diff options
author | Neo2003 <none@none> | 2008-10-02 16:23:55 -0500 |
---|---|---|
committer | Neo2003 <none@none> | 2008-10-02 16:23:55 -0500 |
commit | 9b1c0e006f20091f28f3f468cfcab1feb51286bd (patch) | |
tree | b5d1ba94a656e6679f8737f9ea6bed1239b73b14 /dep/include/g3dlite/G3D/Array.h |
[svn] * Proper SVN structureinit
--HG--
branch : trunk
Diffstat (limited to 'dep/include/g3dlite/G3D/Array.h')
-rw-r--r-- | dep/include/g3dlite/G3D/Array.h | 1156 |
1 files changed, 1156 insertions, 0 deletions
diff --git a/dep/include/g3dlite/G3D/Array.h b/dep/include/g3dlite/G3D/Array.h new file mode 100644 index 00000000000..290563b6719 --- /dev/null +++ b/dep/include/g3dlite/G3D/Array.h @@ -0,0 +1,1156 @@ +/** + @file Array.h + + @maintainer Morgan McGuire, graphics3d.com + @cite Portions written by Aaron Orenstein, a@orenstein.name + + @created 2001-03-11 + @edited 2007-05-12 + + Copyright 2000-2007, Morgan McGuire. + All rights reserved. + */ + +#ifndef G3D_ARRAY_H +#define G3D_ARRAY_H + +#include "G3D/platform.h" +#include "G3D/debug.h" +#include "G3D/System.h" +#ifdef G3D_DEBUG +// For formatting error messages +# include "G3D/format.h" +#endif +#include <vector> +#include <algorithm> + +#ifdef G3D_WIN32 +# include <new> + +# pragma warning (push) + // debug information too long +# pragma warning( disable : 4312) +# pragma warning( disable : 4786) +#endif + + +namespace G3D { + +/** + Constant for passing to Array::resize + */ +const bool DONT_SHRINK_UNDERLYING_ARRAY = false; + +/** Constant for Array::sort */ +const int SORT_INCREASING = 1; +/** Constant for Array::sort */ +const int SORT_DECREASING = -1; + +/** + Dynamic 1D array. + + Objects must have a default constructor (constructor that + takes no arguments) in order to be used with this template. + You will get the error "no appropriate default constructor found" + if they do not. + + Do not use with objects that overload placement <code>operator new</code>, + since the speed of Array is partly due to pooled allocation. + + If SSE is defined Arrays allocate the first element aligned to + 16 bytes. + + + Array is highly optimized compared to std::vector. + Array operations are less expensive than on std::vector and for large + amounts of data, Array consumes only 1.5x the total size of the + data, while std::vector consumes 2.0x. The default + array takes up zero heap space. The first resize (or append) + operation grows it to a reasonable internal size so it is efficient + to append to small arrays. Memory is allocated using + System::alignedMalloc, which produces pointers aligned to 16-byte + boundaries for use with SSE instructions and uses pooled storage for + fast allocation. When Array needs to copy + data internally on a resize operation it correctly invokes copy + constructors of the elements (the MSVC6 implementation of + std::vector uses realloc, which can create memory leaks for classes + containing references and pointers). Array provides a guaranteed + safe way to access the underlying data as a flat C array -- + Array::getCArray. Although (T*)std::vector::begin() can be used for + this purpose, it is not guaranteed to succeed on all platforms. + + To serialize an array, see G3D::serialize. + + Do not subclass an Array. + */ +template <class T> +class Array { +private: + /** 0...num-1 are initialized elements, num...numAllocated-1 are not */ + T* data; + + int num; + int numAllocated; + + void init(int n, int a) { + debugAssert(n <= a); + debugAssert(n >= 0); + this->num = 0; + this->numAllocated = 0; + data = NULL; + if (a > 0) { + resize(n); + } else { + data = NULL; + } + } + + void _copy(const Array &other) { + init(other.num, other.num); + for (int i = 0; i < num; i++) { + data[i] = other.data[i]; + } + } + + /** + Returns true iff address points to an element of this array. + Used by append. + */ + inline bool inArray(const T* address) { + return (address >= data) && (address < data + num); + } + + + /** Only compiled if you use the sort procedure. */ + static bool __cdecl compareGT(const T& a, const T& b) { + return a > b; + } + + + /** + Allocates a new array of size numAllocated (not a parameter to the method) + and then copies at most oldNum elements from the old array to it. Destructors are + called for oldNum elements of the old array. + */ + void realloc(int oldNum) { + T* oldData = data; + + // The allocation is separate from the constructor invocation because we don't want + // to pay for the cost of constructors until the newly allocated + // elements are actually revealed to the application. They + // will be constructed in the resize() method. + + data = (T*)System::alignedMalloc(sizeof(T) * numAllocated, 16); + + // Call the copy constructors + {const int N = iMin(oldNum, numAllocated); + const T* end = data + N; + T* oldPtr = oldData; + for (T* ptr = data; ptr < end; ++ptr, ++oldPtr) { + + // Use placement new to invoke the constructor at the location + // that we determined. Use the copy constructor to make the assignment. + const T* constructed = new (ptr) T(*oldPtr); + + (void)constructed; + debugAssertM(constructed == ptr, + "new returned a different address than the one provided by Array."); + }} + + // Call destructors on the old array (if there is no destructor, this will compile away) + {const T* end = oldData + oldNum; + for (T* ptr = oldData; ptr < end; ++ptr) { + ptr->~T(); + }} + + + System::alignedFree(oldData); + } + +public: + + /** + C++ STL style iterator variable. Call begin() to get + the first iterator, pre-increment (++i) the iterator to get to + the next value. Use dereference (*i) to access the element. + */ + typedef T* Iterator; + typedef const T* ConstIterator; + + /** + C++ STL style iterator method. Returns the first iterator element. + Do not change the size of the array while iterating. + */ + Iterator begin() { + return data; + } + + ConstIterator begin() const { + return data; + } + /** + C++ STL style iterator method. Returns one after the last iterator + element. + */ + ConstIterator end() const { + return data + num; + } + + Iterator end() { + return data + num; + } + + /** + The array returned is only valid until the next append() or resize call, or + the Array is deallocated. + */ + T* getCArray() { + return data; + } + + /** + The array returned is only valid until the next append() or resize call, or + the Array is deallocated. + */ + const T* getCArray() const { + return data; + } + + /** Creates a zero length array (no heap allocation occurs until resize). */ + Array() { + init(0, 0); + } + + /** + Creates an array of size. + */ + Array(int size) { + init(size, size); + } + + /** + Copy constructor + */ + Array(const Array& other) { + _copy(other); + } + + /** + Destructor does not delete() the objects if T is a pointer type + (e.g. T = int*) instead, it deletes the <B>pointers themselves</B> and + leaves the objects. Call deleteAll if you want to dealocate + the objects referenced. Do not call deleteAll if <CODE>T</CODE> is not a pointer + type (e.g. do call Array<Foo*>::deleteAll, do <B>not</B> call Array<Foo>::deleteAll). + */ + ~Array() { + // Invoke the destructors on the elements + for (int i = 0; i < num; i++) { + (data + i)->~T(); + } + + System::alignedFree(data); + // Set to 0 in case this Array is global and gets referenced during app exit + data = NULL; + num = 0; + numAllocated = 0; + } + + + /** + Removes all elements. Use resize(0, false) or fastClear if you want to + remove all elements without deallocating the underlying array + so that future append() calls will be faster. + */ + void clear() { + resize(0); + } + + /** resize(0, false) */ + void fastClear() { + resize(0, false); + } + + /** + Assignment operator. + */ + Array& operator=(const Array& other) { + resize(other.num); + for (int i = 0; i < num; ++i) { + data[i] = other[i]; + } + return *this; + } + + Array& operator=(const std::vector<T>& other) { + resize((int)other.size()); + for (int i = 0; i < num; ++i) { + data[i] = other[i]; + } + return *this; + } + + /** + Number of elements in the array. + */ + inline int size() const { + return num; + } + + /** + Number of elements in the array. (Same as size; this is just + here for convenience). + */ + inline int length() const { + return size(); + } + + /** + Swaps element index with the last element in the array then + shrinks the array by one. + */ + void fastRemove(int index) { + debugAssert(index >= 0); + debugAssert(index < num); + data[index] = data[num - 1]; + resize(size() - 1); + } + + /** + Resizes, calling the default constructor for + newly created objects and shrinking the underlying + array as needed (and calling destructors as needed). + */ + void resize(int n) { + resize(n, true); + } + + /** Resizes without shrinking the underlying array */ + void fastResize(int n) { + resize(n, false); + } + + + /** + Inserts at the specified index and shifts all other elements up by one. + */ + void insert(int n, const T& value) { + // Add space for the extra element + resize(num + 1, false); + + for (int i = num - 1; i > n; --i) { + data[i] = data[i - 1]; + } + data[n] = value; + } + + /** @param shrinkIfNecessary if false, memory will never be + reallocated when the array shrinks. This makes resizing much + faster but can waste memory. */ + void resize(int n, bool shrinkIfNecessary) { + int oldNum = num; + num = n; + + // Call the destructors on newly hidden elements if there are any + for (int i = num; i < oldNum; ++i) { + (data + i)->~T(); + } + + // Once allocated, always maintain 10 elements or 32 bytes, whichever is higher. + static const int minSize = iMax(10, 32 / sizeof(T)); + + if (num > numAllocated) { + // Grow the underlying array + + if (numAllocated == 0) { + // First allocation; grow to exactly the size requested to avoid wasting space. + numAllocated = n; + debugAssert(oldNum == 0); + realloc(oldNum); + } else { + + if (num < minSize) { + // Grow to at least the minimum size + numAllocated = minSize; + + } else { + + // Increase the underlying size of the array. Grow aggressively + // up to 64k, less aggressively up to 400k, and then grow relatively + // slowly (1.5x per resize) to avoid excessive space consumption. + // + // These numbers are tweaked according to performance tests. + + float growFactor = 3.0; + + size_t oldSizeBytes = numAllocated * sizeof(T); + if (oldSizeBytes > 400000) { + // Avoid bloat + growFactor = 1.5; + } else if (oldSizeBytes > 64000) { + // This is what std:: uses at all times + growFactor = 2.0; + } + + numAllocated = (num - numAllocated) + (int)(numAllocated * growFactor); + + if (numAllocated < minSize) { + numAllocated = minSize; + } + } + + realloc(oldNum); + } + + } else if ((num <= numAllocated / 3) && shrinkIfNecessary && (num > minSize)) { + // Shrink the underlying array + + // Only copy over old elements that still remain after resizing + // (destructors were called for others if we're shrinking) + realloc(iMin(num, oldNum)); + + } + + // Call the constructors on newly revealed elements. + // Do not use parens because we don't want the intializer + // invoked for POD types. + for (int i = oldNum; i < num; ++i) { + new (data + i) T; + } + } + + /** + Add an element to the end of the array. Will not shrink the underlying array + under any circumstances. It is safe to append an element that is already + in the array. + */ + inline void append(const T& value) { + + if (num < numAllocated) { + // This is a simple situation; just stick it in the next free slot using + // the copy constructor. + new (data + num) T(value); + ++num; + } else if (inArray(&value)) { + // The value was in the original array; resizing + // is dangerous because it may move the value + // we have a reference to. + T tmp = value; + append(tmp); + } else { + // Here we run the empty initializer where we don't have to, but + // this simplifies the computation. + resize(num + 1, DONT_SHRINK_UNDERLYING_ARRAY); + data[num - 1] = value; + } + } + + + inline void append(const T& v1, const T& v2) { + if (inArray(&v1) || inArray(&v2)) { + T t1 = v1; + T t2 = v2; + append(t1, t2); + } else if (num + 1 < numAllocated) { + // This is a simple situation; just stick it in the next free slot using + // the copy constructor. + new (data + num) T(v1); + new (data + num + 1) T(v2); + num += 2; + } else { + resize(num + 2, DONT_SHRINK_UNDERLYING_ARRAY); + data[num - 2] = v1; + data[num - 1] = v2; + } + } + + + inline void append(const T& v1, const T& v2, const T& v3) { + if (inArray(&v1) || inArray(&v2) || inArray(&v3)) { + T t1 = v1; + T t2 = v2; + T t3 = v3; + append(t1, t2, t3); + } else if (num + 2 < numAllocated) { + // This is a simple situation; just stick it in the next free slot using + // the copy constructor. + new (data + num) T(v1); + new (data + num + 1) T(v2); + new (data + num + 2) T(v3); + num += 3; + } else { + resize(num + 3, DONT_SHRINK_UNDERLYING_ARRAY); + data[num - 3] = v1; + data[num - 2] = v2; + data[num - 1] = v3; + } + } + + + inline void append(const T& v1, const T& v2, const T& v3, const T& v4) { + if (inArray(&v1) || inArray(&v2) || inArray(&v3) || inArray(&v4)) { + T t1 = v1; + T t2 = v2; + T t3 = v3; + T t4 = v4; + append(t1, t2, t3, t4); + } else if (num + 3 < numAllocated) { + // This is a simple situation; just stick it in the next free slot using + // the copy constructor. + new (data + num) T(v1); + new (data + num + 1) T(v2); + new (data + num + 2) T(v3); + new (data + num + 3) T(v4); + num += 4; + } else { + resize(num + 4, DONT_SHRINK_UNDERLYING_ARRAY); + data[num - 4] = v1; + data[num - 3] = v2; + data[num - 2] = v3; + data[num - 1] = v4; + } + } + + /** + Returns true if the given element is in the array. + */ + bool contains(const T& e) const { + for (int i = 0; i < size(); ++i) { + if ((*this)[i] == e) { + return true; + } + } + + return false; + } + + /** + Append the elements of array. Cannot be called with this array + as an argument. + */ + void append(const Array<T>& array) { + debugAssert(this != &array); + int oldNum = num; + int arrayLength = array.length(); + + resize(num + arrayLength, false); + + for (int i = 0; i < arrayLength; i++) { + data[oldNum + i] = array.data[i]; + } + } + + /** + Pushes a new element onto the end and returns its address. + This is the same as A.resize(A.size() + 1, false); A.last() + */ + inline T& next() { + resize(num + 1, false); + return last(); + } + + /** + Pushes an element onto the end (appends) + */ + inline void push(const T& value) { + append(value); + } + + inline void push(const Array<T>& array) { + append(array); + } + + /** Alias to provide std::vector compatibility */ + inline void push_back(const T& v) { + push(v); + } + + /** "The member function removes the last element of the controlled sequence, which must be non-empty." + For compatibility with std::vector. */ + inline void pop_back() { + pop(); + } + + /** + "The member function returns the storage currently allocated to hold the controlled + sequence, a value at least as large as size()" + For compatibility with std::vector. + */ + int capacity() const { + return numAllocated; + } + + /** + "The member function returns a reference to the first element of the controlled sequence, + which must be non-empty." + For compatibility with std::vector. + */ + T& front() { + return (*this)[0]; + } + + /** + "The member function returns a reference to the first element of the controlled sequence, + which must be non-empty." + For compatibility with std::vector. + */ + const T& front() const { + return (*this)[0]; + } + + /** + Removes the last element and returns it. By default, shrinks the underlying array. + */ + inline T pop(bool shrinkUnderlyingArrayIfNecessary = true) { + debugAssert(num > 0); + T temp = data[num - 1]; + resize(num - 1, shrinkUnderlyingArrayIfNecessary); + return temp; + } + + /** Pops the last element and discards it without returning anything. Faster than pop. + By default, does not shrink the underlying array.*/ + inline void popDiscard(bool shrinkUnderlyingArrayIfNecessary = false) { + debugAssert(num > 0); + resize(num - 1, shrinkUnderlyingArrayIfNecessary); + } + + + /** + "The member function swaps the controlled sequences between *this and str." + Note that this is slower than the optimal std implementation. + + For compatibility with std::vector. + */ + void swap(Array<T>& str) { + Array<T> temp = str; + str = *this; + *this = temp; + } + + + /** + Performs bounds checks in debug mode + */ + inline T& operator[](int n) { + debugAssertM((n >= 0) && (n < num), format("Array index out of bounds. n = %d, size() = %d", n, num)); + debugAssert(data!=NULL); + return data[n]; + } + + inline T& operator[](unsigned int n) { + debugAssertM(((int)n < num), format("Array index out of bounds. n = %d, size() = %d", n, num)); + return data[n]; + } + + /** + Performs bounds checks in debug mode + */ + inline const T& operator[](int n) const { + debugAssert((n >= 0) && (n < num)); + debugAssert(data!=NULL); + return data[n]; + } + + inline const T& operator[](unsigned int n) const { + debugAssert((n < (unsigned int)num)); + debugAssert(data!=NULL); + return data[n]; + } + + inline T& randomElement() { + debugAssert(num > 0); + debugAssert(data!=NULL); + return data[iRandom(0, num - 1)]; + } + + inline const T& randomElement() const { + debugAssert(num > 0); + debugAssert(data!=NULL); + return data[iRandom(0, num - 1)]; + } + + /** + Returns the last element, performing a check in + debug mode that there is at least one element. + */ + inline const T& last() const { + debugAssert(num > 0); + debugAssert(data!=NULL); + return data[num - 1]; + } + + /** Returns element lastIndex() */ + inline T& last() { + debugAssert(num > 0); + debugAssert(data!=NULL); + return data[num - 1]; + } + + /** Returns <i>size() - 1</i> */ + inline int lastIndex() const { + debugAssertM(num > 0, "Array is empty"); + return num - 1; + } + + inline int firstIndex() const { + debugAssertM(num > 0, "Array is empty"); + return 0; + } + + /** Returns element firstIndex(), performing a check in debug mode to ensure that there is at least one */ + inline T& first() { + debugAssertM(num > 0, "Array is empty"); + return data[0]; + } + + inline const T& first() const { + debugAssertM(num > 0, "Array is empty"); + return data[0]; + } + + /** Returns iFloor(size() / 2), throws an assertion in debug mode if the array is empty */ + inline int middleIndex() const { + debugAssertM(num > 0, "Array is empty"); + return num >> 1; + } + + /** Returns element middleIndex() */ + inline const T& middle() const { + debugAssertM(num > 0, "Array is empty"); + return data[num >> 1]; + } + + /** Returns element middleIndex() */ + inline T& middle() { + debugAssertM(num > 0, "Array is empty"); + return data[num >> 1]; + } + + /** + Calls delete on all objects[0...size-1] + and sets the size to zero. + */ + void deleteAll() { + for (int i = 0; i < num; i++) { + delete data[i]; + } + resize(0); + } + + /** + Returns the index of (the first occurance of) an index or -1 if + not found. + */ + int findIndex(const T& value) const { + for (int i = 0; i < num; ++i) { + if (data[i] == value) { + return i; + } + } + return -1; + } + + /** + Finds an element and returns the iterator to it. If the element + isn't found then returns end(). + */ + Iterator find(const T& value) { + for (int i = 0; i < num; ++i) { + if (data[i] == value) { + return data + i; + } + } + return end(); + } + + ConstIterator find(const T& value) const { + for (int i = 0; i < num; ++i) { + if (data[i] == value) { + return data + i; + } + } + return end(); + } + + /** + Removes count elements from the array + referenced either by index or Iterator. + */ + void remove(Iterator element, int count = 1) { + debugAssert((element >= begin()) && (element < end())); + debugAssert((count > 0) && (element + count) <= end()); + Iterator last = end() - count; + + while(element < last) { + element[0] = element[count]; + ++element; + } + + resize(num - count); + } + + void remove(int index, int count = 1) { + debugAssert((index >= 0) && (index < num)); + debugAssert((count > 0) && (index + count <= num)); + + remove(begin() + index, count); + } + + /** + Reverse the elements of the array in place. + */ + void reverse() { + T temp; + + int n2 = num / 2; + for (int i = 0; i < n2; ++i) { + temp = data[num - 1 - i]; + data[num - 1 - i] = data[i]; + data[i] = temp; + } + } + + /** + Sort using a specific less-than function, e.g.: + + <PRE> + bool __cdecl myLT(const MyClass& elem1, const MyClass& elem2) { + return elem1.x < elem2.x; + } + </PRE> + + Note that for pointer arrays, the <CODE>const</CODE> must come + <I>after</I> the class name, e.g., <CODE>Array<MyClass*></CODE> uses: + + <PRE> + bool __cdecl myLT(MyClass*const& elem1, MyClass*const& elem2) { + return elem1->x < elem2->x; + } + </PRE> + */ + void sort(bool (__cdecl *lessThan)(const T& elem1, const T& elem2)) { + std::sort(data, data + num, lessThan); + } + + + /** + Sorts the array in increasing order using the > or < operator. To + invoke this method on Array<T>, T must override those operator. + You can overide these operators as follows: + <code> + bool T::operator>(const T& other) const { + return ...; + } + bool T::operator<(const T& other) const { + return ...; + } + </code> + */ + void sort(int direction = SORT_INCREASING) { + if (direction == SORT_INCREASING) { + std::sort(data, data + num); + } else { + std::sort(data, data + num, compareGT); + } + } + + /** + Sorts elements beginIndex through and including endIndex. + */ + void sortSubArray(int beginIndex, int endIndex, int direction = SORT_INCREASING) { + if (direction == SORT_INCREASING) { + std::sort(data + beginIndex, data + endIndex + 1); + } else { + std::sort(data + beginIndex, data + endIndex + 1, compareGT); + } + } + + void sortSubArray(int beginIndex, int endIndex, bool (__cdecl *lessThan)(const T& elem1, const T& elem2)) { + std::sort(data + beginIndex, data + endIndex + 1, lessThan); + } + + /** + The StrictWeakOrdering can be either a class that overloads the function call operator() or + a function pointer of the form <code>bool (__cdecl *lessThan)(const T& elem1, const T& elem2)</code> + */ + template<typename StrictWeakOrdering> + void sortSubArray(int beginIndex, int endIndex, StrictWeakOrdering& lessThan) { + std::sort(data + beginIndex, data + endIndex + 1, lessThan); + } + + /** Uses < and == to evaluate operator(); this is the default comparator for Array::partition. */ + class DefaultComparator { + public: + inline int operator()(const T& A, const T& B) const { + if (A < B) { + return 1; + } else if (A == B) { + return 0; + } else { + return -1; + } + } + }; + + /** The output arrays are resized with fastClear() so that if they are already of the same size + as this array no memory is allocated during partitioning. + + @param comparator A function, or class instance with an overloaded operator() that compares + two elements of type <code>T</code> and returns 0 if they are equal, -1 if the second is smaller, + and 1 if the first is smaller (i.e., following the conventions of std::string::compare). For example: + + <pre> + int compare(int A, int B) { + if (A < B) { + return 1; + } else if (A == B) { + return 0; + } else { + return -1; + } + } + </pre> + */ + template<typename Comparator> + void partition( + const T& partitionElement, + Array<T>& ltArray, + Array<T>& eqArray, + Array<T>& gtArray, + const Comparator& comparator) const { + + // Make sure all arrays are independent + debugAssert(<Array != this); + debugAssert(&eqArray != this); + debugAssert(>Array != this); + debugAssert(<Array != &eqArray); + debugAssert(<Array != >Array); + debugAssert(&eqArray != >Array); + + // Clear the arrays + ltArray.fastClear(); + eqArray.fastClear(); + gtArray.fastClear(); + + // Form a table of buckets for lt, eq, and gt + Array<T>* bucket[3] = {<Array, &eqArray, >Array}; + + for (int i = 0; i < num; ++i) { + int c = comparator(partitionElement, data[i]); + debugAssertM(c >= -1 && c <= 1, "Comparator returned an illegal value."); + + // Insert into the correct bucket, 0, 1, or 2 + bucket[c + 1]->append(data[i]); + } + } + + /** + Uses < and == on elements to perform a partition. See partition(). + */ + void partition( + const T& partitionElement, + Array<T>& ltArray, + Array<T>& eqArray, + Array<T>& gtArray) const { + + partition(partitionElement, ltArray, eqArray, gtArray, typename Array<T>::DefaultComparator()); + } + + /** + Paritions the array into those below the median, those above the median, and those elements + equal to the median in expected O(n) time using quickselect. If the array has an even + number of different elements, the median for partition purposes is the largest value + less than the median. + + @param tempArray used for working scratch space + @param comparator see parition() for a discussion.*/ + template<typename Comparator> + void medianPartition( + Array<T>& ltMedian, + Array<T>& eqMedian, + Array<T>& gtMedian, + Array<T>& tempArray, + const Comparator& comparator) const { + + ltMedian.fastClear(); + eqMedian.fastClear(); + gtMedian.fastClear(); + + // Handle trivial cases first + switch (size()) { + case 0: + // Array is empty; no parition is possible + return; + + case 1: + // One element + eqMedian.append(first()); + return; + + case 2: + { + // Two element array; median is the smaller + int c = comparator(first(), last()); + + switch (c) { + case -1: + // first was bigger + eqMedian.append(last()); + gtMedian.append(first()); + break; + + case 0: + // Both equal to the median + eqMedian.append(first(), last()); + break; + + case 1: + // Last was bigger + eqMedian.append(first()); + gtMedian.append(last()); + break; + } + } + return; + } + + // All other cases use a recursive randomized median + + // Number of values less than all in the current arrays + int ltBoost = 0; + + // Number of values greater than all in the current arrays + int gtBoost = 0; + + // For even length arrays, force the gt array to be one larger than the + // lt array: + // [1 2 3] size = 3, choose half = (s + 1) /2 + // + int lowerHalfSize, upperHalfSize; + if (isEven(size())) { + lowerHalfSize = size() / 2; + upperHalfSize = lowerHalfSize + 1; + } else { + lowerHalfSize = upperHalfSize = (size() + 1) / 2; + } + const T* xPtr = NULL; + + // Maintain pointers to the arrays; we'll switch these around during sorting + // to avoid copies. + const Array<T>* source = this; + Array<T>* lt = <Median; + Array<T>* eq = &eqMedian; + Array<T>* gt = >Median; + Array<T>* extra = &tempArray; + + while (true) { + // Choose a random element -- choose the middle element; this is theoretically + // suboptimal, but for loosly sorted array is actually the best strategy + + xPtr = &(source->middle()); + if (source->size() == 1) { + // Done; there's only one element left + break; + } + const T& x = *xPtr; + + // Note: partition (fast) clears the arrays for us + source->partition(x, *lt, *eq, *gt, comparator); + + int L = lt->size() + ltBoost + eq->size(); + int U = gt->size() + gtBoost + eq->size(); + if ((L >= lowerHalfSize) && + (U >= upperHalfSize)) { + + // x must be the partition median + break; + + } else if (L < lowerHalfSize) { + + // x must be smaller than the median. Recurse into the 'gt' array. + ltBoost += lt->size() + eq->size(); + + // The new gt array will be the old source array, unless + // that was the this pointer (i.e., unless we are on the + // first iteration) + Array<T>* newGt = (source == this) ? extra : const_cast<Array<T>*>(source); + + // Now set up the gt array as the new source + source = gt; + gt = newGt; + + } else { + + // x must be bigger than the median. Recurse into the 'lt' array. + gtBoost += gt->size() + eq->size(); + + // The new lt array will be the old source array, unless + // that was the this pointer (i.e., unless we are on the + // first iteration) + Array<T>* newLt = (source == this) ? extra : const_cast<Array<T>*>(source); + + // Now set up the lt array as the new source + source = lt; + lt = newLt; + } + } + + // Now that we know the median, make a copy of it (since we're about to destroy the array that it + // points into). + T median = *xPtr; + xPtr = NULL; + + // Partition the original array (note that this fast clears for us) + partition(median, ltMedian, eqMedian, gtMedian, comparator); + } + + /** + Computes a median partition using the default comparator and a dynamically allocated temporary + working array. If the median is not in the array, it is chosen to be the largest value smaller + than the true median. + */ + void medianPartition( + Array<T>& ltMedian, + Array<T>& eqMedian, + Array<T>& gtMedian) const { + + Array<T> temp; + medianPartition(ltMedian, eqMedian, gtMedian, temp, DefaultComparator()); + } + + + /** Redistributes the elements so that the new order is statistically independent + of the original order. O(n) time.*/ + void randomize() { + T temp; + + for (int i = size() - 1; i >= 0; --i) { + int x = iRandom(0, i); + + temp = data[i]; + data[i] = data[x]; + data[x] = temp; + } + } + + +}; + + +/** Array::contains for C-arrays */ +template<class T> bool contains(const T* array, int len, const T& e) { + for (int i = len - 1; i >= 0; --i) { + if (array[i] == e) { + return true; + } + } + return false; +} + +} // namespace + +#endif + +#ifdef G3D_WIN32 +# pragma warning (push) +#endif |