = JEMALLOC_P(mallctl)("opt.overcommit", &bv, &bsz,
NULL, 0)) == 0)
write_cb(cbopaque, bv ? "O" : "o");
if ((err = JEMALLOC_P(mallctl)("opt.stats_print", &bv, &bsz,
NULL, 0)) == 0)
write_cb(cbopaque, bv ? "P" : "p");
if ((err = JEMALLOC_P(mallctl)("opt.prof_udump", &bv, &bsz,
NULL, 0)) == 0)
write_cb(cbopaque, bv ? "U" : "u");
if ((err = JEMALLOC_P(mallctl)("opt.sysv", &bv, &bsz, NULL, 0))
== 0)
write_cb(cbopaque, bv ? "V" : "v");
if ((err = JEMALLOC_P(mallctl)("opt.xmalloc", &bv, &bsz, NULL,
0)) == 0)
write_cb(cbopaque, bv ? "X" : "x");
if ((err = JEMALLOC_P(mallctl)("opt.zero", &bv, &bsz, NULL, 0))
== 0)
write_cb(cbopaque, bv ? "Z" : "z");
write_cb(cbopaque, "\n");
write_cb(cbopaque, "CPUs: ");
write_cb(cbopaque, umax2s(ncpus, 10, s));
write_cb(cbopaque, "\n");
CTL_GET("arenas.narenas", &uv, unsigned);
write_cb(cbopaque, "Max arenas: ");
write_cb(cbopaque, umax2s(uv, 10, s));
write_cb(cbopaque, "\n");
write_cb(cbopaque, "Pointer size: ");
write_cb(cbopaque, umax2s(sizeof(void *), 10, s));
write_cb(cbopaque, "\n");
CTL_GET("arenas.quantum", &sv, size_t);
write_cb(cbopaque, "Quantum size: ");
write_cb(cbopaque, umax2s(sv, 10, s));
write_cb(cbopaque, "\n");
CTL_GET("arenas.cacheline", &sv, size_t);
write_cb(cbopaque, "Cacheline size (assumed): ");
write_cb(cbopaque, umax2s(sv, 10, s));
write_cb(cbopaque, "\n");
CTL_GET("arenas.subpage", &sv, size_t);
write_cb(cbopaque, "Subpage spacing: ");
write_cb(cbopaque, umax2s(sv, 10, s));
write_cb(cbopaque, "\n");
if ((err = JEMALLOC_P(mallctl)("arenas.tspace_min", &sv, &ssz,
NULL, 0)) == 0) {
write_cb(cbopaque, "Tiny 2^n-spaced sizes: [");
write_cb(cbopaque, umax2s(sv, 10, s));
write_cb(cbopaque, "..");
CTL_GET("arenas.tspace_max", &sv, size_t);
write_cb(cbopaque, umax2s(sv, 10, s));
write_cb(cbopaque, "]\n");
}
CTL_GET("arenas.qspace_min", &sv, size_t);
write_cb(cbopaque, "Quantum-spaced sizes: [");
write_cb(cbopaque, umax2s(sv, 10, s));
write_cb(cbopaque, "..");
CTL_GET("arenas.qspace_max", &sv, size_t);
write_cb(cbopaque, umax2s(sv, 10, s));
write_cb(cbopaque, "]\n");
CTL_GET("arenas.cspace_min", &sv, size_t);
write_cb(cbopaque, "Cacheline-spaced sizes: [");
write_cb(cbopaque, umax2s(sv, 10, s));
write_cb(cbopaque, "..");
CTL_GET("arenas.cspace_max", &sv, size_t);
write_cb(cbopaque, umax2s(sv, 10, s));
write_cb(cbopaque, "]\n");
CTL_GET("arenas.sspace_min", &sv, size_t);
write_cb(cbopaque, "Subpage-spaced sizes: [");
write_cb(cbopaque, umax2s(sv, 10, s));
write_cb(cbopaque, "..");
CTL_GET("arenas.sspace_max", &sv, size_t);
write_cb(cbopaque, umax2s(sv, 10, s));
write_cb(cbopaque, "]\n");
CTL_GET("opt.lg_dirty_mult", &ssv, ssize_t);
if (ssv >= 0) {
write_cb(cbopaque,
"Min active:dirty page ratio per arena: ");
write_cb(cbopaque, umax2s((1U << ssv), 10, s));
write_cb(cbopaque, ":1\n");
} else {
write_cb(cbopaque,
"Min active:dirty page ratio per arena: N/A\n");
}
if ((err = JEMALLOC_P(mallctl)("arenas.tcache_max", &sv,
&ssz, NULL, 0)) == 0) {
write_cb(cbopaque,
"Maximum thread-cached size class: ");
write_cb(cbopaque, umax2s(sv, 10, s));
write_cb(cbopaque, "\n");
}
if ((err = JEMALLOC_P(mallctl)("opt.lg_tcache_gc_sweep", &ssv,
&ssz, NULL, 0)) == 0) {
size_t tcache_gc_sweep = (1U << ssv);
bool tcache_enabled;
CTL_GET("opt.tcache", &tcache_enabled, bool);
write_cb(cbopaque, "Thread cache GC sweep interval: ");
write_cb(cbopaque, tcache_enabled && ssv >= 0 ?
umax2s(tcache_gc_sweep, 10, s) : "N/A");
write_cb(cbopaque, "\n");
}
if ((err = JEMALLOC_P(mallctl)("opt.prof", &bv, &bsz, NULL, 0))
== 0 && bv) {
CTL_GET("opt.lg_prof_bt_max", &sv, size_t);
write_cb(cbopaque, "Maximum profile backtrace depth: ");
write_cb(cbopaque, umax2s((1U << sv), 10, s));
write_cb(cbopaque, "\n");
CTL_GET("opt.lg_prof_sample", &sv, size_t);
write_cb(cbopaque, "Average profile sample interval: ");
write_cb(cbopaque, umax2s((1U << sv), 10, s));
write_cb(cbopaque, " (2^");
write_cb(cbopaque, umax2s(sv, 10, s));
write_cb(cbopaque, ")\n");
CTL_GET("opt.lg_prof_interval", &ssv, ssize_t);
write_cb(cbopaque, "Average profile dump interval: ");
if (ssv >= 0) {
write_cb(cbopaque, umax2s((1U << ssv), 10, s));
write_cb(cbopaque, " (2^");
write_cb(cbopaque, umax2s(ssv, 10, s));
write_cb(cbopaque, ")\n");
} else
write_cb(cbopaque, "N/A\n");
}
CTL_GET("arenas.chunksize", &sv, size_t);
write_cb(cbopaque, "Chunk size: ");
write_cb(cbopaque, umax2s(sv, 10, s));
CTL_GET("opt.lg_chunk", &sv, size_t);
write_cb(cbopaque, " (2^");
write_cb(cbopaque, umax2s(sv, 10, s));
write_cb(cbopaque, ")\n");
}
#ifdef JEMALLOC_STATS
{
int err;
size_t ssz;
size_t allocated, active, mapped;
size_t chunks_current, chunks_high, swap_avail;
uint64_t chunks_total;
size_t huge_allocated;
uint64_t huge_nmalloc, huge_ndalloc;
ssz = sizeof(size_t);
CTL_GET("stats.allocated", &allocated, size_t);
CTL_GET("stats.active", &active, size_t);
CTL_GET("stats.mapped", &mapped, size_t);
malloc_cprintf(write_cb, cbopaque,
"Allocated: %zu, active: %zu, mapped: %zu\n", allocated,
active, mapped);
/* Print chunk stats. */
CTL_GET("stats.chunks.total", &chunks_total, uint64_t);
CTL_GET("stats.chunks.high", &chunks_high, size_t);
CTL_GET("stats.chunks.current", &chunks_current, size_t);
if ((err = JEMALLOC_P(mallctl)("swap.avail", &swap_avail, &ssz,
NULL, 0)) == 0) {
size_t lg_chunk;
malloc_cprintf(write_cb, cbopaque, "chunks: nchunks "
"highchunks curchunks swap_avail\n");
CTL_GET("opt.lg_chunk", &lg_chunk, size_t);
malloc_cprintf(write_cb, cbopaque,
" %13"PRIu64"%13zu%13zu%13zu\n",
chunks_total, chunks_high, chunks_current,
swap_avail << lg_chunk);
} else {
malloc_cprintf(write_cb, cbopaque, "chunks: nchunks "
"highchunks curchunks\n");
malloc_cprintf(write_cb, cbopaque,
" %13"PRIu64"%13zu%13zu\n",
chunks_total, chunks_high, chunks_current);
}
/* Print huge stats. */
CTL_GET("stats.huge.nmalloc", &huge_nmalloc, uint64_t);
CTL_GET("stats.huge.ndalloc", &huge_ndalloc, uint64_t);
CTL_GET("stats.huge.allocated", &huge_allocated, size_t);
malloc_cprintf(write_cb, cbopaque,
"huge: nmalloc ndalloc allocated\n");
malloc_cprintf(write_cb, cbopaque,
" %12"PRIu64" %12"PRIu64" %12zu\n",
huge_nmalloc, huge_ndalloc, huge_allocated);
if (merged) {
unsigned narenas;
CTL_GET("arenas.narenas", &narenas, unsigned);
{
bool initialized[narenas];
size_t isz;
unsigned i, ninitialized;
isz = sizeof(initialized);
xmallctl("arenas.initialized", initialized,
&isz, NULL, 0);
for (i = ninitialized = 0; i < narenas; i++) {
if (initialized[i])
ninitialized++;
}
if (ninitialized > 1) {
/* Print merged arena stats. */
malloc_cprintf(write_cb, cbopaque,
"\nMerged arenas stats:\n");
stats_arena_print(write_cb, cbopaque,
narenas);
}
}
}
if (unmerged) {
unsigned narenas;
/* Print stats for each arena. */
CTL_GET("arenas.narenas", &narenas, unsigned);
{
bool initialized[narenas];
size_t isz;
unsigned i;
isz = sizeof(initialized);
xmallctl("arenas.initialized", initialized,
&isz, NULL, 0);
for (i = 0; i < narenas; i++) {
if (initialized[i]) {
malloc_cprintf(write_cb,
cbopaque,
"\narenas[%u]:\n", i);
stats_arena_print(write_cb,
cbopaque, i);
}
}
}
}
}
#endif /* #ifdef JEMALLOC_STATS */
write_cb(cbopaque, "--- End jemalloc statistics ---\n");
}

403
externals/jemalloc/tcache.c vendored Normal file
View File

@@ -0,0 +1,403 @@
#define JEMALLOC_TCACHE_C_
#include "jemalloc/internal/jemalloc_internal.h"
#ifdef JEMALLOC_TCACHE
/******************************************************************************/
/* Data. */
bool opt_tcache = true;
ssize_t opt_lg_tcache_maxclass = LG_TCACHE_MAXCLASS_DEFAULT;
ssize_t opt_lg_tcache_gc_sweep = LG_TCACHE_GC_SWEEP_DEFAULT;
/* Map of thread-specific caches. */
__thread tcache_t *tcache_tls JEMALLOC_ATTR(tls_model("initial-exec"));
/*
* Same contents as tcache, but initialized such that the TSD destructor is
* called when a thread exits, so that the cache can be cleaned up.
*/
static pthread_key_t tcache_tsd;
size_t nhbins;
size_t tcache_maxclass;
unsigned tcache_gc_incr;
/******************************************************************************/
/* Function prototypes for non-inline static functions. */
static void tcache_thread_cleanup(void *arg);
/******************************************************************************/
void *
tcache_alloc_small_hard(tcache_t *tcache, tcache_bin_t *tbin, size_t binind)
{
void *ret;
arena_tcache_fill_small(tcache->arena, tbin, binind
#ifdef JEMALLOC_PROF
, tcache->prof_accumbytes
#endif
);
#ifdef JEMALLOC_PROF
tcache->prof_accumbytes = 0;
#endif
ret = tcache_alloc_easy(tbin);
return (ret);
}
void
tcache_bin_flush_small(tcache_bin_t *tbin, size_t binind, unsigned rem
#if (defined(JEMALLOC_STATS) || defined(JEMALLOC_PROF))
, tcache_t *tcache
#endif
)
{
void *flush, *deferred, *ptr;
unsigned i, nflush, ndeferred;
assert(binind < nbins);
assert(rem <= tbin->ncached);
for (flush = tbin->avail, nflush = tbin->ncached - rem; flush != NULL;
flush = deferred, nflush = ndeferred) {
/* Lock the arena bin associated with the first object. */
arena_chunk_t *chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(flush);
arena_t *arena = chunk->arena;
arena_bin_t *bin = &arena->bins[binind];
#ifdef JEMALLOC_PROF
if (arena == tcache->arena) {
malloc_mutex_lock(&arena->lock);
arena_prof_accum(arena, tcache->prof_accumbytes);
malloc_mutex_unlock(&arena->lock);
tcache->prof_accumbytes = 0;
}
#endif
malloc_mutex_lock(&bin->lock);
#ifdef JEMALLOC_STATS
if (arena == tcache->arena) {
bin->stats.nflushes++;
bin->stats.nrequests += tbin->tstats.nrequests;
tbin->tstats.nrequests = 0;
}
#endif
deferred = NULL;
ndeferred = 0;
for (i = 0; i < nflush; i++) {
ptr = flush;
assert(ptr != NULL);
flush = *(void **)ptr;
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
if (chunk->arena == arena) {
size_t pageind = (((uintptr_t)ptr -
(uintptr_t)chunk) >> PAGE_SHIFT);
arena_chunk_map_t *mapelm =
&chunk->map[pageind];
arena_dalloc_bin(arena, chunk, ptr, mapelm);
} else {
/*
* This object was allocated via a different
* arena bin than the one that is currently
* locked. Stash the object, so that it can be
* handled in a future pass.
*/
*(void **)ptr = deferred;
deferred = ptr;
ndeferred++;
}
}
malloc_mutex_unlock(&bin->lock);
if (flush != NULL) {
/*
* This was the first pass, and rem cached objects
* remain.
*/
tbin->avail = flush;
}
}
tbin->ncached = rem;
if (tbin->ncached < tbin->low_water)
tbin->low_water = tbin->ncached;
}
void
tcache_bin_flush_large(tcache_bin_t *tbin, size_t binind, unsigned rem
#if (defined(JEMALLOC_STATS) || defined(JEMALLOC_PROF))
, tcache_t *tcache
#endif
)
{
void *flush, *deferred, *ptr;
unsigned i, nflush, ndeferred;
assert(binind < nhbins);
assert(rem <= tbin->ncached);
for (flush = tbin->avail, nflush = tbin->ncached - rem; flush != NULL;
flush = deferred, nflush = ndeferred) {
/* Lock the arena associated with the first object. */
arena_chunk_t *chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(flush);
arena_t *arena = chunk->arena;
malloc_mutex_lock(&arena->lock);
#if (defined(JEMALLOC_PROF) || defined(JEMALLOC_STATS))
if (arena == tcache->arena) {
#endif
#ifdef JEMALLOC_PROF
arena_prof_accum(arena, tcache->prof_accumbytes);
tcache->prof_accumbytes = 0;
#endif
#ifdef JEMALLOC_STATS
arena->stats.nrequests_large += tbin->tstats.nrequests;
arena->stats.lstats[binind - nbins].nrequests +=
tbin->tstats.nrequests;
tbin->tstats.nrequests = 0;
#endif
#if (defined(JEMALLOC_PROF) || defined(JEMALLOC_STATS))
}
#endif
deferred = NULL;
ndeferred = 0;
for (i = 0; i < nflush; i++) {
ptr = flush;
assert(ptr != NULL);
flush = *(void **)ptr;
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
if (chunk->arena == arena)
arena_dalloc_large(arena, chunk, ptr);
else {
/*
* This object was allocated via a different
* arena than the one that is currently locked.
* Stash the object, so that it can be handled
* in a future pass.
*/
*(void **)ptr = deferred;
deferred = ptr;
ndeferred++;
}
}
malloc_mutex_unlock(&arena->lock);
if (flush != NULL) {
/*
* This was the first pass, and rem cached objects
* remain.
*/
tbin->avail = flush;
}
}
tbin->ncached = rem;
if (tbin->ncached < tbin->low_water)
tbin->low_water = tbin->ncached;
}
tcache_t *
tcache_create(arena_t *arena)
{
tcache_t *tcache;
size_t size;
unsigned i;
size = sizeof(tcache_t) + (sizeof(tcache_bin_t) * (nhbins - 1));
/*
* Round up to the nearest multiple of the cacheline size, in order to
* avoid the possibility of false cacheline sharing.
*
* That this works relies on the same logic as in ipalloc().
*/
size = (size + CACHELINE_MASK) & (-CACHELINE);
if (size <= small_maxclass)
tcache = (tcache_t *)arena_malloc_small(arena, size, true);
else
tcache = (tcache_t *)icalloc(size);
if (tcache == NULL)
return (NULL);
#ifdef JEMALLOC_STATS
/* Link into list of extant tcaches. */
malloc_mutex_lock(&arena->lock);
ql_elm_new(tcache, link);
ql_tail_insert(&arena->tcache_ql, tcache, link);
malloc_mutex_unlock(&arena->lock);
#endif
tcache->arena = arena;
assert((TCACHE_NSLOTS_SMALL_MAX & 1U) == 0);
for (i = 0; i < nbins; i++) {
if ((arena->bins[i].nregs << 1) <= TCACHE_NSLOTS_SMALL_MAX) {
tcache->tbins[i].ncached_max = (arena->bins[i].nregs <<
1);
} else
tcache->tbins[i].ncached_max = TCACHE_NSLOTS_SMALL_MAX;
}
for (; i < nhbins; i++)
tcache->tbins[i].ncached_max = TCACHE_NSLOTS_LARGE;
tcache_tls = tcache;
pthread_setspecific(tcache_tsd, tcache);
return (tcache);
}
void
tcache_destroy(tcache_t *tcache)
{
unsigned i;
#ifdef JEMALLOC_STATS
/* Unlink from list of extant tcaches. */
malloc_mutex_lock(&tcache->arena->lock);
ql_remove(&tcache->arena->tcache_ql, tcache, link);
malloc_mutex_unlock(&tcache->arena->lock);
tcache_stats_merge(tcache, tcache->arena);
#endif
for (i = 0; i < nbins; i++) {
tcache_bin_t *tbin = &tcache->tbins[i];
tcache_bin_flush_small(tbin, i, 0
#if (defined(JEMALLOC_STATS) || defined(JEMALLOC_PROF))
, tcache
#endif
);
#ifdef JEMALLOC_STATS
if (tbin->tstats.nrequests != 0) {
arena_t *arena = tcache->arena;
arena_bin_t *bin = &arena->bins[i];
malloc_mutex_lock(&bin->lock);
bin->stats.nrequests += tbin->tstats.nrequests;
malloc_mutex_unlock(&bin->lock);
}
#endif
}
for (; i < nhbins; i++) {
tcache_bin_t *tbin = &tcache->tbins[i];
tcache_bin_flush_large(tbin, i, 0
#if (defined(JEMALLOC_STATS) || defined(JEMALLOC_PROF))
, tcache
#endif
);
#ifdef JEMALLOC_STATS
if (tbin->tstats.nrequests != 0) {
arena_t *arena = tcache->arena;
malloc_mutex_lock(&arena->lock);
arena->stats.nrequests_large += tbin->tstats.nrequests;
arena->stats.lstats[i - nbins].nrequests +=
tbin->tstats.nrequests;
malloc_mutex_unlock(&arena->lock);
}
#endif
}
#ifdef JEMALLOC_PROF
if (tcache->prof_accumbytes > 0) {
malloc_mutex_lock(&tcache->arena->lock);
arena_prof_accum(tcache->arena, tcache->prof_accumbytes);
malloc_mutex_unlock(&tcache->arena->lock);
}
#endif
if (arena_salloc(tcache) <= small_maxclass) {
arena_chunk_t *chunk = CHUNK_ADDR2BASE(tcache);
arena_t *arena = chunk->arena;
size_t pageind = (((uintptr_t)tcache - (uintptr_t)chunk) >>
PAGE_SHIFT);
arena_chunk_map_t *mapelm = &chunk->map[pageind];
arena_run_t *run = (arena_run_t *)((uintptr_t)chunk +
(uintptr_t)((pageind - (mapelm->bits >> PAGE_SHIFT)) <<
PAGE_SHIFT));
arena_bin_t *bin = run->bin;
malloc_mutex_lock(&bin->lock);
arena_dalloc_bin(arena, chunk, tcache, mapelm);
malloc_mutex_unlock(&bin->lock);
} else
idalloc(tcache);
}
static void
tcache_thread_cleanup(void *arg)
{
tcache_t *tcache = (tcache_t *)arg;
assert(tcache == tcache_tls);
if (tcache != NULL) {
assert(tcache != (void *)(uintptr_t)1);
tcache_destroy(tcache);
tcache_tls = (void *)(uintptr_t)1;
}
}
#ifdef JEMALLOC_STATS
void
tcache_stats_merge(tcache_t *tcache, arena_t *arena)
{
unsigned i;
/* Merge and reset tcache stats. */
for (i = 0; i < nbins; i++) {
arena_bin_t *bin = &arena->bins[i];
tcache_bin_t *tbin = &tcache->tbins[i];
malloc_mutex_lock(&bin->lock);
bin->stats.nrequests += tbin->tstats.nrequests;
malloc_mutex_unlock(&bin->lock);
tbin->tstats.nrequests = 0;
}
for (; i < nhbins; i++) {
malloc_large_stats_t *lstats = &arena->stats.lstats[i - nbins];
tcache_bin_t *tbin = &tcache->tbins[i];
arena->stats.nrequests_large += tbin->tstats.nrequests;
lstats->nrequests += tbin->tstats.nrequests;
tbin->tstats.nrequests = 0;
}
}
#endif
void
tcache_boot(void)
{
if (opt_tcache) {
/*
* If necessary, clamp opt_lg_tcache_maxclass, now that
* small_maxclass and arena_maxclass are known.
*/
if (opt_lg_tcache_maxclass < 0 || (1U <<
opt_lg_tcache_maxclass) < small_maxclass)
tcache_maxclass = small_maxclass;
else if ((1U << opt_lg_tcache_maxclass) > arena_maxclass)
tcache_maxclass = arena_maxclass;
else
tcache_maxclass = (1U << opt_lg_tcache_maxclass);
nhbins = nbins + (tcache_maxclass >> PAGE_SHIFT);
/* Compute incremental GC event threshold. */
if (opt_lg_tcache_gc_sweep >= 0) {
tcache_gc_incr = ((1U << opt_lg_tcache_gc_sweep) /
nbins) + (((1U << opt_lg_tcache_gc_sweep) % nbins ==
0) ? 0 : 1);
} else
tcache_gc_incr = 0;
if (pthread_key_create(&tcache_tsd, tcache_thread_cleanup) !=
0) {
malloc_write(
"<jemalloc>: Error in pthread_key_create()\n");
abort();
}
}
}
/******************************************************************************/
#endif /* JEMALLOC_TCACHE */