1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
|
/*****************************************************************************/
/* adpcm.cpp Copyright (c) Ladislav Zezula 2003 */
/*---------------------------------------------------------------------------*/
/* This module contains implementation of adpcm decompression method used by */
/* Storm.dll to decompress WAVE files. Thanks to Tom Amigo for releasing */
/* his sources. */
/*---------------------------------------------------------------------------*/
/* Date Ver Who Comment */
/* -------- ---- --- ------- */
/* 11.03.03 1.00 Lad Splitted from Pkware.cpp */
/* 20.05.03 2.00 Lad Added compression */
/* 19.11.03 2.01 Dan Big endian handling */
/* 10.01.13 3.00 Lad Refactored, beautified, documented :-) */
/*****************************************************************************/
#include <stddef.h>
#include "adpcm.h"
//-----------------------------------------------------------------------------
// Tables necessary dor decompression
static int NextStepTable[] =
{
-1, 0, -1, 4, -1, 2, -1, 6,
-1, 1, -1, 5, -1, 3, -1, 7,
-1, 1, -1, 5, -1, 3, -1, 7,
-1, 2, -1, 4, -1, 6, -1, 8
};
static int StepSizeTable[] =
{
7, 8, 9, 10, 11, 12, 13, 14,
16, 17, 19, 21, 23, 25, 28, 31,
34, 37, 41, 45, 50, 55, 60, 66,
73, 80, 88, 97, 107, 118, 130, 143,
157, 173, 190, 209, 230, 253, 279, 307,
337, 371, 408, 449, 494, 544, 598, 658,
724, 796, 876, 963, 1060, 1166, 1282, 1411,
1552, 1707, 1878, 2066, 2272, 2499, 2749, 3024,
3327, 3660, 4026, 4428, 4871, 5358, 5894, 6484,
7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794,
32767
};
//-----------------------------------------------------------------------------
// Helper class for writing output ADPCM data
class TADPCMStream
{
public:
TADPCMStream(void * pvBuffer, size_t cbBuffer)
{
pbBufferEnd = (unsigned char *)pvBuffer + cbBuffer;
pbBuffer = (unsigned char *)pvBuffer;
}
bool ReadByteSample(unsigned char & ByteSample)
{
// Check if there is enough space in the buffer
if(pbBuffer >= pbBufferEnd)
return false;
ByteSample = *pbBuffer++;
return true;
}
bool WriteByteSample(unsigned char ByteSample)
{
// Check if there is enough space in the buffer
if(pbBuffer >= pbBufferEnd)
return false;
*pbBuffer++ = ByteSample;
return true;
}
bool ReadWordSample(short & OneSample)
{
// Check if we have enough space in the output buffer
if((size_t)(pbBufferEnd - pbBuffer) < sizeof(short))
return false;
// Write the sample
OneSample = pbBuffer[0] + (((short)pbBuffer[1]) << 0x08);
pbBuffer += sizeof(short);
return true;
}
bool WriteWordSample(short OneSample)
{
// Check if we have enough space in the output buffer
if((size_t)(pbBufferEnd - pbBuffer) < sizeof(short))
return false;
// Write the sample
*pbBuffer++ = (unsigned char)(OneSample & 0xFF);
*pbBuffer++ = (unsigned char)(OneSample >> 0x08);
return true;
}
int LengthProcessed(void * pvOutBuffer)
{
return (int)((unsigned char *)pbBuffer - (unsigned char *)pvOutBuffer);
}
unsigned char * pbBufferEnd;
unsigned char * pbBuffer;
};
//----------------------------------------------------------------------------
// Local functions
static inline short GetNextStepIndex(int StepIndex, unsigned int EncodedSample)
{
// Get the next step index
StepIndex = StepIndex + NextStepTable[EncodedSample & 0x1F];
// Don't make the step index overflow
if(StepIndex < 0)
StepIndex = 0;
else if(StepIndex > 88)
StepIndex = 88;
return (short)StepIndex;
}
static inline int UpdatePredictedSample(int PredictedSample, int EncodedSample, int Difference)
{
// Is the sign bit set?
if(EncodedSample & 0x40)
{
PredictedSample -= Difference;
if(PredictedSample <= -32768)
PredictedSample = -32768;
}
else
{
PredictedSample += Difference;
if(PredictedSample >= 32767)
PredictedSample = 32767;
}
return PredictedSample;
}
static inline int DecodeSample(int PredictedSample, int EncodedSample, int StepSize, int Difference)
{
if(EncodedSample & 0x01)
Difference += (StepSize >> 0);
if(EncodedSample & 0x02)
Difference += (StepSize >> 1);
if(EncodedSample & 0x04)
Difference += (StepSize >> 2);
if(EncodedSample & 0x08)
Difference += (StepSize >> 3);
if(EncodedSample & 0x10)
Difference += (StepSize >> 4);
if(EncodedSample & 0x20)
Difference += (StepSize >> 5);
return UpdatePredictedSample(PredictedSample, EncodedSample, Difference);
}
//----------------------------------------------------------------------------
// Compression routine
int CompressADPCM(void * pvOutBuffer, int cbOutBuffer, void * pvInBuffer, int cbInBuffer, int ChannelCount, int CompressionLevel)
{
TADPCMStream os(pvOutBuffer, cbOutBuffer); // The output stream
TADPCMStream is(pvInBuffer, cbInBuffer); // The input stream
unsigned char BitShift = (unsigned char)(CompressionLevel - 1);
short PredictedSamples[MAX_ADPCM_CHANNEL_COUNT];// Predicted samples for each channel
short StepIndexes[MAX_ADPCM_CHANNEL_COUNT]; // Step indexes for each channel
short InputSample; // Input sample for the current channel
int TotalStepSize;
int ChannelIndex;
int AbsDifference;
int Difference;
int MaxBitMask;
int StepSize;
// _tprintf(_T("== CMPR Started ==============\n"));
// First byte in the output stream contains zero. The second one contains the compression level
os.WriteByteSample(0);
if(!os.WriteByteSample(BitShift))
return 2;
// Set the initial step index for each channel
PredictedSamples[0] = PredictedSamples[1] = 0;
StepIndexes[0] = StepIndexes[1] = INITIAL_ADPCM_STEP_INDEX;
// Next, InitialSample value for each channel follows
for(int i = 0; i < ChannelCount; i++)
{
// Get the initial sample from the input stream
if(!is.ReadWordSample(InputSample))
return os.LengthProcessed(pvOutBuffer);
// Store the initial sample to our sample array
PredictedSamples[i] = InputSample;
// Also store the loaded sample to the output stream
if(!os.WriteWordSample(InputSample))
return os.LengthProcessed(pvOutBuffer);
}
// Get the initial index
ChannelIndex = ChannelCount - 1;
// Now keep reading the input data as long as there is something in the input buffer
while(is.ReadWordSample(InputSample))
{
int EncodedSample = 0;
// If we have two channels, we need to flip the channel index
ChannelIndex = (ChannelIndex + 1) % ChannelCount;
// Get the difference from the previous sample.
// If the difference is negative, set the sign bit to the encoded sample
AbsDifference = InputSample - PredictedSamples[ChannelIndex];
if(AbsDifference < 0)
{
AbsDifference = -AbsDifference;
EncodedSample |= 0x40;
}
// If the difference is too low (higher that difference treshold),
// write a step index modifier marker
StepSize = StepSizeTable[StepIndexes[ChannelIndex]];
if(AbsDifference < (StepSize >> CompressionLevel))
{
if(StepIndexes[ChannelIndex] != 0)
StepIndexes[ChannelIndex]--;
os.WriteByteSample(0x80);
}
else
{
// If the difference is too high, write marker that
// indicates increase in step size
while(AbsDifference > (StepSize << 1))
{
if(StepIndexes[ChannelIndex] >= 0x58)
break;
// Modify the step index
StepIndexes[ChannelIndex] += 8;
if(StepIndexes[ChannelIndex] > 0x58)
StepIndexes[ChannelIndex] = 0x58;
// Write the "modify step index" marker
StepSize = StepSizeTable[StepIndexes[ChannelIndex]];
os.WriteByteSample(0x81);
}
// Get the limit bit value
MaxBitMask = (1 << (BitShift - 1));
MaxBitMask = (MaxBitMask > 0x20) ? 0x20 : MaxBitMask;
Difference = StepSize >> BitShift;
TotalStepSize = 0;
for(int BitVal = 0x01; BitVal <= MaxBitMask; BitVal <<= 1)
{
if((TotalStepSize + StepSize) <= AbsDifference)
{
TotalStepSize += StepSize;
EncodedSample |= BitVal;
}
StepSize >>= 1;
}
PredictedSamples[ChannelIndex] = (short)UpdatePredictedSample(PredictedSamples[ChannelIndex],
EncodedSample,
Difference + TotalStepSize);
// Write the encoded sample to the output stream
if(!os.WriteByteSample((unsigned char)EncodedSample))
break;
// Calculates the step index to use for the next encode
StepIndexes[ChannelIndex] = GetNextStepIndex(StepIndexes[ChannelIndex], EncodedSample);
}
}
// _tprintf(_T("== CMPR Ended ================\n"));
return os.LengthProcessed(pvOutBuffer);
}
//----------------------------------------------------------------------------
// Decompression routine
int DecompressADPCM(void * pvOutBuffer, int cbOutBuffer, void * pvInBuffer, int cbInBuffer, int ChannelCount)
{
TADPCMStream os(pvOutBuffer, cbOutBuffer); // Output stream
TADPCMStream is(pvInBuffer, cbInBuffer); // Input stream
unsigned char EncodedSample;
unsigned char BitShift;
short PredictedSamples[MAX_ADPCM_CHANNEL_COUNT]; // Predicted sample for each channel
short StepIndexes[MAX_ADPCM_CHANNEL_COUNT]; // Predicted step index for each channel
int ChannelIndex; // Current channel index
// Initialize the StepIndex for each channel
PredictedSamples[0] = PredictedSamples[1] = 0;
StepIndexes[0] = StepIndexes[1] = INITIAL_ADPCM_STEP_INDEX;
// _tprintf(_T("== DCMP Started ==============\n"));
// The first byte is always zero, the second one contains bit shift (compression level - 1)
is.ReadByteSample(BitShift);
is.ReadByteSample(BitShift);
// _tprintf(_T("DCMP: BitShift = %u\n"), (unsigned int)(unsigned char)BitShift);
// Next, InitialSample value for each channel follows
for(int i = 0; i < ChannelCount; i++)
{
// Get the initial sample from the input stream
short InitialSample;
// Attempt to read the initial sample
if(!is.ReadWordSample(InitialSample))
return os.LengthProcessed(pvOutBuffer);
// _tprintf(_T("DCMP: Loaded InitialSample[%u]: %04X\n"), i, (unsigned int)(unsigned short)InitialSample);
// Store the initial sample to our sample array
PredictedSamples[i] = InitialSample;
// Also store the loaded sample to the output stream
if(!os.WriteWordSample(InitialSample))
return os.LengthProcessed(pvOutBuffer);
}
// Get the initial index
ChannelIndex = ChannelCount - 1;
// Keep reading as long as there is something in the input buffer
while(is.ReadByteSample(EncodedSample))
{
// _tprintf(_T("DCMP: Loaded Encoded Sample: %02X\n"), (unsigned int)(unsigned char)EncodedSample);
// If we have two channels, we need to flip the channel index
ChannelIndex = (ChannelIndex + 1) % ChannelCount;
if(EncodedSample == 0x80)
{
if(StepIndexes[ChannelIndex] != 0)
StepIndexes[ChannelIndex]--;
// _tprintf(_T("DCMP: Writing Decoded Sample: %04lX\n"), (unsigned int)(unsigned short)PredictedSamples[ChannelIndex]);
if(!os.WriteWordSample(PredictedSamples[ChannelIndex]))
return os.LengthProcessed(pvOutBuffer);
}
else if(EncodedSample == 0x81)
{
// Modify the step index
StepIndexes[ChannelIndex] += 8;
if(StepIndexes[ChannelIndex] > 0x58)
StepIndexes[ChannelIndex] = 0x58;
// _tprintf(_T("DCMP: New value of StepIndex: %04lX\n"), (unsigned int)(unsigned short)StepIndexes[ChannelIndex]);
// Next pass, keep going on the same channel
ChannelIndex = (ChannelIndex + 1) % ChannelCount;
}
else
{
int StepIndex = StepIndexes[ChannelIndex];
int StepSize = StepSizeTable[StepIndex];
// Encode one sample
PredictedSamples[ChannelIndex] = (short)DecodeSample(PredictedSamples[ChannelIndex],
EncodedSample,
StepSize,
StepSize >> BitShift);
// _tprintf(_T("DCMP: Writing decoded sample: %04X\n"), (unsigned int)(unsigned short)PredictedSamples[ChannelIndex]);
// Write the decoded sample to the output stream
if(!os.WriteWordSample(PredictedSamples[ChannelIndex]))
break;
// Calculates the step index to use for the next encode
StepIndexes[ChannelIndex] = GetNextStepIndex(StepIndex, EncodedSample);
// _tprintf(_T("DCMP: New step index: %04X\n"), (unsigned int)(unsigned short)StepIndexes[ChannelIndex]);
}
}
// _tprintf(_T("DCMP: Total length written: %u\n"), (unsigned int)os.LengthProcessed(pvOutBuffer));
// _tprintf(_T("== DCMP Ended ================\n"));
// Return total bytes written since beginning of the output buffer
return os.LengthProcessed(pvOutBuffer);
}
|