aboutsummaryrefslogtreecommitdiff
path: root/dep/recastnavigation/Recast/Source
diff options
context:
space:
mode:
authorjackpoz <giacomopoz@gmail.com>2014-06-21 00:00:54 +0200
committerjackpoz <giacomopoz@gmail.com>2014-06-25 22:04:06 +0200
commited5e3fceed5721e88fcd22018c41df65626f6557 (patch)
tree3bc584d255c0d6ffb3a043be2c3aa299c4eb74cb /dep/recastnavigation/Recast/Source
parentff257363383a4411c013879804512bbef272ba4c (diff)
Core/MMAPs: Update recast
Update recast to https://github.com/memononen/recastnavigation/commit/42b96b7306d39bb7680ddb0f89d480a8296c83ff Previous MMAPs might still work but it's recommended to re-extract them.
Diffstat (limited to 'dep/recastnavigation/Recast/Source')
-rw-r--r--dep/recastnavigation/Recast/Source/RecastContour.cpp535
-rw-r--r--dep/recastnavigation/Recast/Source/RecastLayers.cpp2
-rw-r--r--dep/recastnavigation/Recast/Source/RecastMesh.cpp86
-rw-r--r--dep/recastnavigation/Recast/Source/RecastMeshDetail.cpp279
-rw-r--r--dep/recastnavigation/Recast/Source/RecastRegion.cpp427
5 files changed, 1077 insertions, 252 deletions
diff --git a/dep/recastnavigation/Recast/Source/RecastContour.cpp b/dep/recastnavigation/Recast/Source/RecastContour.cpp
index 5c324bcedfe..8aa9d1d92a1 100644
--- a/dep/recastnavigation/Recast/Source/RecastContour.cpp
+++ b/dep/recastnavigation/Recast/Source/RecastContour.cpp
@@ -20,6 +20,7 @@
#include <math.h>
#include <string.h>
#include <stdio.h>
+#include <stdlib.h>
#include "Recast.h"
#include "RecastAlloc.h"
#include "RecastAssert.h"
@@ -36,7 +37,7 @@ static int getCornerHeight(int x, int y, int i, int dir,
unsigned int regs[4] = {0,0,0,0};
// Combine region and area codes in order to prevent
- // border vertices which are in between two areas to be removed.
+ // border vertices which are in between two areas to be removed.
regs[0] = chf.spans[i].reg | (chf.areas[i] << 16);
if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
@@ -187,27 +188,6 @@ static float distancePtSeg(const int x, const int z,
const int px, const int pz,
const int qx, const int qz)
{
-/* float pqx = (float)(qx - px);
- float pqy = (float)(qy - py);
- float pqz = (float)(qz - pz);
- float dx = (float)(x - px);
- float dy = (float)(y - py);
- float dz = (float)(z - pz);
- float d = pqx*pqx + pqy*pqy + pqz*pqz;
- float t = pqx*dx + pqy*dy + pqz*dz;
- if (d > 0)
- t /= d;
- if (t < 0)
- t = 0;
- else if (t > 1)
- t = 1;
-
- dx = px + t*pqx - x;
- dy = py + t*pqy - y;
- dz = pz + t*pqz - z;
-
- return dx*dx + dy*dy + dz*dz;*/
-
float pqx = (float)(qx - px);
float pqz = (float)(qz - pz);
float dx = (float)(x - px);
@@ -257,13 +237,13 @@ static void simplifyContour(rcIntArray& points, rcIntArray& simplified,
simplified.push(points[i*4+2]);
simplified.push(i);
}
- }
+ }
}
if (simplified.size() == 0)
{
// If there is no connections at all,
- // create some initial points for the simplification process.
+ // create some initial points for the simplification process.
// Find lower-left and upper-right vertices of the contour.
int llx = points[0];
int lly = points[1];
@@ -311,19 +291,19 @@ static void simplifyContour(rcIntArray& points, rcIntArray& simplified,
{
int ii = (i+1) % (simplified.size()/4);
- const int ax = simplified[i*4+0];
- const int az = simplified[i*4+2];
- const int ai = simplified[i*4+3];
-
- const int bx = simplified[ii*4+0];
- const int bz = simplified[ii*4+2];
- const int bi = simplified[ii*4+3];
+ int ax = simplified[i*4+0];
+ int az = simplified[i*4+2];
+ int ai = simplified[i*4+3];
+
+ int bx = simplified[ii*4+0];
+ int bz = simplified[ii*4+2];
+ int bi = simplified[ii*4+3];
// Find maximum deviation from the segment.
float maxd = 0;
int maxi = -1;
int ci, cinc, endi;
-
+
// Traverse the segment in lexilogical order so that the
// max deviation is calculated similarly when traversing
// opposite segments.
@@ -338,6 +318,8 @@ static void simplifyContour(rcIntArray& points, rcIntArray& simplified,
cinc = pn-1;
ci = (bi+cinc) % pn;
endi = ai;
+ rcSwap(ax, bx);
+ rcSwap(az, bz);
}
// Tessellate only outer edges or edges between areas.
@@ -397,11 +379,11 @@ static void simplifyContour(rcIntArray& points, rcIntArray& simplified,
const int bx = simplified[ii*4+0];
const int bz = simplified[ii*4+2];
const int bi = simplified[ii*4+3];
-
+
// Find maximum deviation from the segment.
int maxi = -1;
int ci = (ai+1) % pn;
-
+
// Tessellate only outer edges or edges between areas.
bool tess = false;
// Wall edges.
@@ -469,32 +451,6 @@ static void simplifyContour(rcIntArray& points, rcIntArray& simplified,
}
-static void removeDegenerateSegments(rcIntArray& simplified)
-{
- // Remove adjacent vertices which are equal on xz-plane,
- // or else the triangulator will get confused.
- for (int i = 0; i < simplified.size()/4; ++i)
- {
- int ni = i+1;
- if (ni >= (simplified.size()/4))
- ni = 0;
-
- if (simplified[i*4+0] == simplified[ni*4+0] &&
- simplified[i*4+2] == simplified[ni*4+2])
- {
- // Degenerate segment, remove.
- for (int j = i; j < simplified.size()/4-1; ++j)
- {
- simplified[j*4+0] = simplified[(j+1)*4+0];
- simplified[j*4+1] = simplified[(j+1)*4+1];
- simplified[j*4+2] = simplified[(j+1)*4+2];
- simplified[j*4+3] = simplified[(j+1)*4+3];
- }
- simplified.resize(simplified.size()-4);
- }
- }
-}
-
static int calcAreaOfPolygon2D(const int* verts, const int nverts)
{
int area = 0;
@@ -507,54 +463,155 @@ static int calcAreaOfPolygon2D(const int* verts, const int nverts)
return (area+1) / 2;
}
-inline bool ileft(const int* a, const int* b, const int* c)
+// TODO: these are the same as in RecastMesh.cpp, consider using the same.
+
+inline int prev(int i, int n) { return i-1 >= 0 ? i-1 : n-1; }
+inline int next(int i, int n) { return i+1 < n ? i+1 : 0; }
+
+inline int area2(const int* a, const int* b, const int* c)
+{
+ return (b[0] - a[0]) * (c[2] - a[2]) - (c[0] - a[0]) * (b[2] - a[2]);
+}
+
+// Exclusive or: true iff exactly one argument is true.
+// The arguments are negated to ensure that they are 0/1
+// values. Then the bitwise Xor operator may apply.
+// (This idea is due to Michael Baldwin.)
+inline bool xorb(bool x, bool y)
+{
+ return !x ^ !y;
+}
+
+// Returns true iff c is strictly to the left of the directed
+// line through a to b.
+inline bool left(const int* a, const int* b, const int* c)
+{
+ return area2(a, b, c) < 0;
+}
+
+inline bool leftOn(const int* a, const int* b, const int* c)
+{
+ return area2(a, b, c) <= 0;
+}
+
+inline bool collinear(const int* a, const int* b, const int* c)
+{
+ return area2(a, b, c) == 0;
+}
+
+// Returns true iff ab properly intersects cd: they share
+// a point interior to both segments. The properness of the
+// intersection is ensured by using strict leftness.
+static bool intersectProp(const int* a, const int* b, const int* c, const int* d)
+{
+ // Eliminate improper cases.
+ if (collinear(a,b,c) || collinear(a,b,d) ||
+ collinear(c,d,a) || collinear(c,d,b))
+ return false;
+
+ return xorb(left(a,b,c), left(a,b,d)) && xorb(left(c,d,a), left(c,d,b));
+}
+
+// Returns T iff (a,b,c) are collinear and point c lies
+// on the closed segement ab.
+static bool between(const int* a, const int* b, const int* c)
+{
+ if (!collinear(a, b, c))
+ return false;
+ // If ab not vertical, check betweenness on x; else on y.
+ if (a[0] != b[0])
+ return ((a[0] <= c[0]) && (c[0] <= b[0])) || ((a[0] >= c[0]) && (c[0] >= b[0]));
+ else
+ return ((a[2] <= c[2]) && (c[2] <= b[2])) || ((a[2] >= c[2]) && (c[2] >= b[2]));
+}
+
+// Returns true iff segments ab and cd intersect, properly or improperly.
+static bool intersect(const int* a, const int* b, const int* c, const int* d)
+{
+ if (intersectProp(a, b, c, d))
+ return true;
+ else if (between(a, b, c) || between(a, b, d) ||
+ between(c, d, a) || between(c, d, b))
+ return true;
+ else
+ return false;
+}
+
+static bool vequal(const int* a, const int* b)
+{
+ return a[0] == b[0] && a[2] == b[2];
+}
+
+static bool intersectSegCountour(const int* d0, const int* d1, int i, int n, const int* verts)
{
- return (b[0] - a[0]) * (c[2] - a[2]) - (c[0] - a[0]) * (b[2] - a[2]) <= 0;
+ // For each edge (k,k+1) of P
+ for (int k = 0; k < n; k++)
+ {
+ int k1 = next(k, n);
+ // Skip edges incident to i.
+ if (i == k || i == k1)
+ continue;
+ const int* p0 = &verts[k * 4];
+ const int* p1 = &verts[k1 * 4];
+ if (vequal(d0, p0) || vequal(d1, p0) || vequal(d0, p1) || vequal(d1, p1))
+ continue;
+
+ if (intersect(d0, d1, p0, p1))
+ return true;
+ }
+ return false;
}
-static void getClosestIndices(const int* vertsa, const int nvertsa,
- const int* vertsb, const int nvertsb,
- int& ia, int& ib)
+static bool inCone(int i, int n, const int* verts, const int* pj)
{
- int closestDist = 0xfffffff;
- ia = -1, ib = -1;
- for (int i = 0; i < nvertsa; ++i)
+ const int* pi = &verts[i * 4];
+ const int* pi1 = &verts[next(i, n) * 4];
+ const int* pin1 = &verts[prev(i, n) * 4];
+
+ // If P[i] is a convex vertex [ i+1 left or on (i-1,i) ].
+ if (leftOn(pin1, pi, pi1))
+ return left(pi, pj, pin1) && left(pj, pi, pi1);
+ // Assume (i-1,i,i+1) not collinear.
+ // else P[i] is reflex.
+ return !(leftOn(pi, pj, pi1) && leftOn(pj, pi, pin1));
+}
+
+
+static void removeDegenerateSegments(rcIntArray& simplified)
+{
+ // Remove adjacent vertices which are equal on xz-plane,
+ // or else the triangulator will get confused.
+ int npts = simplified.size()/4;
+ for (int i = 0; i < npts; ++i)
{
- const int in = (i+1) % nvertsa;
- const int ip = (i+nvertsa-1) % nvertsa;
- const int* va = &vertsa[i*4];
- const int* van = &vertsa[in*4];
- const int* vap = &vertsa[ip*4];
+ int ni = next(i, npts);
- for (int j = 0; j < nvertsb; ++j)
+ if (vequal(&simplified[i*4], &simplified[ni*4]))
{
- const int* vb = &vertsb[j*4];
- // vb must be "infront" of va.
- if (ileft(vap,va,vb) && ileft(va,van,vb))
+ // Degenerate segment, remove.
+ for (int j = i; j < simplified.size()/4-1; ++j)
{
- const int dx = vb[0] - va[0];
- const int dz = vb[2] - va[2];
- const int d = dx*dx + dz*dz;
- if (d < closestDist)
- {
- ia = i;
- ib = j;
- closestDist = d;
- }
+ simplified[j*4+0] = simplified[(j+1)*4+0];
+ simplified[j*4+1] = simplified[(j+1)*4+1];
+ simplified[j*4+2] = simplified[(j+1)*4+2];
+ simplified[j*4+3] = simplified[(j+1)*4+3];
}
+ simplified.resize(simplified.size()-4);
+ npts--;
}
}
}
+
static bool mergeContours(rcContour& ca, rcContour& cb, int ia, int ib)
{
const int maxVerts = ca.nverts + cb.nverts + 2;
int* verts = (int*)rcAlloc(sizeof(int)*maxVerts*4, RC_ALLOC_PERM);
if (!verts)
return false;
-
+
int nv = 0;
-
+
// Copy contour A.
for (int i = 0; i <= ca.nverts; ++i)
{
@@ -582,7 +639,7 @@ static bool mergeContours(rcContour& ca, rcContour& cb, int ia, int ib)
rcFree(ca.verts);
ca.verts = verts;
ca.nverts = nv;
-
+
rcFree(cb.verts);
cb.verts = 0;
cb.nverts = 0;
@@ -590,18 +647,179 @@ static bool mergeContours(rcContour& ca, rcContour& cb, int ia, int ib)
return true;
}
+struct rcContourHole
+{
+ rcContour* contour;
+ int minx, minz, leftmost;
+};
+
+struct rcContourRegion
+{
+ rcContour* outline;
+ rcContourHole* holes;
+ int nholes;
+};
+
+struct rcPotentialDiagonal
+{
+ int vert;
+ int dist;
+};
+
+// Finds the lowest leftmost vertex of a contour.
+static void findLeftMostVertex(rcContour* contour, int* minx, int* minz, int* leftmost)
+{
+ *minx = contour->verts[0];
+ *minz = contour->verts[2];
+ *leftmost = 0;
+ for (int i = 1; i < contour->nverts; i++)
+ {
+ const int x = contour->verts[i*4+0];
+ const int z = contour->verts[i*4+2];
+ if (x < *minx || (x == *minx && z < *minz))
+ {
+ *minx = x;
+ *minz = z;
+ *leftmost = i;
+ }
+ }
+}
+
+static int compareHoles(const void* va, const void* vb)
+{
+ const rcContourHole* a = (const rcContourHole*)va;
+ const rcContourHole* b = (const rcContourHole*)vb;
+ if (a->minx == b->minx)
+ {
+ if (a->minz < b->minz)
+ return -1;
+ if (a->minz > b->minz)
+ return 1;
+ }
+ else
+ {
+ if (a->minx < b->minx)
+ return -1;
+ if (a->minx > b->minx)
+ return 1;
+ }
+ return 0;
+}
+
+
+static int compareDiagDist(const void* va, const void* vb)
+{
+ const rcPotentialDiagonal* a = (const rcPotentialDiagonal*)va;
+ const rcPotentialDiagonal* b = (const rcPotentialDiagonal*)vb;
+ if (a->dist < b->dist)
+ return -1;
+ if (a->dist > b->dist)
+ return 1;
+ return 0;
+}
+
+
+static void mergeRegionHoles(rcContext* ctx, rcContourRegion& region)
+{
+ // Sort holes from left to right.
+ for (int i = 0; i < region.nholes; i++)
+ findLeftMostVertex(region.holes[i].contour, &region.holes[i].minx, &region.holes[i].minz, &region.holes[i].leftmost);
+
+ qsort(region.holes, region.nholes, sizeof(rcContourHole), compareHoles);
+
+ int maxVerts = region.outline->nverts;
+ for (int i = 0; i < region.nholes; i++)
+ maxVerts += region.holes[i].contour->nverts;
+
+ rcScopedDelete<rcPotentialDiagonal> diags = (rcPotentialDiagonal*)rcAlloc(sizeof(rcPotentialDiagonal)*maxVerts, RC_ALLOC_TEMP);
+ if (!diags)
+ {
+ ctx->log(RC_LOG_WARNING, "mergeRegionHoles: Failed to allocated diags %d.", maxVerts);
+ return;
+ }
+
+ rcContour* outline = region.outline;
+
+ // Merge holes into the outline one by one.
+ for (int i = 0; i < region.nholes; i++)
+ {
+ rcContour* hole = region.holes[i].contour;
+
+ int index = -1;
+ int bestVertex = region.holes[i].leftmost;
+ for (int iter = 0; iter < hole->nverts; iter++)
+ {
+ // Find potential diagonals.
+ // The 'best' vertex must be in the cone described by 3 cosequtive vertices of the outline.
+ // ..o j-1
+ // |
+ // | * best
+ // |
+ // j o-----o j+1
+ // :
+ int ndiags = 0;
+ const int* corner = &hole->verts[bestVertex*4];
+ for (int j = 0; j < outline->nverts; j++)
+ {
+ if (inCone(j, outline->nverts, outline->verts, corner))
+ {
+ int dx = outline->verts[j*4+0] - corner[0];
+ int dz = outline->verts[j*4+2] - corner[2];
+ diags[ndiags].vert = j;
+ diags[ndiags].dist = dx*dx + dz*dz;
+ ndiags++;
+ }
+ }
+ // Sort potential diagonals by distance, we want to make the connection as short as possible.
+ qsort(diags, ndiags, sizeof(rcPotentialDiagonal), compareDiagDist);
+
+ // Find a diagonal that is not intersecting the outline not the remaining holes.
+ index = -1;
+ for (int j = 0; j < ndiags; j++)
+ {
+ const int* pt = &outline->verts[diags[j].vert*4];
+ bool intersect = intersectSegCountour(pt, corner, diags[i].vert, outline->nverts, outline->verts);
+ for (int k = i; k < region.nholes && !intersect; k++)
+ intersect |= intersectSegCountour(pt, corner, -1, region.holes[k].contour->nverts, region.holes[k].contour->verts);
+ if (!intersect)
+ {
+ index = diags[j].vert;
+ break;
+ }
+ }
+ // If found non-intersecting diagonal, stop looking.
+ if (index != -1)
+ break;
+ // All the potential diagonals for the current vertex were intersecting, try next vertex.
+ bestVertex = (bestVertex + 1) % hole->nverts;
+ }
+
+ if (index == -1)
+ {
+ ctx->log(RC_LOG_WARNING, "mergeHoles: Failed to find merge points for %p and %p.", region.outline, hole);
+ continue;
+ }
+ if (!mergeContours(*region.outline, *hole, index, bestVertex))
+ {
+ ctx->log(RC_LOG_WARNING, "mergeHoles: Failed to merge contours %p and %p.", region.outline, hole);
+ continue;
+ }
+ }
+}
+
+
/// @par
///
/// The raw contours will match the region outlines exactly. The @p maxError and @p maxEdgeLen
/// parameters control how closely the simplified contours will match the raw contours.
///
-/// Simplified contours are generated such that the vertices for portals between areas match up.
+/// Simplified contours are generated such that the vertices for portals between areas match up.
/// (They are considered mandatory vertices.)
///
/// Setting @p maxEdgeLength to zero will disabled the edge length feature.
-///
+///
/// See the #rcConfig documentation for more information on the configuration parameters.
-///
+///
/// @see rcAllocContourSet, rcCompactHeightfield, rcContourSet, rcConfig
bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf,
const float maxError, const int maxEdgeLen,
@@ -704,17 +922,17 @@ bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf,
verts.resize(0);
simplified.resize(0);
-
+
ctx->startTimer(RC_TIMER_BUILD_CONTOURS_TRACE);
walkContour(x, y, i, chf, flags, verts);
ctx->stopTimer(RC_TIMER_BUILD_CONTOURS_TRACE);
-
+
ctx->startTimer(RC_TIMER_BUILD_CONTOURS_SIMPLIFY);
simplifyContour(verts, simplified, maxError, maxEdgeLen, buildFlags);
removeDegenerateSegments(simplified);
ctx->stopTimer(RC_TIMER_BUILD_CONTOURS_SIMPLIFY);
-
+
// Store region->contour remap info.
// Create contour.
if (simplified.size()/4 >= 3)
@@ -722,7 +940,7 @@ bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf,
if (cset.nconts >= maxContours)
{
// Allocate more contours.
- // This can happen when there are tiny holes in the heightfield.
+ // This happens when a region has holes.
const int oldMax = maxContours;
maxContours *= 2;
rcContour* newConts = (rcContour*)rcAlloc(sizeof(rcContour)*maxContours, RC_ALLOC_PERM);
@@ -735,10 +953,10 @@ bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf,
}
rcFree(cset.conts);
cset.conts = newConts;
-
+
ctx->log(RC_LOG_WARNING, "rcBuildContours: Expanding max contours from %d to %d.", oldMax, maxContours);
}
-
+
rcContour* cont = &cset.conts[cset.nconts++];
cont->nverts = simplified.size()/4;
@@ -779,17 +997,6 @@ bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf,
}
}
-/* cont->cx = cont->cy = cont->cz = 0;
- for (int i = 0; i < cont->nverts; ++i)
- {
- cont->cx += cont->verts[i*4+0];
- cont->cy += cont->verts[i*4+1];
- cont->cz += cont->verts[i*4+2];
- }
- cont->cx /= cont->nverts;
- cont->cy /= cont->nverts;
- cont->cz /= cont->nverts;*/
-
cont->reg = reg;
cont->area = area;
}
@@ -797,52 +1004,100 @@ bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf,
}
}
- // Check and merge droppings.
- // Sometimes the previous algorithms can fail and create several contours
- // per area. This pass will try to merge the holes into the main region.
- for (int i = 0; i < cset.nconts; ++i)
+ // Merge holes if needed.
+ if (cset.nconts > 0)
{
- rcContour& cont = cset.conts[i];
- // Check if the contour is would backwards.
- if (calcAreaOfPolygon2D(cont.verts, cont.nverts) < 0)
+ // Calculate winding of all polygons.
+ rcScopedDelete<char> winding = (char*)rcAlloc(sizeof(char)*cset.nconts, RC_ALLOC_TEMP);
+ if (!winding)
{
- // Find another contour which has the same region ID.
- int mergeIdx = -1;
- for (int j = 0; j < cset.nconts; ++j)
+ ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'hole' (%d).", cset.nconts);
+ return false;
+ }
+ int nholes = 0;
+ for (int i = 0; i < cset.nconts; ++i)
+ {
+ rcContour& cont = cset.conts[i];
+ // If the contour is wound backwards, it is a hole.
+ winding[i] = calcAreaOfPolygon2D(cont.verts, cont.nverts) < 0 ? -1 : 1;
+ if (winding[i] < 0)
+ nholes++;
+ }
+
+ if (nholes > 0)
+ {
+ // Collect outline contour and holes contours per region.
+ // We assume that there is one outline and multiple holes.
+ const int nregions = chf.maxRegions+1;
+ rcScopedDelete<rcContourRegion> regions = (rcContourRegion*)rcAlloc(sizeof(rcContourRegion)*nregions, RC_ALLOC_TEMP);
+ if (!regions)
+ {
+ ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'regions' (%d).", nregions);
+ return false;
+ }
+ memset(regions, 0, sizeof(rcContourRegion)*nregions);
+
+ rcScopedDelete<rcContourHole> holes = (rcContourHole*)rcAlloc(sizeof(rcContourHole)*cset.nconts, RC_ALLOC_TEMP);
+ if (!holes)
+ {
+ ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'holes' (%d).", cset.nconts);
+ return false;
+ }
+ memset(holes, 0, sizeof(rcContourHole)*cset.nconts);
+
+ for (int i = 0; i < cset.nconts; ++i)
{
- if (i == j) continue;
- if (cset.conts[j].nverts && cset.conts[j].reg == cont.reg)
+ rcContour& cont = cset.conts[i];
+ // Positively would contours are outlines, negative holes.
+ if (winding[i] > 0)
{
- // Make sure the polygon is correctly oriented.
- if (calcAreaOfPolygon2D(cset.conts[j].verts, cset.conts[j].nverts))
- {
- mergeIdx = j;
- break;
- }
+ if (regions[cont.reg].outline)
+ ctx->log(RC_LOG_ERROR, "rcBuildContours: Multiple outlines for region %d.", cont.reg);
+ regions[cont.reg].outline = &cont;
+ }
+ else
+ {
+ regions[cont.reg].nholes++;
}
}
- if (mergeIdx == -1)
+ int index = 0;
+ for (int i = 0; i < nregions; i++)
{
- ctx->log(RC_LOG_WARNING, "rcBuildContours: Could not find merge target for bad contour %d.", i);
+ if (regions[i].nholes > 0)
+ {
+ regions[i].holes = &holes[index];
+ index += regions[i].nholes;
+ regions[i].nholes = 0;
+ }
}
- else
+ for (int i = 0; i < cset.nconts; ++i)
+ {
+ rcContour& cont = cset.conts[i];
+ rcContourRegion& reg = regions[cont.reg];
+ if (winding[i] < 0)
+ reg.holes[reg.nholes++].contour = &cont;
+ }
+
+ // Finally merge each regions holes into the outline.
+ for (int i = 0; i < nregions; i++)
{
- rcContour& mcont = cset.conts[mergeIdx];
- // Merge by closest points.
- int ia = 0, ib = 0;
- getClosestIndices(mcont.verts, mcont.nverts, cont.verts, cont.nverts, ia, ib);
- if (ia == -1 || ib == -1)
+ rcContourRegion& reg = regions[i];
+ if (!reg.nholes) continue;
+
+ if (reg.outline)
{
- ctx->log(RC_LOG_WARNING, "rcBuildContours: Failed to find merge points for %d and %d.", i, mergeIdx);
- continue;
+ mergeRegionHoles(ctx, reg);
}
- if (!mergeContours(mcont, cont, ia, ib))
+ else
{
- ctx->log(RC_LOG_WARNING, "rcBuildContours: Failed to merge contours %d and %d.", i, mergeIdx);
- continue;
+ // The region does not have an outline.
+ // This can happen if the contour becaomes selfoverlapping because of
+ // too aggressive simplification settings.
+ ctx->log(RC_LOG_ERROR, "rcBuildContours: Bad outline for region %d, contour simplification is likely too aggressive.", i);
}
}
}
+
}
ctx->stopTimer(RC_TIMER_BUILD_CONTOURS);
diff --git a/dep/recastnavigation/Recast/Source/RecastLayers.cpp b/dep/recastnavigation/Recast/Source/RecastLayers.cpp
index 204f72e8cb2..cb1a39f4bda 100644
--- a/dep/recastnavigation/Recast/Source/RecastLayers.cpp
+++ b/dep/recastnavigation/Recast/Source/RecastLayers.cpp
@@ -38,7 +38,7 @@ struct rcLayerRegion
unsigned char layerId; // Layer ID
unsigned char nlayers; // Layer count
unsigned char nneis; // Neighbour count
- unsigned char base; // Flag indicating if the region is hte base of merged regions.
+ unsigned char base; // Flag indicating if the region is the base of merged regions.
};
diff --git a/dep/recastnavigation/Recast/Source/RecastMesh.cpp b/dep/recastnavigation/Recast/Source/RecastMesh.cpp
index 8af609b79fb..e4f9c4b3629 100644
--- a/dep/recastnavigation/Recast/Source/RecastMesh.cpp
+++ b/dep/recastnavigation/Recast/Source/RecastMesh.cpp
@@ -288,6 +288,53 @@ static bool diagonal(int i, int j, int n, const int* verts, int* indices)
return inCone(i, j, n, verts, indices) && diagonalie(i, j, n, verts, indices);
}
+
+static bool diagonalieLoose(int i, int j, int n, const int* verts, int* indices)
+{
+ const int* d0 = &verts[(indices[i] & 0x0fffffff) * 4];
+ const int* d1 = &verts[(indices[j] & 0x0fffffff) * 4];
+
+ // For each edge (k,k+1) of P
+ for (int k = 0; k < n; k++)
+ {
+ int k1 = next(k, n);
+ // Skip edges incident to i or j
+ if (!((k == i) || (k1 == i) || (k == j) || (k1 == j)))
+ {
+ const int* p0 = &verts[(indices[k] & 0x0fffffff) * 4];
+ const int* p1 = &verts[(indices[k1] & 0x0fffffff) * 4];
+
+ if (vequal(d0, p0) || vequal(d1, p0) || vequal(d0, p1) || vequal(d1, p1))
+ continue;
+
+ if (intersectProp(d0, d1, p0, p1))
+ return false;
+ }
+ }
+ return true;
+}
+
+static bool inConeLoose(int i, int j, int n, const int* verts, int* indices)
+{
+ const int* pi = &verts[(indices[i] & 0x0fffffff) * 4];
+ const int* pj = &verts[(indices[j] & 0x0fffffff) * 4];
+ const int* pi1 = &verts[(indices[next(i, n)] & 0x0fffffff) * 4];
+ const int* pin1 = &verts[(indices[prev(i, n)] & 0x0fffffff) * 4];
+
+ // If P[i] is a convex vertex [ i+1 left or on (i-1,i) ].
+ if (leftOn(pin1, pi, pi1))
+ return leftOn(pi, pj, pin1) && leftOn(pj, pi, pi1);
+ // Assume (i-1,i,i+1) not collinear.
+ // else P[i] is reflex.
+ return !(leftOn(pi, pj, pi1) && leftOn(pj, pi, pin1));
+}
+
+static bool diagonalLoose(int i, int j, int n, const int* verts, int* indices)
+{
+ return inConeLoose(i, j, n, verts, indices) && diagonalieLoose(i, j, n, verts, indices);
+}
+
+
static int triangulate(int n, const int* verts, int* indices, int* tris)
{
int ntris = 0;
@@ -328,14 +375,41 @@ static int triangulate(int n, const int* verts, int* indices, int* tris)
if (mini == -1)
{
- // Should not happen.
-/* printf("mini == -1 ntris=%d n=%d\n", ntris, n);
+ // We might get here because the contour has overlapping segments, like this:
+ //
+ // A o-o=====o---o B
+ // / |C D| \
+ // o o o o
+ // : : : :
+ // We'll try to recover by loosing up the inCone test a bit so that a diagonal
+ // like A-B or C-D can be found and we can continue.
+ minLen = -1;
+ mini = -1;
for (int i = 0; i < n; i++)
{
- printf("%d ", indices[i] & 0x0fffffff);
+ int i1 = next(i, n);
+ int i2 = next(i1, n);
+ if (diagonalLoose(i, i2, n, verts, indices))
+ {
+ const int* p0 = &verts[(indices[i] & 0x0fffffff) * 4];
+ const int* p2 = &verts[(indices[next(i2, n)] & 0x0fffffff) * 4];
+ int dx = p2[0] - p0[0];
+ int dy = p2[2] - p0[2];
+ int len = dx*dx + dy*dy;
+
+ if (minLen < 0 || len < minLen)
+ {
+ minLen = len;
+ mini = i;
+ }
+ }
+ }
+ if (mini == -1)
+ {
+ // The contour is messed up. This sometimes happens
+ // if the contour simplification is too aggressive.
+ return -ntris;
}
- printf("\n");*/
- return -ntris;
}
int i = mini;
@@ -1463,7 +1537,7 @@ bool rcCopyPolyMesh(rcContext* ctx, const rcPolyMesh& src, rcPolyMesh& dst)
ctx->log(RC_LOG_ERROR, "rcCopyPolyMesh: Out of memory 'dst.flags' (%d).", src.npolys);
return false;
}
- memcpy(dst.flags, src.flags, sizeof(unsigned char)*src.npolys);
+ memcpy(dst.flags, src.flags, sizeof(unsigned short)*src.npolys);
return true;
}
diff --git a/dep/recastnavigation/Recast/Source/RecastMeshDetail.cpp b/dep/recastnavigation/Recast/Source/RecastMeshDetail.cpp
index 8325b883707..5cc2adf0320 100644
--- a/dep/recastnavigation/Recast/Source/RecastMeshDetail.cpp
+++ b/dep/recastnavigation/Recast/Source/RecastMeshDetail.cpp
@@ -56,7 +56,7 @@ inline float vdist2(const float* p, const float* q)
}
inline float vcross2(const float* p1, const float* p2, const float* p3)
-{
+{
const float u1 = p2[0] - p1[0];
const float v1 = p2[2] - p1[2];
const float u2 = p3[0] - p1[0];
@@ -68,21 +68,27 @@ static bool circumCircle(const float* p1, const float* p2, const float* p3,
float* c, float& r)
{
static const float EPS = 1e-6f;
+ // Calculate the circle relative to p1, to avoid some precision issues.
+ const float v1[3] = {0,0,0};
+ float v2[3], v3[3];
+ rcVsub(v2, p2,p1);
+ rcVsub(v3, p3,p1);
- const float cp = vcross2(p1, p2, p3);
+ const float cp = vcross2(v1, v2, v3);
if (fabsf(cp) > EPS)
{
- const float p1Sq = vdot2(p1,p1);
- const float p2Sq = vdot2(p2,p2);
- const float p3Sq = vdot2(p3,p3);
- c[0] = (p1Sq*(p2[2]-p3[2]) + p2Sq*(p3[2]-p1[2]) + p3Sq*(p1[2]-p2[2])) / (2*cp);
- c[2] = (p1Sq*(p3[0]-p2[0]) + p2Sq*(p1[0]-p3[0]) + p3Sq*(p2[0]-p1[0])) / (2*cp);
- r = vdist2(c, p1);
+ const float v1Sq = vdot2(v1,v1);
+ const float v2Sq = vdot2(v2,v2);
+ const float v3Sq = vdot2(v3,v3);
+ c[0] = (v1Sq*(v2[2]-v3[2]) + v2Sq*(v3[2]-v1[2]) + v3Sq*(v1[2]-v2[2])) / (2*cp);
+ c[1] = 0;
+ c[2] = (v1Sq*(v3[0]-v2[0]) + v2Sq*(v1[0]-v3[0]) + v3Sq*(v2[0]-v1[0])) / (2*cp);
+ r = vdist2(c, v1);
+ rcVadd(c, c, p1);
return true;
}
-
- c[0] = p1[0];
- c[2] = p1[2];
+
+ rcVcopy(c, p1);
r = 0;
return false;
}
@@ -93,7 +99,7 @@ static float distPtTri(const float* p, const float* a, const float* b, const flo
rcVsub(v0, c,a);
rcVsub(v1, b,a);
rcVsub(v2, p,a);
-
+
const float dot00 = vdot2(v0, v0);
const float dot01 = vdot2(v0, v1);
const float dot02 = vdot2(v0, v2);
@@ -178,7 +184,7 @@ static float distToTriMesh(const float* p, const float* verts, const int /*nvert
static float distToPoly(int nvert, const float* verts, const float* p)
{
-
+
float dmin = FLT_MAX;
int i, j, c = 0;
for (i = 0, j = nvert-1; i < nvert; j = i++)
@@ -216,22 +222,13 @@ static unsigned short getHeight(const float fx, const float fy, const float fz,
if (nx < 0 || nz < 0 || nx >= hp.width || nz >= hp.height) continue;
const unsigned short nh = hp.data[nx+nz*hp.width];
if (nh == RC_UNSET_HEIGHT) continue;
-
+
const float d = fabsf(nh*ch - fy);
if (d < dmin)
{
h = nh;
dmin = d;
}
-
-/* const float dx = (nx+0.5f)*cs - fx;
- const float dz = (nz+0.5f)*cs - fz;
- const float d = dx*dx+dz*dz;
- if (d < dmin)
- {
- h = nh;
- dmin = d;
- } */
}
}
return h;
@@ -263,7 +260,7 @@ static int addEdge(rcContext* ctx, int* edges, int& nedges, const int maxEdges,
return UNDEF;
}
- // Add edge if not already in the triangulation.
+ // Add edge if not already in the triangulation.
int e = findEdge(edges, nedges, s, t);
if (e == UNDEF)
{
@@ -286,7 +283,7 @@ static void updateLeftFace(int* e, int s, int t, int f)
e[2] = f;
else if (e[1] == s && e[0] == t && e[3] == UNDEF)
e[3] = f;
-}
+}
static int overlapSegSeg2d(const float* a, const float* b, const float* c, const float* d)
{
@@ -298,7 +295,7 @@ static int overlapSegSeg2d(const float* a, const float* b, const float* c, const
float a4 = a3 + a2 - a1;
if (a3 * a4 < 0.0f)
return 1;
- }
+ }
return 0;
}
@@ -320,7 +317,7 @@ static bool overlapEdges(const float* pts, const int* edges, int nedges, int s1,
static void completeFacet(rcContext* ctx, const float* pts, int npts, int* edges, int& nedges, const int maxEdges, int& nfaces, int e)
{
static const float EPS = 1e-5f;
-
+
int* edge = &edges[e*4];
// Cache s and t.
@@ -337,11 +334,11 @@ static void completeFacet(rcContext* ctx, const float* pts, int npts, int* edges
}
else
{
- // Edge already completed.
+ // Edge already completed.
return;
}
- // Find best point on left of edge.
+ // Find best point on left of edge.
int pt = npts;
float c[3] = {0,0,0};
float r = -1;
@@ -385,20 +382,20 @@ static void completeFacet(rcContext* ctx, const float* pts, int npts, int* edges
}
}
- // Add new triangle or update edge info if s-t is on hull.
+ // Add new triangle or update edge info if s-t is on hull.
if (pt < npts)
{
- // Update face information of edge being completed.
+ // Update face information of edge being completed.
updateLeftFace(&edges[e*4], s, t, nfaces);
- // Add new edge or update face info of old edge.
+ // Add new edge or update face info of old edge.
e = findEdge(edges, nedges, pt, s);
if (e == UNDEF)
addEdge(ctx, edges, nedges, maxEdges, pt, s, nfaces, UNDEF);
else
updateLeftFace(&edges[e*4], pt, s, nfaces);
- // Add new edge or update face info of old edge.
+ // Add new edge or update face info of old edge.
e = findEdge(edges, nedges, t, pt);
if (e == UNDEF)
addEdge(ctx, edges, nedges, maxEdges, t, pt, nfaces, UNDEF);
@@ -434,7 +431,7 @@ static void delaunayHull(rcContext* ctx, const int npts, const float* pts,
completeFacet(ctx, pts, npts, &edges[0], nedges, maxEdges, nfaces, currentEdge);
currentEdge++;
}
-
+
// Create tris
tris.resize(nfaces*4);
for (int i = 0; i < nfaces*4; ++i)
@@ -489,6 +486,103 @@ static void delaunayHull(rcContext* ctx, const int npts, const float* pts,
}
}
+// Calculate minimum extend of the polygon.
+static float polyMinExtent(const float* verts, const int nverts)
+{
+ float minDist = FLT_MAX;
+ for (int i = 0; i < nverts; i++)
+ {
+ const int ni = (i+1) % nverts;
+ const float* p1 = &verts[i*3];
+ const float* p2 = &verts[ni*3];
+ float maxEdgeDist = 0;
+ for (int j = 0; j < nverts; j++)
+ {
+ if (j == i || j == ni) continue;
+ float d = distancePtSeg2d(&verts[j*3], p1,p2);
+ maxEdgeDist = rcMax(maxEdgeDist, d);
+ }
+ minDist = rcMin(minDist, maxEdgeDist);
+ }
+ return rcSqrt(minDist);
+}
+
+inline int next(int i, int n)
+{
+ return (i+1) % n;
+}
+
+inline int prev(int i, int n)
+{
+ return (i + n-1) % n;
+}
+
+static void triangulateHull(const int nverts, const float* verts, const int nhull, const int* hull, rcIntArray& tris)
+{
+ int start = 0, left = 1, right = nhull-1;
+
+ // Start from an ear with shortest perimeter.
+ // This tends to favor well formed triangles as starting point.
+ float dmin = 0;
+ for (int i = 0; i < nhull; i++)
+ {
+ int pi = prev(i, nhull);
+ int ni = next(i, nhull);
+ const float* pv = &verts[hull[pi]*3];
+ const float* cv = &verts[hull[i]*3];
+ const float* nv = &verts[hull[ni]*3];
+ const float d = vdist2(pv,cv) + vdist2(cv,nv) + vdist2(nv,pv);
+ if (d < dmin)
+ {
+ start = i;
+ left = ni;
+ right = pi;
+ dmin = d;
+ }
+ }
+
+ // Add first triangle
+ tris.push(hull[start]);
+ tris.push(hull[left]);
+ tris.push(hull[right]);
+ tris.push(0);
+
+ // Triangulate the polygon by moving left or right,
+ // depending on which triangle has shorter perimeter.
+ // This heuristic was chose emprically, since it seems
+ // handle tesselated straight edges well.
+ while (next(left, nhull) != right)
+ {
+ // Check to see if se should advance left or right.
+ int nleft = next(left, nhull);
+ int nright = prev(right, nhull);
+
+ const float* cvleft = &verts[hull[left]*3];
+ const float* nvleft = &verts[hull[nleft]*3];
+ const float* cvright = &verts[hull[right]*3];
+ const float* nvright = &verts[hull[nright]*3];
+ const float dleft = vdist2(cvleft, nvleft) + vdist2(nvleft, cvright);
+ const float dright = vdist2(cvright, nvright) + vdist2(cvleft, nvright);
+
+ if (dleft < dright)
+ {
+ tris.push(hull[left]);
+ tris.push(hull[nleft]);
+ tris.push(hull[right]);
+ tris.push(0);
+ left = nleft;
+ }
+ else
+ {
+ tris.push(hull[left]);
+ tris.push(hull[nright]);
+ tris.push(hull[right]);
+ tris.push(0);
+ right = nright;
+ }
+ }
+}
+
inline float getJitterX(const int i)
{
@@ -512,16 +606,22 @@ static bool buildPolyDetail(rcContext* ctx, const float* in, const int nin,
float edge[(MAX_VERTS_PER_EDGE+1)*3];
int hull[MAX_VERTS];
int nhull = 0;
-
+
nverts = 0;
-
+
for (int i = 0; i < nin; ++i)
rcVcopy(&verts[i*3], &in[i*3]);
nverts = nin;
+ edges.resize(0);
+ tris.resize(0);
+
const float cs = chf.cs;
const float ics = 1.0f/cs;
+ // Calculate minimum extents of the polygon based on input data.
+ float minExtent = polyMinExtent(verts, nverts);
+
// Tessellate outlines.
// This is done in separate pass in order to ensure
// seamless height values across the ply boundaries.
@@ -628,27 +728,26 @@ static bool buildPolyDetail(rcContext* ctx, const float* in, const int nin,
}
}
-
+ // If the polygon minimum extent is small (sliver or small triangle), do not try to add internal points.
+ if (minExtent < sampleDist*2)
+ {
+ triangulateHull(nverts, verts, nhull, hull, tris);
+ return true;
+ }
+
// Tessellate the base mesh.
- edges.resize(0);
- tris.resize(0);
-
- delaunayHull(ctx, nverts, verts, nhull, hull, tris, edges);
+ // We're using the triangulateHull instead of delaunayHull as it tends to
+ // create a bit better triangulation for long thing triangles when there
+ // are no internal points.
+ triangulateHull(nverts, verts, nhull, hull, tris);
if (tris.size() == 0)
{
// Could not triangulate the poly, make sure there is some valid data there.
- ctx->log(RC_LOG_WARNING, "buildPolyDetail: Could not triangulate polygon, adding default data.");
- for (int i = 2; i < nverts; ++i)
- {
- tris.push(0);
- tris.push(i-1);
- tris.push(i);
- tris.push(0);
- }
+ ctx->log(RC_LOG_WARNING, "buildPolyDetail: Could not triangulate polygon (%d verts).", nverts);
return true;
}
-
+
if (sampleDist > 0)
{
// Create sample locations in a grid.
@@ -681,7 +780,7 @@ static bool buildPolyDetail(rcContext* ctx, const float* in, const int nin,
samples.push(0); // Not added
}
}
-
+
// Add the samples starting from the one that has the most
// error. The procedure stops when all samples are added
// or when the max error is within treshold.
@@ -690,7 +789,7 @@ static bool buildPolyDetail(rcContext* ctx, const float* in, const int nin,
{
if (nverts >= MAX_VERTS)
break;
-
+
// Find sample with most error.
float bestpt[3] = {0,0,0};
float bestd = 0;
@@ -728,24 +827,24 @@ static bool buildPolyDetail(rcContext* ctx, const float* in, const int nin,
edges.resize(0);
tris.resize(0);
delaunayHull(ctx, nverts, verts, nhull, hull, tris, edges);
- }
+ }
}
-
+
const int ntris = tris.size()/4;
if (ntris > MAX_TRIS)
{
tris.resize(MAX_TRIS*4);
ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Shrinking triangle count from %d to max %d.", ntris, MAX_TRIS);
}
-
+
return true;
}
static void getHeightDataSeedsFromVertices(const rcCompactHeightfield& chf,
- const unsigned short* poly, const int npoly,
- const unsigned short* verts, const int bs,
- rcHeightPatch& hp, rcIntArray& stack)
+ const unsigned short* poly, const int npoly,
+ const unsigned short* verts, const int bs,
+ rcHeightPatch& hp, rcIntArray& stack)
{
// Floodfill the heightfield to get 2D height data,
// starting at vertex locations as seeds.
@@ -849,7 +948,7 @@ static void getHeightDataSeedsFromVertices(const rcCompactHeightfield& chf,
continue;
const int ai = (int)chf.cells[(ax+bs)+(ay+bs)*chf.width].index + rcGetCon(cs, dir);
-
+
int idx = ax-hp.xmin+(ay-hp.ymin)*hp.width;
hp.data[idx] = 1;
@@ -858,9 +957,9 @@ static void getHeightDataSeedsFromVertices(const rcCompactHeightfield& chf,
stack.push(ai);
}
}
-
+
memset(hp.data, 0xff, sizeof(unsigned short)*hp.width*hp.height);
-
+
// Mark start locations.
for (int i = 0; i < stack.size(); i += 3)
{
@@ -870,8 +969,8 @@ static void getHeightDataSeedsFromVertices(const rcCompactHeightfield& chf,
int idx = cx-hp.xmin+(cy-hp.ymin)*hp.width;
const rcCompactSpan& cs = chf.spans[ci];
hp.data[idx] = cs.y;
-
- // getHeightData seeds are given in coordinates with borders
+
+ // getHeightData seeds are given in coordinates with borders
stack[i+0] += bs;
stack[i+1] += bs;
}
@@ -888,12 +987,12 @@ static void getHeightData(const rcCompactHeightfield& chf,
{
// Note: Reads to the compact heightfield are offset by border size (bs)
// since border size offset is already removed from the polymesh vertices.
-
+
stack.resize(0);
memset(hp.data, 0xff, sizeof(unsigned short)*hp.width*hp.height);
bool empty = true;
-
+
// Copy the height from the same region, and mark region borders
// as seed points to fill the rest.
for (int hy = 0; hy < hp.height; hy++)
@@ -911,7 +1010,7 @@ static void getHeightData(const rcCompactHeightfield& chf,
// Store height
hp.data[hx + hy*hp.width] = s.y;
empty = false;
-
+
// If any of the neighbours is not in same region,
// add the current location as flood fill start
bool border = false;
@@ -940,8 +1039,8 @@ static void getHeightData(const rcCompactHeightfield& chf,
}
}
}
- }
-
+ }
+
// if the polygon does not contian any points from the current region (rare, but happens)
// then use the cells closest to the polygon vertices as seeds to fill the height field
if (empty)
@@ -963,7 +1062,7 @@ static void getHeightData(const rcCompactHeightfield& chf,
memmove(&stack[0], &stack[RETRACT_SIZE*3], sizeof(int)*(stack.size()-RETRACT_SIZE*3));
stack.resize(stack.size()-RETRACT_SIZE*3);
}
-
+
const rcCompactSpan& cs = chf.spans[ci];
for (int dir = 0; dir < 4; ++dir)
{
@@ -982,9 +1081,9 @@ static void getHeightData(const rcCompactHeightfield& chf,
const int ai = (int)chf.cells[ax + ay*chf.width].index + rcGetCon(cs, dir);
const rcCompactSpan& as = chf.spans[ai];
-
+
hp.data[hx + hy*hp.width] = as.y;
-
+
stack.push(ax);
stack.push(ay);
stack.push(ai);
@@ -999,7 +1098,7 @@ static unsigned char getEdgeFlags(const float* va, const float* vb,
static const float thrSqr = rcSqr(0.001f);
for (int i = 0, j = npoly-1; i < npoly; j=i++)
{
- if (distancePtSeg2d(va, &vpoly[j*3], &vpoly[i*3]) < thrSqr &&
+ if (distancePtSeg2d(va, &vpoly[j*3], &vpoly[i*3]) < thrSqr &&
distancePtSeg2d(vb, &vpoly[j*3], &vpoly[i*3]) < thrSqr)
return 1;
}
@@ -1028,7 +1127,7 @@ bool rcBuildPolyMeshDetail(rcContext* ctx, const rcPolyMesh& mesh, const rcCompa
rcAssert(ctx);
ctx->startTimer(RC_TIMER_BUILD_POLYMESHDETAIL);
-
+
if (mesh.nverts == 0 || mesh.npolys == 0)
return true;
@@ -1107,10 +1206,10 @@ bool rcBuildPolyMeshDetail(rcContext* ctx, const rcPolyMesh& mesh, const rcCompa
ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.meshes' (%d).", dmesh.nmeshes*4);
return false;
}
-
+
int vcap = nPolyVerts+nPolyVerts/2;
int tcap = vcap*2;
-
+
dmesh.nverts = 0;
dmesh.verts = (float*)rcAlloc(sizeof(float)*vcap*3, RC_ALLOC_PERM);
if (!dmesh.verts)
@@ -1119,7 +1218,7 @@ bool rcBuildPolyMeshDetail(rcContext* ctx, const rcPolyMesh& mesh, const rcCompa
return false;
}
dmesh.ntris = 0;
- dmesh.tris = (unsigned char*)rcAlloc(sizeof(unsigned char*)*tcap*4, RC_ALLOC_PERM);
+ dmesh.tris = (unsigned char*)rcAlloc(sizeof(unsigned char)*tcap*4, RC_ALLOC_PERM);
if (!dmesh.tris)
{
ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.tris' (%d).", tcap*4);
@@ -1158,7 +1257,7 @@ bool rcBuildPolyMeshDetail(rcContext* ctx, const rcPolyMesh& mesh, const rcCompa
{
return false;
}
-
+
// Move detail verts to world space.
for (int j = 0; j < nverts; ++j)
{
@@ -1173,21 +1272,21 @@ bool rcBuildPolyMeshDetail(rcContext* ctx, const rcPolyMesh& mesh, const rcCompa
poly[j*3+1] += orig[1];
poly[j*3+2] += orig[2];
}
-
+
// Store detail submesh.
const int ntris = tris.size()/4;
-
+
dmesh.meshes[i*4+0] = (unsigned int)dmesh.nverts;
dmesh.meshes[i*4+1] = (unsigned int)nverts;
dmesh.meshes[i*4+2] = (unsigned int)dmesh.ntris;
- dmesh.meshes[i*4+3] = (unsigned int)ntris;
+ dmesh.meshes[i*4+3] = (unsigned int)ntris;
// Store vertices, allocate more memory if necessary.
if (dmesh.nverts+nverts > vcap)
{
while (dmesh.nverts+nverts > vcap)
vcap += 256;
-
+
float* newv = (float*)rcAlloc(sizeof(float)*vcap*3, RC_ALLOC_PERM);
if (!newv)
{
@@ -1233,9 +1332,9 @@ bool rcBuildPolyMeshDetail(rcContext* ctx, const rcPolyMesh& mesh, const rcCompa
dmesh.ntris++;
}
}
-
+
ctx->stopTimer(RC_TIMER_BUILD_POLYMESHDETAIL);
-
+
return true;
}
@@ -1245,11 +1344,11 @@ bool rcMergePolyMeshDetails(rcContext* ctx, rcPolyMeshDetail** meshes, const int
rcAssert(ctx);
ctx->startTimer(RC_TIMER_MERGE_POLYMESHDETAIL);
-
+
int maxVerts = 0;
int maxTris = 0;
int maxMeshes = 0;
-
+
for (int i = 0; i < nmeshes; ++i)
{
if (!meshes[i]) continue;
@@ -1257,7 +1356,7 @@ bool rcMergePolyMeshDetails(rcContext* ctx, rcPolyMeshDetail** meshes, const int
maxTris += meshes[i]->ntris;
maxMeshes += meshes[i]->nmeshes;
}
-
+
mesh.nmeshes = 0;
mesh.meshes = (unsigned int*)rcAlloc(sizeof(unsigned int)*maxMeshes*4, RC_ALLOC_PERM);
if (!mesh.meshes)
@@ -1265,7 +1364,7 @@ bool rcMergePolyMeshDetails(rcContext* ctx, rcPolyMeshDetail** meshes, const int
ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'pmdtl.meshes' (%d).", maxMeshes*4);
return false;
}
-
+
mesh.ntris = 0;
mesh.tris = (unsigned char*)rcAlloc(sizeof(unsigned char)*maxTris*4, RC_ALLOC_PERM);
if (!mesh.tris)
@@ -1273,7 +1372,7 @@ bool rcMergePolyMeshDetails(rcContext* ctx, rcPolyMeshDetail** meshes, const int
ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.tris' (%d).", maxTris*4);
return false;
}
-
+
mesh.nverts = 0;
mesh.verts = (float*)rcAlloc(sizeof(float)*maxVerts*3, RC_ALLOC_PERM);
if (!mesh.verts)
@@ -1297,7 +1396,7 @@ bool rcMergePolyMeshDetails(rcContext* ctx, rcPolyMeshDetail** meshes, const int
dst[3] = src[3];
mesh.nmeshes++;
}
-
+
for (int k = 0; k < dm->nverts; ++k)
{
rcVcopy(&mesh.verts[mesh.nverts*3], &dm->verts[k*3]);
@@ -1312,7 +1411,7 @@ bool rcMergePolyMeshDetails(rcContext* ctx, rcPolyMeshDetail** meshes, const int
mesh.ntris++;
}
}
-
+
ctx->stopTimer(RC_TIMER_MERGE_POLYMESHDETAIL);
return true;
diff --git a/dep/recastnavigation/Recast/Source/RecastRegion.cpp b/dep/recastnavigation/Recast/Source/RecastRegion.cpp
index 589fac29203..38bc4ff476f 100644
--- a/dep/recastnavigation/Recast/Source/RecastRegion.cpp
+++ b/dep/recastnavigation/Recast/Source/RecastRegion.cpp
@@ -315,6 +315,7 @@ static bool floodRegion(int x, int y, int i,
srcReg[ci] = 0;
continue;
}
+
count++;
// Expand neighbours.
@@ -516,7 +517,11 @@ struct rcRegion
id(i),
areaType(0),
remap(false),
- visited(false)
+ visited(false),
+ overlap(false),
+ connectsToBorder(false),
+ ymin(0xffff),
+ ymax(0)
{}
int spanCount; // Number of spans belonging to this region
@@ -524,6 +529,9 @@ struct rcRegion
unsigned char areaType; // Are type.
bool remap;
bool visited;
+ bool overlap;
+ bool connectsToBorder;
+ unsigned short ymin, ymax;
rcIntArray connections;
rcIntArray floors;
};
@@ -768,10 +776,11 @@ static void walkContour(int x, int y, int i, int dir,
}
}
-static bool filterSmallRegions(rcContext* ctx, int minRegionArea, int mergeRegionSize,
- unsigned short& maxRegionId,
- rcCompactHeightfield& chf,
- unsigned short* srcReg)
+
+static bool mergeAndFilterRegions(rcContext* ctx, int minRegionArea, int mergeRegionSize,
+ unsigned short& maxRegionId,
+ rcCompactHeightfield& chf,
+ unsigned short* srcReg, rcIntArray& overlaps)
{
const int w = chf.width;
const int h = chf.height;
@@ -780,7 +789,7 @@ static bool filterSmallRegions(rcContext* ctx, int minRegionArea, int mergeRegio
rcRegion* regions = (rcRegion*)rcAlloc(sizeof(rcRegion)*nreg, RC_ALLOC_TEMP);
if (!regions)
{
- ctx->log(RC_LOG_ERROR, "filterSmallRegions: Out of memory 'regions' (%d).", nreg);
+ ctx->log(RC_LOG_ERROR, "mergeAndFilterRegions: Out of memory 'regions' (%d).", nreg);
return false;
}
@@ -803,7 +812,6 @@ static bool filterSmallRegions(rcContext* ctx, int minRegionArea, int mergeRegio
rcRegion& reg = regions[r];
reg.spanCount++;
-
// Update floors.
for (int j = (int)c.index; j < ni; ++j)
{
@@ -811,6 +819,8 @@ static bool filterSmallRegions(rcContext* ctx, int minRegionArea, int mergeRegio
unsigned short floorId = srcReg[j];
if (floorId == 0 || floorId >= nreg)
continue;
+ if (floorId == r)
+ reg.overlap = true;
addUniqueFloorRegion(reg, floorId);
}
@@ -906,7 +916,7 @@ static bool filterSmallRegions(rcContext* ctx, int minRegionArea, int mergeRegio
}
}
}
-
+
// Merge too small regions to neighbour regions.
int mergeCount = 0 ;
do
@@ -916,7 +926,9 @@ static bool filterSmallRegions(rcContext* ctx, int minRegionArea, int mergeRegio
{
rcRegion& reg = regions[i];
if (reg.id == 0 || (reg.id & RC_BORDER_REG))
- continue;
+ continue;
+ if (reg.overlap)
+ continue;
if (reg.spanCount == 0)
continue;
@@ -933,7 +945,7 @@ static bool filterSmallRegions(rcContext* ctx, int minRegionArea, int mergeRegio
{
if (reg.connections[j] & RC_BORDER_REG) continue;
rcRegion& mreg = regions[reg.connections[j]];
- if (mreg.id == 0 || (mreg.id & RC_BORDER_REG)) continue;
+ if (mreg.id == 0 || (mreg.id & RC_BORDER_REG) || mreg.overlap) continue;
if (mreg.spanCount < smallest &&
canMergeWithRegion(reg, mreg) &&
canMergeWithRegion(mreg, reg))
@@ -1003,6 +1015,224 @@ static bool filterSmallRegions(rcContext* ctx, int minRegionArea, int mergeRegio
if ((srcReg[i] & RC_BORDER_REG) == 0)
srcReg[i] = regions[srcReg[i]].id;
}
+
+ // Return regions that we found to be overlapping.
+ for (int i = 0; i < nreg; ++i)
+ if (regions[i].overlap)
+ overlaps.push(regions[i].id);
+
+ for (int i = 0; i < nreg; ++i)
+ regions[i].~rcRegion();
+ rcFree(regions);
+
+
+ return true;
+}
+
+
+static void addUniqueConnection(rcRegion& reg, int n)
+{
+ for (int i = 0; i < reg.connections.size(); ++i)
+ if (reg.connections[i] == n)
+ return;
+ reg.connections.push(n);
+}
+
+static bool mergeAndFilterLayerRegions(rcContext* ctx, int minRegionArea,
+ unsigned short& maxRegionId,
+ rcCompactHeightfield& chf,
+ unsigned short* srcReg, rcIntArray& overlaps)
+{
+ const int w = chf.width;
+ const int h = chf.height;
+
+ const int nreg = maxRegionId+1;
+ rcRegion* regions = (rcRegion*)rcAlloc(sizeof(rcRegion)*nreg, RC_ALLOC_TEMP);
+ if (!regions)
+ {
+ ctx->log(RC_LOG_ERROR, "mergeAndFilterLayerRegions: Out of memory 'regions' (%d).", nreg);
+ return false;
+ }
+
+ // Construct regions
+ for (int i = 0; i < nreg; ++i)
+ new(&regions[i]) rcRegion((unsigned short)i);
+
+ // Find region neighbours and overlapping regions.
+ rcIntArray lregs(32);
+ for (int y = 0; y < h; ++y)
+ {
+ for (int x = 0; x < w; ++x)
+ {
+ const rcCompactCell& c = chf.cells[x+y*w];
+
+ lregs.resize(0);
+
+ for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
+ {
+ const rcCompactSpan& s = chf.spans[i];
+ const unsigned short ri = srcReg[i];
+ if (ri == 0 || ri >= nreg) continue;
+ rcRegion& reg = regions[ri];
+
+ reg.spanCount++;
+
+ reg.ymin = rcMin(reg.ymin, s.y);
+ reg.ymax = rcMax(reg.ymax, s.y);
+
+ // Collect all region layers.
+ lregs.push(ri);
+
+ // Update neighbours
+ for (int dir = 0; dir < 4; ++dir)
+ {
+ if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
+ {
+ const int ax = x + rcGetDirOffsetX(dir);
+ const int ay = y + rcGetDirOffsetY(dir);
+ const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, dir);
+ const unsigned short rai = srcReg[ai];
+ if (rai > 0 && rai < nreg && rai != ri)
+ addUniqueConnection(reg, rai);
+ if (rai & RC_BORDER_REG)
+ reg.connectsToBorder = true;
+ }
+ }
+
+ }
+
+ // Update overlapping regions.
+ for (int i = 0; i < lregs.size()-1; ++i)
+ {
+ for (int j = i+1; j < lregs.size(); ++j)
+ {
+ if (lregs[i] != lregs[j])
+ {
+ rcRegion& ri = regions[lregs[i]];
+ rcRegion& rj = regions[lregs[j]];
+ addUniqueFloorRegion(ri, lregs[j]);
+ addUniqueFloorRegion(rj, lregs[i]);
+ }
+ }
+ }
+
+ }
+ }
+
+ // Create 2D layers from regions.
+ unsigned short layerId = 1;
+
+ for (int i = 0; i < nreg; ++i)
+ regions[i].id = 0;
+
+ // Merge montone regions to create non-overlapping areas.
+ rcIntArray stack(32);
+ for (int i = 1; i < nreg; ++i)
+ {
+ rcRegion& root = regions[i];
+ // Skip already visited.
+ if (root.id != 0)
+ continue;
+
+ // Start search.
+ root.id = layerId;
+
+ stack.resize(0);
+ stack.push(i);
+
+ while (stack.size() > 0)
+ {
+ // Pop front
+ rcRegion& reg = regions[stack[0]];
+ for (int j = 0; j < stack.size()-1; ++j)
+ stack[j] = stack[j+1];
+ stack.resize(stack.size()-1);
+
+ const int ncons = (int)reg.connections.size();
+ for (int j = 0; j < ncons; ++j)
+ {
+ const int nei = reg.connections[j];
+ rcRegion& regn = regions[nei];
+ // Skip already visited.
+ if (regn.id != 0)
+ continue;
+ // Skip if the neighbour is overlapping root region.
+ bool overlap = false;
+ for (int k = 0; k < root.floors.size(); k++)
+ {
+ if (root.floors[k] == nei)
+ {
+ overlap = true;
+ break;
+ }
+ }
+ if (overlap)
+ continue;
+
+ // Deepen
+ stack.push(nei);
+
+ // Mark layer id
+ regn.id = layerId;
+ // Merge current layers to root.
+ for (int k = 0; k < regn.floors.size(); ++k)
+ addUniqueFloorRegion(root, regn.floors[k]);
+ root.ymin = rcMin(root.ymin, regn.ymin);
+ root.ymax = rcMax(root.ymax, regn.ymax);
+ root.spanCount += regn.spanCount;
+ regn.spanCount = 0;
+ root.connectsToBorder = root.connectsToBorder || regn.connectsToBorder;
+ }
+ }
+
+ layerId++;
+ }
+
+ // Remove small regions
+ for (int i = 0; i < nreg; ++i)
+ {
+ if (regions[i].spanCount > 0 && regions[i].spanCount < minRegionArea && !regions[i].connectsToBorder)
+ {
+ unsigned short reg = regions[i].id;
+ for (int j = 0; j < nreg; ++j)
+ if (regions[j].id == reg)
+ regions[j].id = 0;
+ }
+ }
+
+ // Compress region Ids.
+ for (int i = 0; i < nreg; ++i)
+ {
+ regions[i].remap = false;
+ if (regions[i].id == 0) continue; // Skip nil regions.
+ if (regions[i].id & RC_BORDER_REG) continue; // Skip external regions.
+ regions[i].remap = true;
+ }
+
+ unsigned short regIdGen = 0;
+ for (int i = 0; i < nreg; ++i)
+ {
+ if (!regions[i].remap)
+ continue;
+ unsigned short oldId = regions[i].id;
+ unsigned short newId = ++regIdGen;
+ for (int j = i; j < nreg; ++j)
+ {
+ if (regions[j].id == oldId)
+ {
+ regions[j].id = newId;
+ regions[j].remap = false;
+ }
+ }
+ }
+ maxRegionId = regIdGen;
+
+ // Remap regions.
+ for (int i = 0; i < chf.spanCount; ++i)
+ {
+ if ((srcReg[i] & RC_BORDER_REG) == 0)
+ srcReg[i] = regions[srcReg[i]].id;
+ }
for (int i = 0; i < nreg; ++i)
regions[i].~rcRegion();
@@ -1011,6 +1241,8 @@ static bool filterSmallRegions(rcContext* ctx, int minRegionArea, int mergeRegio
return true;
}
+
+
/// @par
///
/// This is usually the second to the last step in creating a fully built
@@ -1256,13 +1488,17 @@ bool rcBuildRegionsMonotone(rcContext* ctx, rcCompactHeightfield& chf,
}
}
+
ctx->startTimer(RC_TIMER_BUILD_REGIONS_FILTER);
- // Filter out small regions.
+ // Merge regions and filter out small regions.
+ rcIntArray overlaps;
chf.maxRegions = id;
- if (!filterSmallRegions(ctx, minRegionArea, mergeRegionArea, chf.maxRegions, chf, srcReg))
+ if (!mergeAndFilterRegions(ctx, minRegionArea, mergeRegionArea, chf.maxRegions, chf, srcReg, overlaps))
return false;
+ // Monotone partitioning does not generate overlapping regions.
+
ctx->stopTimer(RC_TIMER_BUILD_REGIONS_FILTER);
// Store the result out.
@@ -1407,11 +1643,18 @@ bool rcBuildRegions(rcContext* ctx, rcCompactHeightfield& chf,
ctx->startTimer(RC_TIMER_BUILD_REGIONS_FILTER);
- // Filter out small regions.
+ // Merge regions and filter out smalle regions.
+ rcIntArray overlaps;
chf.maxRegions = regionId;
- if (!filterSmallRegions(ctx, minRegionArea, mergeRegionArea, chf.maxRegions, chf, srcReg))
+ if (!mergeAndFilterRegions(ctx, minRegionArea, mergeRegionArea, chf.maxRegions, chf, srcReg, overlaps))
return false;
-
+
+ // If overlapping regions were found during merging, split those regions.
+ if (overlaps.size() > 0)
+ {
+ ctx->log(RC_LOG_ERROR, "rcBuildRegions: %d overlapping regions.", overlaps.size());
+ }
+
ctx->stopTimer(RC_TIMER_BUILD_REGIONS_FILTER);
// Write the result out.
@@ -1424,3 +1667,157 @@ bool rcBuildRegions(rcContext* ctx, rcCompactHeightfield& chf,
}
+bool rcBuildLayerRegions(rcContext* ctx, rcCompactHeightfield& chf,
+ const int borderSize, const int minRegionArea)
+{
+ rcAssert(ctx);
+
+ ctx->startTimer(RC_TIMER_BUILD_REGIONS);
+
+ const int w = chf.width;
+ const int h = chf.height;
+ unsigned short id = 1;
+
+ rcScopedDelete<unsigned short> srcReg = (unsigned short*)rcAlloc(sizeof(unsigned short)*chf.spanCount, RC_ALLOC_TEMP);
+ if (!srcReg)
+ {
+ ctx->log(RC_LOG_ERROR, "rcBuildRegionsMonotone: Out of memory 'src' (%d).", chf.spanCount);
+ return false;
+ }
+ memset(srcReg,0,sizeof(unsigned short)*chf.spanCount);
+
+ const int nsweeps = rcMax(chf.width,chf.height);
+ rcScopedDelete<rcSweepSpan> sweeps = (rcSweepSpan*)rcAlloc(sizeof(rcSweepSpan)*nsweeps, RC_ALLOC_TEMP);
+ if (!sweeps)
+ {
+ ctx->log(RC_LOG_ERROR, "rcBuildRegionsMonotone: Out of memory 'sweeps' (%d).", nsweeps);
+ return false;
+ }
+
+
+ // Mark border regions.
+ if (borderSize > 0)
+ {
+ // Make sure border will not overflow.
+ const int bw = rcMin(w, borderSize);
+ const int bh = rcMin(h, borderSize);
+ // Paint regions
+ paintRectRegion(0, bw, 0, h, id|RC_BORDER_REG, chf, srcReg); id++;
+ paintRectRegion(w-bw, w, 0, h, id|RC_BORDER_REG, chf, srcReg); id++;
+ paintRectRegion(0, w, 0, bh, id|RC_BORDER_REG, chf, srcReg); id++;
+ paintRectRegion(0, w, h-bh, h, id|RC_BORDER_REG, chf, srcReg); id++;
+
+ chf.borderSize = borderSize;
+ }
+
+ rcIntArray prev(256);
+
+ // Sweep one line at a time.
+ for (int y = borderSize; y < h-borderSize; ++y)
+ {
+ // Collect spans from this row.
+ prev.resize(id+1);
+ memset(&prev[0],0,sizeof(int)*id);
+ unsigned short rid = 1;
+
+ for (int x = borderSize; x < w-borderSize; ++x)
+ {
+ const rcCompactCell& c = chf.cells[x+y*w];
+
+ for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
+ {
+ const rcCompactSpan& s = chf.spans[i];
+ if (chf.areas[i] == RC_NULL_AREA) continue;
+
+ // -x
+ unsigned short previd = 0;
+ if (rcGetCon(s, 0) != RC_NOT_CONNECTED)
+ {
+ const int ax = x + rcGetDirOffsetX(0);
+ const int ay = y + rcGetDirOffsetY(0);
+ const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 0);
+ if ((srcReg[ai] & RC_BORDER_REG) == 0 && chf.areas[i] == chf.areas[ai])
+ previd = srcReg[ai];
+ }
+
+ if (!previd)
+ {
+ previd = rid++;
+ sweeps[previd].rid = previd;
+ sweeps[previd].ns = 0;
+ sweeps[previd].nei = 0;
+ }
+
+ // -y
+ if (rcGetCon(s,3) != RC_NOT_CONNECTED)
+ {
+ const int ax = x + rcGetDirOffsetX(3);
+ const int ay = y + rcGetDirOffsetY(3);
+ const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 3);
+ if (srcReg[ai] && (srcReg[ai] & RC_BORDER_REG) == 0 && chf.areas[i] == chf.areas[ai])
+ {
+ unsigned short nr = srcReg[ai];
+ if (!sweeps[previd].nei || sweeps[previd].nei == nr)
+ {
+ sweeps[previd].nei = nr;
+ sweeps[previd].ns++;
+ prev[nr]++;
+ }
+ else
+ {
+ sweeps[previd].nei = RC_NULL_NEI;
+ }
+ }
+ }
+
+ srcReg[i] = previd;
+ }
+ }
+
+ // Create unique ID.
+ for (int i = 1; i < rid; ++i)
+ {
+ if (sweeps[i].nei != RC_NULL_NEI && sweeps[i].nei != 0 &&
+ prev[sweeps[i].nei] == (int)sweeps[i].ns)
+ {
+ sweeps[i].id = sweeps[i].nei;
+ }
+ else
+ {
+ sweeps[i].id = id++;
+ }
+ }
+
+ // Remap IDs
+ for (int x = borderSize; x < w-borderSize; ++x)
+ {
+ const rcCompactCell& c = chf.cells[x+y*w];
+
+ for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
+ {
+ if (srcReg[i] > 0 && srcReg[i] < rid)
+ srcReg[i] = sweeps[srcReg[i]].id;
+ }
+ }
+ }
+
+
+ ctx->startTimer(RC_TIMER_BUILD_REGIONS_FILTER);
+
+ // Merge monotone regions to layers and remove small regions.
+ rcIntArray overlaps;
+ chf.maxRegions = id;
+ if (!mergeAndFilterLayerRegions(ctx, minRegionArea, chf.maxRegions, chf, srcReg, overlaps))
+ return false;
+
+ ctx->stopTimer(RC_TIMER_BUILD_REGIONS_FILTER);
+
+
+ // Store the result out.
+ for (int i = 0; i < chf.spanCount; ++i)
+ chf.spans[i].reg = srcReg[i];
+
+ ctx->stopTimer(RC_TIMER_BUILD_REGIONS);
+
+ return true;
+}