diff options
author | Ladislav Zezula <ladislav.zezula@avg.com> | 2013-01-11 14:55:08 +0100 |
---|---|---|
committer | Ladislav Zezula <ladislav.zezula@avg.com> | 2013-01-11 14:55:08 +0100 |
commit | 3a926f0228c68d7d91cf3946624d7859976440ec (patch) | |
tree | c4e7d36dc8157576929988cdfcf5bfd8262cd09c /src/pklib/implode.c | |
parent | df4b0c085478389c9a21a09521d46735a0109c8a (diff) |
Initial creation
Diffstat (limited to 'src/pklib/implode.c')
-rw-r--r-- | src/pklib/implode.c | 769 |
1 files changed, 769 insertions, 0 deletions
diff --git a/src/pklib/implode.c b/src/pklib/implode.c new file mode 100644 index 0000000..1771b18 --- /dev/null +++ b/src/pklib/implode.c @@ -0,0 +1,769 @@ +/*****************************************************************************/ +/* implode.c Copyright (c) Ladislav Zezula 2003 */ +/*---------------------------------------------------------------------------*/ +/* Implode function of PKWARE Data Compression library */ +/*---------------------------------------------------------------------------*/ +/* Date Ver Who Comment */ +/* -------- ---- --- ------- */ +/* 11.04.03 1.00 Lad First version of implode.c */ +/* 02.05.03 1.00 Lad Stress test done */ +/* 22.04.10 1.01 Lad Documented */ +/*****************************************************************************/ + +#include <assert.h> +#include <string.h> + +#include "pklib.h" + +#if ((1200 < _MSC_VER) && (_MSC_VER < 1400)) +#pragma optimize("", off) // Fucking Microsoft VS.NET 2003 compiler !!! (_MSC_VER=1310) +#endif + +//----------------------------------------------------------------------------- +// Defines + +#define MAX_REP_LENGTH 0x204 // The longest allowed repetition + +//----------------------------------------------------------------------------- +// Tables + +static unsigned char DistBits[] = +{ + 0x02, 0x04, 0x04, 0x05, 0x05, 0x05, 0x05, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, + 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, + 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, + 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08 +}; + +static unsigned char DistCode[] = +{ + 0x03, 0x0D, 0x05, 0x19, 0x09, 0x11, 0x01, 0x3E, 0x1E, 0x2E, 0x0E, 0x36, 0x16, 0x26, 0x06, 0x3A, + 0x1A, 0x2A, 0x0A, 0x32, 0x12, 0x22, 0x42, 0x02, 0x7C, 0x3C, 0x5C, 0x1C, 0x6C, 0x2C, 0x4C, 0x0C, + 0x74, 0x34, 0x54, 0x14, 0x64, 0x24, 0x44, 0x04, 0x78, 0x38, 0x58, 0x18, 0x68, 0x28, 0x48, 0x08, + 0xF0, 0x70, 0xB0, 0x30, 0xD0, 0x50, 0x90, 0x10, 0xE0, 0x60, 0xA0, 0x20, 0xC0, 0x40, 0x80, 0x00 +}; + +static unsigned char ExLenBits[] = +{ + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08 +}; + +static unsigned char LenBits[] = +{ + 0x03, 0x02, 0x03, 0x03, 0x04, 0x04, 0x04, 0x05, 0x05, 0x05, 0x05, 0x06, 0x06, 0x06, 0x07, 0x07 +}; + +static unsigned char LenCode[] = +{ + 0x05, 0x03, 0x01, 0x06, 0x0A, 0x02, 0x0C, 0x14, 0x04, 0x18, 0x08, 0x30, 0x10, 0x20, 0x40, 0x00 +}; + +static unsigned char ChBitsAsc[] = +{ + 0x0B, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x08, 0x07, 0x0C, 0x0C, 0x07, 0x0C, 0x0C, + 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x0D, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, + 0x04, 0x0A, 0x08, 0x0C, 0x0A, 0x0C, 0x0A, 0x08, 0x07, 0x07, 0x08, 0x09, 0x07, 0x06, 0x07, 0x08, + 0x07, 0x06, 0x07, 0x07, 0x07, 0x07, 0x08, 0x07, 0x07, 0x08, 0x08, 0x0C, 0x0B, 0x07, 0x09, 0x0B, + 0x0C, 0x06, 0x07, 0x06, 0x06, 0x05, 0x07, 0x08, 0x08, 0x06, 0x0B, 0x09, 0x06, 0x07, 0x06, 0x06, + 0x07, 0x0B, 0x06, 0x06, 0x06, 0x07, 0x09, 0x08, 0x09, 0x09, 0x0B, 0x08, 0x0B, 0x09, 0x0C, 0x08, + 0x0C, 0x05, 0x06, 0x06, 0x06, 0x05, 0x06, 0x06, 0x06, 0x05, 0x0B, 0x07, 0x05, 0x06, 0x05, 0x05, + 0x06, 0x0A, 0x05, 0x05, 0x05, 0x05, 0x08, 0x07, 0x08, 0x08, 0x0A, 0x0B, 0x0B, 0x0C, 0x0C, 0x0C, + 0x0D, 0x0D, 0x0D, 0x0D, 0x0D, 0x0D, 0x0D, 0x0D, 0x0D, 0x0D, 0x0D, 0x0D, 0x0D, 0x0D, 0x0D, 0x0D, + 0x0D, 0x0D, 0x0D, 0x0D, 0x0D, 0x0D, 0x0D, 0x0D, 0x0D, 0x0D, 0x0D, 0x0D, 0x0D, 0x0D, 0x0D, 0x0D, + 0x0D, 0x0D, 0x0D, 0x0D, 0x0D, 0x0D, 0x0D, 0x0D, 0x0D, 0x0D, 0x0D, 0x0D, 0x0D, 0x0D, 0x0D, 0x0D, + 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, + 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, + 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, + 0x0D, 0x0C, 0x0D, 0x0D, 0x0D, 0x0C, 0x0D, 0x0D, 0x0D, 0x0C, 0x0D, 0x0D, 0x0D, 0x0D, 0x0C, 0x0D, + 0x0D, 0x0D, 0x0C, 0x0C, 0x0C, 0x0D, 0x0D, 0x0D, 0x0D, 0x0D, 0x0D, 0x0D, 0x0D, 0x0D, 0x0D, 0x0D +}; + +static unsigned short ChCodeAsc[] = +{ + 0x0490, 0x0FE0, 0x07E0, 0x0BE0, 0x03E0, 0x0DE0, 0x05E0, 0x09E0, + 0x01E0, 0x00B8, 0x0062, 0x0EE0, 0x06E0, 0x0022, 0x0AE0, 0x02E0, + 0x0CE0, 0x04E0, 0x08E0, 0x00E0, 0x0F60, 0x0760, 0x0B60, 0x0360, + 0x0D60, 0x0560, 0x1240, 0x0960, 0x0160, 0x0E60, 0x0660, 0x0A60, + 0x000F, 0x0250, 0x0038, 0x0260, 0x0050, 0x0C60, 0x0390, 0x00D8, + 0x0042, 0x0002, 0x0058, 0x01B0, 0x007C, 0x0029, 0x003C, 0x0098, + 0x005C, 0x0009, 0x001C, 0x006C, 0x002C, 0x004C, 0x0018, 0x000C, + 0x0074, 0x00E8, 0x0068, 0x0460, 0x0090, 0x0034, 0x00B0, 0x0710, + 0x0860, 0x0031, 0x0054, 0x0011, 0x0021, 0x0017, 0x0014, 0x00A8, + 0x0028, 0x0001, 0x0310, 0x0130, 0x003E, 0x0064, 0x001E, 0x002E, + 0x0024, 0x0510, 0x000E, 0x0036, 0x0016, 0x0044, 0x0030, 0x00C8, + 0x01D0, 0x00D0, 0x0110, 0x0048, 0x0610, 0x0150, 0x0060, 0x0088, + 0x0FA0, 0x0007, 0x0026, 0x0006, 0x003A, 0x001B, 0x001A, 0x002A, + 0x000A, 0x000B, 0x0210, 0x0004, 0x0013, 0x0032, 0x0003, 0x001D, + 0x0012, 0x0190, 0x000D, 0x0015, 0x0005, 0x0019, 0x0008, 0x0078, + 0x00F0, 0x0070, 0x0290, 0x0410, 0x0010, 0x07A0, 0x0BA0, 0x03A0, + 0x0240, 0x1C40, 0x0C40, 0x1440, 0x0440, 0x1840, 0x0840, 0x1040, + 0x0040, 0x1F80, 0x0F80, 0x1780, 0x0780, 0x1B80, 0x0B80, 0x1380, + 0x0380, 0x1D80, 0x0D80, 0x1580, 0x0580, 0x1980, 0x0980, 0x1180, + 0x0180, 0x1E80, 0x0E80, 0x1680, 0x0680, 0x1A80, 0x0A80, 0x1280, + 0x0280, 0x1C80, 0x0C80, 0x1480, 0x0480, 0x1880, 0x0880, 0x1080, + 0x0080, 0x1F00, 0x0F00, 0x1700, 0x0700, 0x1B00, 0x0B00, 0x1300, + 0x0DA0, 0x05A0, 0x09A0, 0x01A0, 0x0EA0, 0x06A0, 0x0AA0, 0x02A0, + 0x0CA0, 0x04A0, 0x08A0, 0x00A0, 0x0F20, 0x0720, 0x0B20, 0x0320, + 0x0D20, 0x0520, 0x0920, 0x0120, 0x0E20, 0x0620, 0x0A20, 0x0220, + 0x0C20, 0x0420, 0x0820, 0x0020, 0x0FC0, 0x07C0, 0x0BC0, 0x03C0, + 0x0DC0, 0x05C0, 0x09C0, 0x01C0, 0x0EC0, 0x06C0, 0x0AC0, 0x02C0, + 0x0CC0, 0x04C0, 0x08C0, 0x00C0, 0x0F40, 0x0740, 0x0B40, 0x0340, + 0x0300, 0x0D40, 0x1D00, 0x0D00, 0x1500, 0x0540, 0x0500, 0x1900, + 0x0900, 0x0940, 0x1100, 0x0100, 0x1E00, 0x0E00, 0x0140, 0x1600, + 0x0600, 0x1A00, 0x0E40, 0x0640, 0x0A40, 0x0A00, 0x1200, 0x0200, + 0x1C00, 0x0C00, 0x1400, 0x0400, 0x1800, 0x0800, 0x1000, 0x0000 +}; + +//----------------------------------------------------------------------------- +// Macros + +// Macro for calculating hash of the current byte pair. +// Note that most exact byte pair hash would be buffer[0] + buffer[1] << 0x08, +// but even this way gives nice indication of equal byte pairs, with significantly +// smaller size of the array that holds numbers of those hashes +#define BYTE_PAIR_HASH(buffer) ((buffer[0] * 4) + (buffer[1] * 5)) + +//----------------------------------------------------------------------------- +// Local functions + +// Builds the "hash_to_index" table and "pair_hash_offsets" table. +// Every element of "hash_to_index" will contain lowest index to the +// "pair_hash_offsets" table, effectively giving offset of the first +// occurence of the given PAIR_HASH in the input data. +static void SortBuffer(TCmpStruct * pWork, unsigned char * buffer_begin, unsigned char * buffer_end) +{ + unsigned short * phash_to_index; + unsigned char * buffer_ptr; + unsigned short total_sum = 0; + unsigned long byte_pair_hash; // Hash value of the byte pair + unsigned short byte_pair_offs; // Offset of the byte pair, relative to "work_buff" + + // Zero the entire "phash_to_index" table + memset(pWork->phash_to_index, 0, sizeof(pWork->phash_to_index)); + + // Step 1: Count amount of each PAIR_HASH in the input buffer + // The table will look like this: + // offs 0x000: Number of occurences of PAIR_HASH 0 + // offs 0x001: Number of occurences of PAIR_HASH 1 + // ... + // offs 0x8F7: Number of occurences of PAIR_HASH 0x8F7 (the highest hash value) + for(buffer_ptr = buffer_begin; buffer_ptr < buffer_end; buffer_ptr++) + pWork->phash_to_index[BYTE_PAIR_HASH(buffer_ptr)]++; + + // Step 2: Convert the table to the array of PAIR_HASH amounts. + // Each element contains count of PAIR_HASHes that is less or equal + // to element index + // The table will look like this: + // offs 0x000: Number of occurences of PAIR_HASH 0 or lower + // offs 0x001: Number of occurences of PAIR_HASH 1 or lower + // ... + // offs 0x8F7: Number of occurences of PAIR_HASH 0x8F7 or lower + for(phash_to_index = pWork->phash_to_index; phash_to_index < &pWork->phash_to_index_end; phash_to_index++) + { + total_sum = total_sum + phash_to_index[0]; + phash_to_index[0] = total_sum; + } + + // Step 3: Convert the table to the array of indexes. + // Now, each element contains index to the first occurence of given PAIR_HASH + for(buffer_end--; buffer_end >= buffer_begin; buffer_end--) + { + byte_pair_hash = BYTE_PAIR_HASH(buffer_end); + byte_pair_offs = (unsigned short)(buffer_end - pWork->work_buff); + + pWork->phash_to_index[byte_pair_hash]--; + pWork->phash_offs[pWork->phash_to_index[byte_pair_hash]] = byte_pair_offs; + } +} + +static void FlushBuf(TCmpStruct * pWork) +{ + unsigned char save_ch1; + unsigned char save_ch2; + unsigned int size = 0x800; + + pWork->write_buf(pWork->out_buff, &size, pWork->param); + + save_ch1 = pWork->out_buff[0x800]; + save_ch2 = pWork->out_buff[pWork->out_bytes]; + pWork->out_bytes -= 0x800; + + memset(pWork->out_buff, 0, sizeof(pWork->out_buff)); + + if(pWork->out_bytes != 0) + pWork->out_buff[0] = save_ch1; + if(pWork->out_bits != 0) + pWork->out_buff[pWork->out_bytes] = save_ch2; +} + +static void OutputBits(TCmpStruct * pWork, unsigned int nbits, unsigned long bit_buff) +{ + unsigned int out_bits; + + // If more than 8 bits to output, do recursion + if(nbits > 8) + { + OutputBits(pWork, 8, bit_buff); + bit_buff >>= 8; + nbits -= 8; + } + + // Add bits to the last out byte in out_buff; + out_bits = pWork->out_bits; + pWork->out_buff[pWork->out_bytes] |= (unsigned char)(bit_buff << out_bits); + pWork->out_bits += nbits; + + // If 8 or more bits, increment number of bytes + if(pWork->out_bits > 8) + { + pWork->out_bytes++; + bit_buff >>= (8 - out_bits); + + pWork->out_buff[pWork->out_bytes] = (unsigned char)bit_buff; + pWork->out_bits &= 7; + } + else + { + pWork->out_bits &= 7; + if(pWork->out_bits == 0) + pWork->out_bytes++; + } + + // If there is enough compressed bytes, flush them + if(pWork->out_bytes >= 0x800) + FlushBuf(pWork); +} + +// This function searches for a repetition +// (a previous occurence of the current byte sequence) +// Returns length of the repetition, and stores the backward distance +// to pWork structure. +static unsigned int FindRep(TCmpStruct * pWork, unsigned char * input_data) +{ + unsigned short * phash_to_index; // Pointer into pWork->phash_to_index table + unsigned short * phash_offs; // Pointer to the table containing offsets of each PAIR_HASH + unsigned char * repetition_limit; // An eventual repetition must be at position below this pointer + unsigned char * prev_repetition; // Pointer to the previous occurence of the current PAIR_HASH + unsigned char * prev_rep_end; // End of the previous repetition + unsigned char * input_data_ptr; + unsigned short phash_offs_index; // Index to the table with PAIR_HASH positions + unsigned short min_phash_offs; // The lowest allowed hash offset + unsigned short offs_in_rep; // Offset within found repetition + unsigned int equal_byte_count; // Number of bytes that are equal to the previous occurence + unsigned int rep_length = 1; // Length of the found repetition + unsigned int rep_length2; // Secondary repetition + unsigned char pre_last_byte; // Last but one byte from a repetion + unsigned short di_val; + + // Calculate the previous position of the PAIR_HASH + phash_to_index = pWork->phash_to_index + BYTE_PAIR_HASH(input_data); + min_phash_offs = (unsigned short)((input_data - pWork->work_buff) - pWork->dsize_bytes + 1); + phash_offs_index = phash_to_index[0]; + + // If the PAIR_HASH offset is below the limit, find a next one + phash_offs = pWork->phash_offs + phash_offs_index; + if(*phash_offs < min_phash_offs) + { + while(*phash_offs < min_phash_offs) + { + phash_offs_index++; + phash_offs++; + } + *phash_to_index = phash_offs_index; + } + + // Get the first location of the PAIR_HASH, + // and thus the first eventual location of byte repetition + phash_offs = pWork->phash_offs + phash_offs_index; + prev_repetition = pWork->work_buff + phash_offs[0]; + repetition_limit = input_data - 1; + + // If the current PAIR_HASH was not encountered before, + // we haven't found a repetition. + if(prev_repetition >= repetition_limit) + return 0; + + // We have found a match of a PAIR_HASH. Now we have to make sure + // that it is also a byte match, because PAIR_HASH is not unique. + // We compare the bytes and count the length of the repetition + input_data_ptr = input_data; + for(;;) + { + // If the first byte of the repetition and the so-far-last byte + // of the repetition are equal, we will compare the blocks. + if(*input_data_ptr == *prev_repetition && input_data_ptr[rep_length-1] == prev_repetition[rep_length-1]) + { + // Skip the current byte + prev_repetition++; + input_data_ptr++; + equal_byte_count = 2; + + // Now count how many more bytes are equal + while(equal_byte_count < MAX_REP_LENGTH) + { + prev_repetition++; + input_data_ptr++; + + // Are the bytes different ? + if(*prev_repetition != *input_data_ptr) + break; + + equal_byte_count++; + } + + // If we found a repetition of at least the same length, take it. + // If there are multiple repetitions in the input buffer, this will + // make sure that we find the most recent one, which in turn allows + // us to store backward length in less amount of bits + input_data_ptr = input_data; + if(equal_byte_count >= rep_length) + { + // Calculate the backward distance of the repetition. + // Note that the distance is stored as decremented by 1 + pWork->distance = (unsigned int)(input_data - prev_repetition + equal_byte_count - 1); + + // Repetitions longer than 10 bytes will be stored in more bits, + // so they need a bit different handling + if((rep_length = equal_byte_count) > 10) + break; + } + } + + // Move forward in the table of PAIR_HASH repetitions. + // There might be a more recent occurence of the same repetition. + phash_offs_index++; + phash_offs++; + prev_repetition = pWork->work_buff + phash_offs[0]; + + // If the next repetition is beyond the minimum allowed repetition, we are done. + if(prev_repetition >= repetition_limit) + { + // A repetition must have at least 2 bytes, otherwise it's not worth it + return (rep_length >= 2) ? rep_length : 0; + } + } + + // If the repetition has max length of 0x204 bytes, we can't go any fuhrter + if(equal_byte_count == MAX_REP_LENGTH) + { + pWork->distance--; + return equal_byte_count; + } + + // Check for possibility of a repetition that occurs at more recent position + phash_offs = pWork->phash_offs + phash_offs_index; + if(pWork->work_buff + phash_offs[1] >= repetition_limit) + return rep_length; + + // + // The following part checks if there isn't a longer repetition at + // a latter offset, that would lead to better compression. + // + // Example of data that can trigger this optimization: + // + // "EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEQQQQQQQQQQQQ" + // "XYZ" + // "EEEEEEEEEEEEEEEEQQQQQQQQQQQQ"; + // + // Description of data in this buffer + // [0x00] Single byte "E" + // [0x01] Single byte "E" + // [0x02] Repeat 0x1E bytes from [0x00] + // [0x20] Single byte "X" + // [0x21] Single byte "Y" + // [0x22] Single byte "Z" + // [0x23] 17 possible previous repetitions of length at least 0x10 bytes: + // - Repetition of 0x10 bytes from [0x00] "EEEEEEEEEEEEEEEE" + // - Repetition of 0x10 bytes from [0x01] "EEEEEEEEEEEEEEEE" + // - Repetition of 0x10 bytes from [0x02] "EEEEEEEEEEEEEEEE" + // ... + // - Repetition of 0x10 bytes from [0x0F] "EEEEEEEEEEEEEEEE" + // - Repetition of 0x1C bytes from [0x10] "EEEEEEEEEEEEEEEEQQQQQQQQQQQQ" + // The last repetition is the best one. + // + + pWork->offs09BC[0] = 0xFFFF; + pWork->offs09BC[1] = 0x0000; + di_val = 0; + + // Note: I failed to figure out what does the table "offs09BC" mean. + // If anyone has an idea, let me know to zezula_at_volny_dot_cz + for(offs_in_rep = 1; offs_in_rep < rep_length; ) + { + if(input_data[offs_in_rep] != input_data[di_val]) + { + di_val = pWork->offs09BC[di_val]; + if(di_val != 0xFFFF) + continue; + } + pWork->offs09BC[++offs_in_rep] = ++di_val; + } + + // + // Now go through all the repetitions from the first found one + // to the current input data, and check if any of them migh be + // a start of a greater sequence match. + // + + prev_repetition = pWork->work_buff + phash_offs[0]; + prev_rep_end = prev_repetition + rep_length; + rep_length2 = rep_length; + + for(;;) + { + rep_length2 = pWork->offs09BC[rep_length2]; + if(rep_length2 == 0xFFFF) + rep_length2 = 0; + + // Get the pointer to the previous repetition + phash_offs = pWork->phash_offs + phash_offs_index; + + // Skip those repetitions that don't reach the end + // of the first found repetition + do + { + phash_offs++; + phash_offs_index++; + prev_repetition = pWork->work_buff + *phash_offs; + if(prev_repetition >= repetition_limit) + return rep_length; + } + while(prev_repetition + rep_length2 < prev_rep_end); + + // Verify if the last but one byte from the repetition matches + // the last but one byte from the input data. + // If not, find a next repetition + pre_last_byte = input_data[rep_length - 2]; + if(pre_last_byte == prev_repetition[rep_length - 2]) + { + // If the new repetition reaches beyond the end + // of previously found repetition, reset the repetition length to zero. + if(prev_repetition + rep_length2 != prev_rep_end) + { + prev_rep_end = prev_repetition; + rep_length2 = 0; + } + } + else + { + phash_offs = pWork->phash_offs + phash_offs_index; + do + { + phash_offs++; + phash_offs_index++; + prev_repetition = pWork->work_buff + *phash_offs; + if(prev_repetition >= repetition_limit) + return rep_length; + } + while(prev_repetition[rep_length - 2] != pre_last_byte || prev_repetition[0] != input_data[0]); + + // Reset the length of the repetition to 2 bytes only + prev_rep_end = prev_repetition + 2; + rep_length2 = 2; + } + + // Find out how many more characters are equal to the first repetition. + while(*prev_rep_end == input_data[rep_length2]) + { + if(++rep_length2 >= 0x204) + break; + prev_rep_end++; + } + + // Is the newly found repetion at least as long as the previous one ? + if(rep_length2 >= rep_length) + { + // Calculate the distance of the new repetition + pWork->distance = (unsigned int)(input_data - prev_repetition - 1); + if((rep_length = rep_length2) == 0x204) + return rep_length; + + // Update the additional elements in the "offs09BC" table + // to reflect new rep length + while(offs_in_rep < rep_length2) + { + if(input_data[offs_in_rep] != input_data[di_val]) + { + di_val = pWork->offs09BC[di_val]; + if(di_val != 0xFFFF) + continue; + } + pWork->offs09BC[++offs_in_rep] = ++di_val; + } + } + } +} + +static void WriteCmpData(TCmpStruct * pWork) +{ + unsigned char * input_data_end; // Pointer to the end of the input data + unsigned char * input_data = pWork->work_buff + pWork->dsize_bytes + 0x204; + unsigned int input_data_ended = 0; // If 1, then all data from the input stream have been already loaded + unsigned int save_rep_length; // Saved length of current repetition + unsigned int save_distance = 0; // Saved distance of current repetition + unsigned int rep_length; // Length of the found repetition + unsigned int phase = 0; // + + // Store the compression type and dictionary size + pWork->out_buff[0] = (char)pWork->ctype; + pWork->out_buff[1] = (char)pWork->dsize_bits; + pWork->out_bytes = 2; + + // Reset output buffer to zero + memset(&pWork->out_buff[2], 0, sizeof(pWork->out_buff) - 2); + pWork->out_bits = 0; + + while(input_data_ended == 0) + { + unsigned int bytes_to_load = 0x1000; + int total_loaded = 0; + int bytes_loaded; + + // Load the bytes from the input stream, up to 0x1000 bytes + while(bytes_to_load != 0) + { + bytes_loaded = pWork->read_buf((char *)pWork->work_buff + pWork->dsize_bytes + 0x204 + total_loaded, + &bytes_to_load, + pWork->param); + if(bytes_loaded == 0) + { + if(total_loaded == 0 && phase == 0) + goto __Exit; + input_data_ended = 1; + break; + } + else + { + bytes_to_load -= bytes_loaded; + total_loaded += bytes_loaded; + } + } + + input_data_end = pWork->work_buff + pWork->dsize_bytes + total_loaded; + if(input_data_ended) + input_data_end += 0x204; + + // + // Warning: The end of the buffer passed to "SortBuffer" is actually 2 bytes beyond + // valid data. It is questionable if this is actually a bug or not, + // but it might cause the compressed data output to be dependent on random bytes + // that are in the buffer. + // To prevent that, the calling application must always zero the compression + // buffer before passing it to "implode" + // + + // Search the PAIR_HASHes of the loaded blocks. Also, include + // previously compressed data, if any. + switch(phase) + { + case 0: + SortBuffer(pWork, input_data, input_data_end + 1); + phase++; + if(pWork->dsize_bytes != 0x1000) + phase++; + break; + + case 1: + SortBuffer(pWork, input_data - pWork->dsize_bytes + 0x204, input_data_end + 1); + phase++; + break; + + default: + SortBuffer(pWork, input_data - pWork->dsize_bytes, input_data_end + 1); + break; + } + + // Perform the compression of the current block + while(input_data < input_data_end) + { + // Find if the current byte sequence wasn't there before. + rep_length = FindRep(pWork, input_data); + while(rep_length != 0) + { + // If we found repetition of 2 bytes, that is 0x100 or fuhrter back, + // don't bother. Storing the distance of 0x100 bytes would actually + // take more space than storing the 2 bytes as-is. + if(rep_length == 2 && pWork->distance >= 0x100) + break; + + // When we are at the end of the input data, we cannot allow + // the repetition to go past the end of the input data. + if(input_data_ended && input_data + rep_length > input_data_end) + { + // Shorten the repetition length so that it only covers valid data + rep_length = (unsigned long)(input_data_end - input_data); + if(rep_length < 2) + break; + + // If we got repetition of 2 bytes, that is 0x100 or more backward, don't bother + if(rep_length == 2 && pWork->distance >= 0x100) + break; + goto __FlushRepetition; + } + + if(rep_length >= 8 || input_data + 1 >= input_data_end) + goto __FlushRepetition; + + // Try to find better repetition 1 byte later. + // Example: "ARROCKFORT" "AROCKFORT" + // When "input_data" points to the second string, FindRep + // returns the occurence of "AR". But there is longer repetition "ROCKFORT", + // beginning 1 byte after. + save_rep_length = rep_length; + save_distance = pWork->distance; + rep_length = FindRep(pWork, input_data + 1); + + // Only use the new repetition if it's length is greater than the previous one + if(rep_length > save_rep_length) + { + // If the new repetition if only 1 byte better + // and the previous distance is less than 0x80 bytes, use the previous repetition + if(rep_length > save_rep_length + 1 || save_distance > 0x80) + { + // Flush one byte, so that input_data will point to the secondary repetition + OutputBits(pWork, pWork->nChBits[*input_data], pWork->nChCodes[*input_data]); + input_data++; + continue; + } + } + + // Revert to the previous repetition + rep_length = save_rep_length; + pWork->distance = save_distance; + + __FlushRepetition: + + OutputBits(pWork, pWork->nChBits[rep_length + 0xFE], pWork->nChCodes[rep_length + 0xFE]); + if(rep_length == 2) + { + OutputBits(pWork, pWork->dist_bits[pWork->distance >> 2], + pWork->dist_codes[pWork->distance >> 2]); + OutputBits(pWork, 2, pWork->distance & 3); + } + else + { + OutputBits(pWork, pWork->dist_bits[pWork->distance >> pWork->dsize_bits], + pWork->dist_codes[pWork->distance >> pWork->dsize_bits]); + OutputBits(pWork, pWork->dsize_bits, pWork->dsize_mask & pWork->distance); + } + + // Move the begin of the input data by the length of the repetition + input_data += rep_length; + goto _00402252; + } + + // If there was no previous repetition for the current position in the input data, + // just output the 9-bit literal for the one character + OutputBits(pWork, pWork->nChBits[*input_data], pWork->nChCodes[*input_data]); + input_data++; +_00402252:; + } + + if(input_data_ended == 0) + { + input_data -= 0x1000; + memcpy(pWork->work_buff, pWork->work_buff + 0x1000, pWork->dsize_bytes + 0x204); + } + } + +__Exit: + + // Write the termination literal + OutputBits(pWork, pWork->nChBits[0x305], pWork->nChCodes[0x305]); + if(pWork->out_bits != 0) + pWork->out_bytes++; + pWork->write_buf(pWork->out_buff, &pWork->out_bytes, pWork->param); + return; +} + +//----------------------------------------------------------------------------- +// Main imploding function + +unsigned int PKEXPORT implode( + unsigned int (*read_buf)(char *buf, unsigned int *size, void *param), + void (*write_buf)(char *buf, unsigned int *size, void *param), + char *work_buf, + void *param, + unsigned int *type, + unsigned int *dsize) +{ + TCmpStruct * pWork = (TCmpStruct *)work_buf; + unsigned int nChCode; + unsigned int nCount; + unsigned int i; + int nCount2; + + // Fill the work buffer information + // Note: The caller must zero the "work_buff" before passing it to implode + pWork->read_buf = read_buf; + pWork->write_buf = write_buf; + pWork->dsize_bytes = *dsize; + pWork->ctype = *type; + pWork->param = param; + pWork->dsize_bits = 4; + pWork->dsize_mask = 0x0F; + + // Test dictionary size + switch(*dsize) + { + case CMP_IMPLODE_DICT_SIZE3: // 0x1000 bytes + pWork->dsize_bits++; + pWork->dsize_mask |= 0x20; + // No break here !!! + + case CMP_IMPLODE_DICT_SIZE2: // 0x800 bytes + pWork->dsize_bits++; + pWork->dsize_mask |= 0x10; + // No break here !!! + + case CMP_IMPLODE_DICT_SIZE1: // 0x400 + break; + + default: + return CMP_INVALID_DICTSIZE; + } + + // Test the compression type + switch(*type) + { + case CMP_BINARY: // We will compress data with binary compression type + for(nChCode = 0, nCount = 0; nCount < 0x100; nCount++) + { + pWork->nChBits[nCount] = 9; + pWork->nChCodes[nCount] = (unsigned short)nChCode; + nChCode = (nChCode & 0x0000FFFF) + 2; + } + break; + + + case CMP_ASCII: // We will compress data with ASCII compression type + for(nCount = 0; nCount < 0x100; nCount++) + { + pWork->nChBits[nCount] = (unsigned char )(ChBitsAsc[nCount] + 1); + pWork->nChCodes[nCount] = (unsigned short)(ChCodeAsc[nCount] * 2); + } + break; + + default: + return CMP_INVALID_MODE; + } + + for(i = 0; i < 0x10; i++) + { + if(1 << ExLenBits[i]) + { + for(nCount2 = 0; nCount2 < (1 << ExLenBits[i]); nCount2++) + { + pWork->nChBits[nCount] = (unsigned char)(ExLenBits[i] + LenBits[i] + 1); + pWork->nChCodes[nCount] = (unsigned short)((nCount2 << (LenBits[i] + 1)) | ((LenCode[i] & 0xFFFF00FF) * 2) | 1); + nCount++; + } + } + } + + // Copy the distance codes and distance bits and perform the compression + memcpy(&pWork->dist_codes, DistCode, sizeof(DistCode)); + memcpy(&pWork->dist_bits, DistBits, sizeof(DistBits)); + WriteCmpData(pWork); + return CMP_NO_ERROR; +} |