diff options
author | Ladislav Zezula <ladislav.zezula@avg.com> | 2013-01-11 14:55:08 +0100 |
---|---|---|
committer | Ladislav Zezula <ladislav.zezula@avg.com> | 2013-01-11 14:55:08 +0100 |
commit | 3a926f0228c68d7d91cf3946624d7859976440ec (patch) | |
tree | c4e7d36dc8157576929988cdfcf5bfd8262cd09c /src/libtommath/bn_mp_gcd.c | |
parent | df4b0c085478389c9a21a09521d46735a0109c8a (diff) |
Initial creation
Diffstat (limited to 'src/libtommath/bn_mp_gcd.c')
-rw-r--r-- | src/libtommath/bn_mp_gcd.c | 105 |
1 files changed, 105 insertions, 0 deletions
diff --git a/src/libtommath/bn_mp_gcd.c b/src/libtommath/bn_mp_gcd.c new file mode 100644 index 0000000..ce980eb --- /dev/null +++ b/src/libtommath/bn_mp_gcd.c @@ -0,0 +1,105 @@ +#include "tommath.h" +#ifdef BN_MP_GCD_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://libtom.org + */ + +/* Greatest Common Divisor using the binary method */ +int mp_gcd (mp_int * a, mp_int * b, mp_int * c) +{ + mp_int u, v; + int k, u_lsb, v_lsb, res; + + /* either zero than gcd is the largest */ + if (mp_iszero (a) == MP_YES) { + return mp_abs (b, c); + } + if (mp_iszero (b) == MP_YES) { + return mp_abs (a, c); + } + + /* get copies of a and b we can modify */ + if ((res = mp_init_copy (&u, a)) != MP_OKAY) { + return res; + } + + if ((res = mp_init_copy (&v, b)) != MP_OKAY) { + goto LBL_U; + } + + /* must be positive for the remainder of the algorithm */ + u.sign = v.sign = MP_ZPOS; + + /* B1. Find the common power of two for u and v */ + u_lsb = mp_cnt_lsb(&u); + v_lsb = mp_cnt_lsb(&v); + k = MIN(u_lsb, v_lsb); + + if (k > 0) { + /* divide the power of two out */ + if ((res = mp_div_2d(&u, k, &u, NULL)) != MP_OKAY) { + goto LBL_V; + } + + if ((res = mp_div_2d(&v, k, &v, NULL)) != MP_OKAY) { + goto LBL_V; + } + } + + /* divide any remaining factors of two out */ + if (u_lsb != k) { + if ((res = mp_div_2d(&u, u_lsb - k, &u, NULL)) != MP_OKAY) { + goto LBL_V; + } + } + + if (v_lsb != k) { + if ((res = mp_div_2d(&v, v_lsb - k, &v, NULL)) != MP_OKAY) { + goto LBL_V; + } + } + + while (mp_iszero(&v) == 0) { + /* make sure v is the largest */ + if (mp_cmp_mag(&u, &v) == MP_GT) { + /* swap u and v to make sure v is >= u */ + mp_exch(&u, &v); + } + + /* subtract smallest from largest */ + if ((res = s_mp_sub(&v, &u, &v)) != MP_OKAY) { + goto LBL_V; + } + + /* Divide out all factors of two */ + if ((res = mp_div_2d(&v, mp_cnt_lsb(&v), &v, NULL)) != MP_OKAY) { + goto LBL_V; + } + } + + /* multiply by 2**k which we divided out at the beginning */ + if ((res = mp_mul_2d (&u, k, c)) != MP_OKAY) { + goto LBL_V; + } + c->sign = MP_ZPOS; + res = MP_OKAY; +LBL_V:mp_clear (&u); +LBL_U:mp_clear (&v); + return res; +} +#endif + +/* $Source: /cvs/libtom/libtommath/bn_mp_gcd.c,v $ */ +/* $Revision: 1.5 $ */ +/* $Date: 2006/12/28 01:25:13 $ */ |