aboutsummaryrefslogtreecommitdiff
path: root/dep/src/g3dlite/ConvexPolyhedron.cpp
diff options
context:
space:
mode:
authorclick <none@none>2010-06-05 00:59:25 +0200
committerclick <none@none>2010-06-05 00:59:25 +0200
commite77716188861d4aa83b227a90e04a66b63baeb1f (patch)
treece72764181a760314ec851f7535052dcf75649db /dep/src/g3dlite/ConvexPolyhedron.cpp
parent1426c2970f42a2d065198806f750bf5dd28d580b (diff)
HIGHLY EXPERIMENTAL - USE AT YOUR OWN RISK
Implement the use of the new vmap3-format by Lynx3d (mad props to you for this, and thanks for the talks earlier) + reduced Vmap size to less than one third, and improve precision + indoor/outdoor check which allows automatic unmounting of players + additional area information from WMOAreaTable.dbc, removed existing "hacks" + WMO liquid information for swimming and fishing correctly in buildings/cities/caves/instances (lava and slime WILL hurt from now on!) - buildfiles for windows are not properly done, and will need to be sorted out NOTE: Do NOT annoy Lynx3d about this, any issues with this "port" is entirely our fault ! THIS REVISION IS CONSIDERED UNSTABLE AND CONTAINS WORK IN PROGRESS - USE AT YOUR OWN RISK! --HG-- branch : trunk
Diffstat (limited to 'dep/src/g3dlite/ConvexPolyhedron.cpp')
-rw-r--r--dep/src/g3dlite/ConvexPolyhedron.cpp457
1 files changed, 457 insertions, 0 deletions
diff --git a/dep/src/g3dlite/ConvexPolyhedron.cpp b/dep/src/g3dlite/ConvexPolyhedron.cpp
new file mode 100644
index 00000000000..5fa76e3ed41
--- /dev/null
+++ b/dep/src/g3dlite/ConvexPolyhedron.cpp
@@ -0,0 +1,457 @@
+/**
+ @file ConvexPolyhedron.cpp
+
+ @author Morgan McGuire, http://graphics.cs.williams.edu
+
+ @created 2001-11-11
+ @edited 2009-08-10
+
+ Copyright 2000-2009, Morgan McGuire.
+ All rights reserved.
+ */
+
+#include "G3D/platform.h"
+#include "G3D/ConvexPolyhedron.h"
+#include "G3D/debug.h"
+
+namespace G3D {
+
+ConvexPolygon::ConvexPolygon(const Array<Vector3>& __vertex) : _vertex(__vertex) {
+ // Intentionally empty
+}
+
+
+ConvexPolygon::ConvexPolygon(const Vector3& v0, const Vector3& v1, const Vector3& v2) {
+ _vertex.append(v0, v1, v2);
+}
+
+
+bool ConvexPolygon::isEmpty() const {
+ return (_vertex.length() == 0) || (getArea() <= fuzzyEpsilon);
+}
+
+
+float ConvexPolygon::getArea() const {
+
+ if (_vertex.length() < 3) {
+ return 0;
+ }
+
+ float sum = 0;
+
+ int length = _vertex.length();
+ // Split into triangle fan, compute individual area
+ for (int v = 2; v < length; v++) {
+ int i0 = 0;
+ int i1 = v - 1;
+ int i2 = v;
+
+ sum += (_vertex[i1] - _vertex[i0]).cross(_vertex[i2] - _vertex[i0]).magnitude() / 2;
+ }
+
+ return sum;
+}
+
+void ConvexPolygon::cut(const Plane& plane, ConvexPolygon &above, ConvexPolygon &below) {
+ DirectedEdge edge;
+ cut(plane, above, below, edge);
+}
+
+void ConvexPolygon::cut(const Plane& plane, ConvexPolygon &above, ConvexPolygon &below, DirectedEdge &newEdge) {
+ above._vertex.resize(0);
+ below._vertex.resize(0);
+
+ if (isEmpty()) {
+ //debugPrintf("Empty\n");
+ return;
+ }
+
+ int v = 0;
+ int length = _vertex.length();
+
+
+ Vector3 polyNormal = normal();
+ Vector3 planeNormal= plane.normal();
+
+ // See if the polygon is *in* the plane.
+ if (planeNormal.fuzzyEq(polyNormal) || planeNormal.fuzzyEq(-polyNormal)) {
+ // Polygon is parallel to the plane. It must be either above,
+ // below, or in the plane.
+
+ double a, b, c, d;
+ Vector3 pt = _vertex[0];
+
+ plane.getEquation(a,b,c,d);
+ float r = (float)(a * pt.x + b * pt.y + c * pt.z + d);
+
+ if (fuzzyGe(r, 0)) {
+ // The polygon is entirely in the plane.
+ //debugPrintf("Entirely above\n");
+ above = *this;
+ return;
+ } else {
+ //debugPrintf("Entirely below (1)\n");
+ below = *this;
+ return;
+ }
+ }
+
+
+ // Number of edges crossing the plane. Used for
+ // debug assertions.
+ int count = 0;
+
+ // True when the last _vertex we looked at was above the plane
+ bool lastAbove = plane.halfSpaceContains(_vertex[v]);
+
+ if (lastAbove) {
+ above._vertex.append(_vertex[v]);
+ } else {
+ below._vertex.append(_vertex[v]);
+ }
+
+ for (v = 1; v < length; v++) {
+ bool isAbove = plane.halfSpaceContains(_vertex[v]);
+
+ if (lastAbove ^ isAbove) {
+ // Switched sides.
+ // Create an interpolated point that lies
+ // in the plane, between the two points.
+ Line line = Line::fromTwoPoints(_vertex[v - 1], _vertex[v]);
+ Vector3 interp = line.intersection(plane);
+
+ if (! interp.isFinite()) {
+
+ // Since the polygon is not in the plane (we checked above),
+ // it must be the case that this edge (and only this edge)
+ // is in the plane. This only happens when the polygon is
+ // entirely below the plane except for one edge. This edge
+ // forms a degenerate polygon, so just treat the whole polygon
+ // as below the plane.
+ below = *this;
+ above._vertex.resize(0);
+ //debugPrintf("Entirely below\n");
+ return;
+ }
+
+ above._vertex.append(interp);
+ below._vertex.append(interp);
+ if (lastAbove) {
+ newEdge.stop = interp;
+ } else {
+ newEdge.start = interp;
+ }
+ count++;
+ }
+
+ lastAbove = isAbove;
+ if (lastAbove) {
+ above._vertex.append(_vertex[v]);
+ } else {
+ below._vertex.append(_vertex[v]);
+ }
+ }
+
+ // Loop back to the first point, seeing if an interpolated point is
+ // needed.
+ bool isAbove = plane.halfSpaceContains(_vertex[0]);
+ if (lastAbove ^ isAbove) {
+ Line line = Line::fromTwoPoints(_vertex[length - 1], _vertex[0]);
+ Vector3 interp = line.intersection(plane);
+ if (! interp.isFinite()) {
+ // Since the polygon is not in the plane (we checked above),
+ // it must be the case that this edge (and only this edge)
+ // is in the plane. This only happens when the polygon is
+ // entirely below the plane except for one edge. This edge
+ // forms a degenerate polygon, so just treat the whole polygon
+ // as below the plane.
+ below = *this;
+ above._vertex.resize(0);
+ //debugPrintf("Entirely below\n");
+ return;
+ }
+
+ above._vertex.append(interp);
+ below._vertex.append(interp);
+ debugAssertM(count < 2, "Convex polygons may only intersect planes at two edges.");
+ if (lastAbove) {
+ newEdge.stop = interp;
+ } else {
+ newEdge.start = interp;
+ }
+ ++count;
+ }
+
+ debugAssertM((count == 2) || (count == 0), "Convex polygons may only intersect planes at two edges.");
+}
+
+
+ConvexPolygon ConvexPolygon::inverse() const {
+ ConvexPolygon result;
+ int length = _vertex.length();
+ result._vertex.resize(length);
+
+ for (int v = 0; v < length; v++) {
+ result._vertex[v] = _vertex[length - v - 1];
+ }
+
+ return result;
+}
+
+
+void ConvexPolygon::removeDuplicateVertices(){
+ // Any valid polygon should have 3 or more vertices, but why take chances?
+ if (_vertex.size() >= 2){
+
+ // Remove duplicate vertices.
+ for (int i=0;i<_vertex.size()-1;++i){
+ if (_vertex[i].fuzzyEq(_vertex[i+1])){
+ _vertex.remove(i+1);
+ --i; // Don't move forward.
+ }
+ }
+
+ // Check the last vertex against the first.
+ if (_vertex[_vertex.size()-1].fuzzyEq(_vertex[0])){
+ _vertex.pop();
+ }
+ }
+}
+
+//////////////////////////////////////////////////////////////////////////////
+
+ConvexPolyhedron::ConvexPolyhedron(const Array<ConvexPolygon>& _face) : face(_face) {
+ // Intentionally empty
+}
+
+
+float ConvexPolyhedron::getVolume() const {
+
+ if (face.length() < 4) {
+ return 0;
+ }
+
+ // The volume of any pyramid is 1/3 * h * base area.
+ // Discussion at: http://nrich.maths.org/mathsf/journalf/oct01/art1/
+
+ float sum = 0;
+
+ // Choose the first _vertex of the first face as the origin.
+ // This lets us skip one face, too, and avoids negative heights.
+ Vector3 v0 = face[0]._vertex[0];
+ for (int f = 1; f < face.length(); f++) {
+ const ConvexPolygon& poly = face[f];
+
+ float height = (poly._vertex[0] - v0).dot(poly.normal());
+ float base = poly.getArea();
+
+ sum += height * base;
+ }
+
+ return sum / 3;
+}
+
+bool ConvexPolyhedron::isEmpty() const {
+ return (face.length() == 0) || (getVolume() <= fuzzyEpsilon);
+}
+
+void ConvexPolyhedron::cut(const Plane& plane, ConvexPolyhedron &above, ConvexPolyhedron &below) {
+ above.face.resize(0);
+ below.face.resize(0);
+
+ Array<DirectedEdge> edge;
+
+ int f;
+
+ // See if the plane cuts this polyhedron at all. Detect when
+ // the polyhedron is entirely to one side or the other.
+ //{
+ int numAbove = 0, numIn = 0, numBelow = 0;
+ bool ruledOut = false;
+ double d;
+ Vector3 abc;
+ plane.getEquation(abc, d);
+
+ // This number has to be fairly large to prevent precision problems down
+ // the road.
+ const float eps = 0.005f;
+ for (f = face.length() - 1; (f >= 0) && (!ruledOut); f--) {
+ const ConvexPolygon& poly = face[f];
+ for (int v = poly._vertex.length() - 1; (v >= 0) && (!ruledOut); v--) {
+ double r = abc.dot(poly._vertex[v]) + d;
+ if (r > eps) {
+ numAbove++;
+ } else if (r < -eps) {
+ numBelow++;
+ } else {
+ numIn++;
+ }
+
+ ruledOut = (numAbove != 0) && (numBelow !=0);
+ }
+ }
+
+ if (numBelow == 0) {
+ above = *this;
+ return;
+ } else if (numAbove == 0) {
+ below = *this;
+ return;
+ }
+ //}
+
+ // Clip each polygon, collecting split edges.
+ for (f = face.length() - 1; f >= 0; f--) {
+ ConvexPolygon a, b;
+ DirectedEdge e;
+ face[f].cut(plane, a, b, e);
+
+ bool aEmpty = a.isEmpty();
+ bool bEmpty = b.isEmpty();
+
+ //debugPrintf("\n");
+ if (! aEmpty) {
+ //debugPrintf(" Above %f\n", a.getArea());
+ above.face.append(a);
+ }
+
+ if (! bEmpty) {
+ //debugPrintf(" Below %f\n", b.getArea());
+ below.face.append(b);
+ }
+
+ if (! aEmpty && ! bEmpty) {
+ //debugPrintf(" == Split\n");
+ edge.append(e);
+ } else {
+ // Might be the case that the polygon is entirely on
+ // one side of the plane yet there is an edge we need
+ // because it touches the plane.
+ //
+ // Extract the non-empty _vertex list and examine it.
+ // If we find exactly one edge in the plane, add that edge.
+ const Array<Vector3>& _vertex = (aEmpty ? b._vertex : a._vertex);
+ int L = _vertex.length();
+ int count = 0;
+ for (int v = 0; v < L; v++) {
+ if (plane.fuzzyContains(_vertex[v]) && plane.fuzzyContains(_vertex[(v + 1) % L])) {
+ e.start = _vertex[v];
+ e.stop = _vertex[(v + 1) % L];
+ count++;
+ }
+ }
+
+ if (count == 1) {
+ edge.append(e);
+ }
+ }
+ }
+
+ if (above.face.length() == 1) {
+ // Only one face above means that this entire
+ // polyhedron is below the plane. Move that face over.
+ below.face.append(above.face[0]);
+ above.face.resize(0);
+ } else if (below.face.length() == 1) {
+ // This shouldn't happen, but it arises in practice
+ // from numerical imprecision.
+ above.face.append(below.face[0]);
+ below.face.resize(0);
+ }
+
+ if ((above.face.length() > 0) && (below.face.length() > 0)) {
+ // The polyhedron was actually cut; create a cap polygon
+ ConvexPolygon cap;
+
+ // Collect the final polgyon by sorting the edges
+ int numVertices = edge.length();
+/*debugPrintf("\n");
+for (int xx=0; xx < numVertices; xx++) {
+ std::string s1 = edge[xx].start.toString();
+ std::string s2 = edge[xx].stop.toString();
+ debugPrintf("%s -> %s\n", s1.c_str(), s2.c_str());
+}
+*/
+
+ // Need at least three points to make a polygon
+ debugAssert(numVertices >= 3);
+
+ Vector3 last_vertex = edge.last().stop;
+ cap._vertex.append(last_vertex);
+
+ // Search for the next _vertex. Because of accumulating
+ // numerical error, we have to find the closest match, not
+ // just the one we expect.
+ for (int v = numVertices - 1; v >= 0; v--) {
+ // matching edge index
+ int index = 0;
+ int num = edge.length();
+ double distance = (edge[index].start - last_vertex).squaredMagnitude();
+ for (int e = 1; e < num; e++) {
+ double d = (edge[e].start - last_vertex).squaredMagnitude();
+
+ if (d < distance) {
+ // This is the new closest one
+ index = e;
+ distance = d;
+ }
+ }
+
+ // Don't tolerate ridiculous error.
+ debugAssertM(distance < 0.02, "Edge missing while closing polygon.");
+
+ last_vertex = edge[index].stop;
+ cap._vertex.append(last_vertex);
+ }
+
+ //debugPrintf("\n");
+ //debugPrintf("Cap (both) %f\n", cap.getArea());
+ above.face.append(cap);
+ below.face.append(cap.inverse());
+ }
+
+ // Make sure we put enough faces on each polyhedra
+ debugAssert((above.face.length() == 0) || (above.face.length() >= 4));
+ debugAssert((below.face.length() == 0) || (below.face.length() >= 4));
+}
+
+///////////////////////////////////////////////
+
+ConvexPolygon2D::ConvexPolygon2D(const Array<Vector2>& pts, bool reverse) : m_vertex(pts) {
+ if (reverse) {
+ m_vertex.reverse();
+ }
+}
+
+
+bool ConvexPolygon2D::contains(const Vector2& p, bool reverse) const {
+ // Compute the signed area of each polygon from p to an edge.
+ // If the area is non-negative for all polygons then p is inside
+ // the polygon. (To adapt this algorithm for a concave polygon,
+ // the *sum* of the areas must be non-negative).
+
+ float r = reverse ? -1 : 1;
+
+ for (int i0 = 0; i0 < m_vertex.size(); ++i0) {
+ int i1 = (i0 + 1) % m_vertex.size();
+ const Vector2& v0 = m_vertex[i0];
+ const Vector2& v1 = m_vertex[i1];
+
+ Vector2 e0 = v0 - p;
+ Vector2 e1 = v1 - p;
+
+ // Area = (1/2) cross product, negated to be ccw in
+ // a 2D space; we neglect the 1/2
+ float area = -(e0.x * e1.y - e0.y * e1.x);
+
+ if (area * r < 0) {
+ return false;
+ }
+ }
+
+ return true;
+}
+
+
+}
+