aboutsummaryrefslogtreecommitdiff
path: root/externals/g3dlite/G3D.lib/source/Matrix3.cpp
diff options
context:
space:
mode:
authorBrian <runningnak3d@gmail.com>2010-06-07 18:32:20 -0600
committerBrian <runningnak3d@gmail.com>2010-06-07 18:32:20 -0600
commit1fd70827128177aba3ac1334135fc12422819db0 (patch)
tree83355f4e124ef9d8e5ad47f9f904bfb001dcd3f9 /externals/g3dlite/G3D.lib/source/Matrix3.cpp
parent726a76e93aa3f20f4e642a01027f977f368a979e (diff)
* Reverted to the old G3D library, however collision still will not compile
* and is therefore commented out. --HG-- branch : trunk
Diffstat (limited to 'externals/g3dlite/G3D.lib/source/Matrix3.cpp')
-rw-r--r--externals/g3dlite/G3D.lib/source/Matrix3.cpp1725
1 files changed, 0 insertions, 1725 deletions
diff --git a/externals/g3dlite/G3D.lib/source/Matrix3.cpp b/externals/g3dlite/G3D.lib/source/Matrix3.cpp
deleted file mode 100644
index 7fb6648d3f7..00000000000
--- a/externals/g3dlite/G3D.lib/source/Matrix3.cpp
+++ /dev/null
@@ -1,1725 +0,0 @@
-/**
- @file Matrix3.cpp
-
- 3x3 matrix class
-
- @author Morgan McGuire, graphics3d.com
-
- @created 2001-06-02
- @edited 2006-04-06
-*/
-
-#include "G3D/platform.h"
-#include <memory.h>
-#include <assert.h>
-#include "G3D/Matrix3.h"
-#include "G3D/g3dmath.h"
-#include "G3D/BinaryInput.h"
-#include "G3D/BinaryOutput.h"
-#include "G3D/Quat.h"
-
-namespace G3D {
-
-const float Matrix3::EPSILON = 1e-06f;
-
-const Matrix3& Matrix3::zero() {
- static Matrix3 m(0, 0, 0, 0, 0, 0, 0, 0, 0);
- return m;
-}
-
-const Matrix3& Matrix3::identity() {
- static Matrix3 m(1, 0, 0, 0, 1, 0, 0, 0, 1);
- return m;
-}
-
-
-const float Matrix3::ms_fSvdEpsilon = 1e-04f;
-const int Matrix3::ms_iSvdMaxIterations = 32;
-
-Matrix3::Matrix3(BinaryInput& b) {
- deserialize(b);
-}
-
-bool Matrix3::fuzzyEq(const Matrix3& b) const {
- for (int r = 0; r < 3; ++r) {
- for (int c = 0; c < 3; ++c) {
- if (! G3D::fuzzyEq(elt[r][c], b[r][c])) {
- return false;
- }
- }
- }
- return true;
-}
-
-
-bool Matrix3::isOrthonormal() const {
- Vector3 X = column(0);
- Vector3 Y = column(1);
- Vector3 Z = column(2);
-
- return
- (G3D::fuzzyEq(X.dot(Y), 0.0f) &&
- G3D::fuzzyEq(Y.dot(Z), 0.0f) &&
- G3D::fuzzyEq(X.dot(Z), 0.0f) &&
- G3D::fuzzyEq(X.squaredMagnitude(), 1.0f) &&
- G3D::fuzzyEq(Y.squaredMagnitude(), 1.0f) &&
- G3D::fuzzyEq(Z.squaredMagnitude(), 1.0f));
-}
-
-//----------------------------------------------------------------------------
-Matrix3::Matrix3(const Quat& _q) {
- // Implementation from Watt and Watt, pg 362
- // See also http://www.flipcode.com/documents/matrfaq.html#Q54
- Quat q = _q;
- q.unitize();
- float xx = 2.0f * q.x * q.x;
- float xy = 2.0f * q.x * q.y;
- float xz = 2.0f * q.x * q.z;
- float xw = 2.0f * q.x * q.w;
-
- float yy = 2.0f * q.y * q.y;
- float yz = 2.0f * q.y * q.z;
- float yw = 2.0f * q.y * q.w;
-
- float zz = 2.0f * q.z * q.z;
- float zw = 2.0f * q.z * q.w;
-
- set(1.0f - yy - zz, xy - zw, xz + yw,
- xy + zw, 1.0f - xx - zz, yz - xw,
- xz - yw, yz + xw, 1.0f - xx - yy);
-}
-
-//----------------------------------------------------------------------------
-
-Matrix3::Matrix3 (const float aafEntry[3][3]) {
- memcpy(elt, aafEntry, 9*sizeof(float));
-}
-
-//----------------------------------------------------------------------------
-Matrix3::Matrix3 (const Matrix3& rkMatrix) {
- memcpy(elt, rkMatrix.elt, 9*sizeof(float));
-}
-
-//----------------------------------------------------------------------------
-Matrix3::Matrix3(
- float fEntry00, float fEntry01, float fEntry02,
- float fEntry10, float fEntry11, float fEntry12,
- float fEntry20, float fEntry21, float fEntry22) {
- set(fEntry00, fEntry01, fEntry02,
- fEntry10, fEntry11, fEntry12,
- fEntry20, fEntry21, fEntry22);
-}
-
-void Matrix3::set(
- float fEntry00, float fEntry01, float fEntry02,
- float fEntry10, float fEntry11, float fEntry12,
- float fEntry20, float fEntry21, float fEntry22) {
-
- elt[0][0] = fEntry00;
- elt[0][1] = fEntry01;
- elt[0][2] = fEntry02;
- elt[1][0] = fEntry10;
- elt[1][1] = fEntry11;
- elt[1][2] = fEntry12;
- elt[2][0] = fEntry20;
- elt[2][1] = fEntry21;
- elt[2][2] = fEntry22;
-}
-
-
-void Matrix3::deserialize(BinaryInput& b) {
- int r,c;
- for (c = 0; c < 3; ++c) {
- for (r = 0; r < 3; ++r) {
- elt[r][c] = b.readFloat32();
- }
- }
-}
-
-
-void Matrix3::serialize(BinaryOutput& b) const {
- int r,c;
- for (c = 0; c < 3; ++c) {
- for (r = 0; r < 3; ++r) {
- b.writeFloat32(elt[r][c]);
- }
- }
-}
-
-
-//----------------------------------------------------------------------------
-Vector3 Matrix3::column (int iCol) const {
- assert((0 <= iCol) && (iCol < 3));
- return Vector3(elt[0][iCol], elt[1][iCol],
- elt[2][iCol]);
-}
-
-const Vector3& Matrix3::row (int iRow) const {
- assert((0 <= iRow) && (iRow < 3));
- return *reinterpret_cast<const Vector3*>(elt[iRow]);
-}
-
-
-Vector3 Matrix3::getColumn (int iCol) const {
- assert((0 <= iCol) && (iCol < 3));
- return Vector3(elt[0][iCol], elt[1][iCol],
- elt[2][iCol]);
-}
-
-Vector3 Matrix3::getRow (int iRow) const {
- return Vector3(elt[iRow][0], elt[iRow][1], elt[iRow][2]);
-}
-
-void Matrix3::setColumn(int iCol, const Vector3 &vector) {
- debugAssert((iCol >= 0) && (iCol < 3));
- elt[0][iCol] = vector.x;
- elt[1][iCol] = vector.y;
- elt[2][iCol] = vector.z;
-}
-
-
-void Matrix3::setRow(int iRow, const Vector3 &vector) {
- debugAssert((iRow >= 0) && (iRow < 3));
- elt[iRow][0] = vector.x;
- elt[iRow][1] = vector.y;
- elt[iRow][2] = vector.z;
-}
-
-
-//----------------------------------------------------------------------------
-bool Matrix3::operator== (const Matrix3& rkMatrix) const {
- for (int iRow = 0; iRow < 3; iRow++) {
- for (int iCol = 0; iCol < 3; iCol++) {
- if ( elt[iRow][iCol] != rkMatrix.elt[iRow][iCol] )
- return false;
- }
- }
-
- return true;
-}
-
-//----------------------------------------------------------------------------
-bool Matrix3::operator!= (const Matrix3& rkMatrix) const {
- return !operator==(rkMatrix);
-}
-
-//----------------------------------------------------------------------------
-Matrix3 Matrix3::operator+ (const Matrix3& rkMatrix) const {
- Matrix3 kSum;
-
- for (int iRow = 0; iRow < 3; iRow++) {
- for (int iCol = 0; iCol < 3; iCol++) {
- kSum.elt[iRow][iCol] = elt[iRow][iCol] +
- rkMatrix.elt[iRow][iCol];
- }
- }
-
- return kSum;
-}
-
-//----------------------------------------------------------------------------
-Matrix3 Matrix3::operator- (const Matrix3& rkMatrix) const {
- Matrix3 kDiff;
-
- for (int iRow = 0; iRow < 3; iRow++) {
- for (int iCol = 0; iCol < 3; iCol++) {
- kDiff.elt[iRow][iCol] = elt[iRow][iCol] -
- rkMatrix.elt[iRow][iCol];
- }
- }
-
- return kDiff;
-}
-
-//----------------------------------------------------------------------------
-Matrix3 Matrix3::operator* (const Matrix3& rkMatrix) const {
- Matrix3 kProd;
-
- for (int iRow = 0; iRow < 3; iRow++) {
- for (int iCol = 0; iCol < 3; iCol++) {
- kProd.elt[iRow][iCol] =
- elt[iRow][0] * rkMatrix.elt[0][iCol] +
- elt[iRow][1] * rkMatrix.elt[1][iCol] +
- elt[iRow][2] * rkMatrix.elt[2][iCol];
- }
- }
-
- return kProd;
-}
-
-Matrix3& Matrix3::operator+= (const Matrix3& rkMatrix) {
- for (int iRow = 0; iRow < 3; iRow++) {
- for (int iCol = 0; iCol < 3; iCol++) {
- elt[iRow][iCol] = elt[iRow][iCol] + rkMatrix.elt[iRow][iCol];
- }
- }
-
- return *this;
-}
-
-Matrix3& Matrix3::operator-= (const Matrix3& rkMatrix) {
- for (int iRow = 0; iRow < 3; iRow++) {
- for (int iCol = 0; iCol < 3; iCol++) {
- elt[iRow][iCol] = elt[iRow][iCol] - rkMatrix.elt[iRow][iCol];
- }
- }
-
- return *this;
-}
-
-Matrix3& Matrix3::operator*= (const Matrix3& rkMatrix) {
- Matrix3 mulMat;
- for (int iRow = 0; iRow < 3; iRow++) {
- for (int iCol = 0; iCol < 3; iCol++) {
- mulMat.elt[iRow][iCol] =
- elt[iRow][0] * rkMatrix.elt[0][iCol] +
- elt[iRow][1] * rkMatrix.elt[1][iCol] +
- elt[iRow][2] * rkMatrix.elt[2][iCol];
- }
- }
-
- *this = mulMat;
- return *this;
-}
-
-//----------------------------------------------------------------------------
-Matrix3 Matrix3::operator- () const {
- Matrix3 kNeg;
-
- for (int iRow = 0; iRow < 3; iRow++) {
- for (int iCol = 0; iCol < 3; iCol++) {
- kNeg[iRow][iCol] = -elt[iRow][iCol];
- }
- }
-
- return kNeg;
-}
-
-//----------------------------------------------------------------------------
-Matrix3 Matrix3::operator* (float fScalar) const {
- Matrix3 kProd;
-
- for (int iRow = 0; iRow < 3; iRow++) {
- for (int iCol = 0; iCol < 3; iCol++) {
- kProd[iRow][iCol] = fScalar * elt[iRow][iCol];
- }
- }
-
- return kProd;
-}
-
-//----------------------------------------------------------------------------
-Matrix3 operator* (double fScalar, const Matrix3& rkMatrix) {
- Matrix3 kProd;
-
- for (int iRow = 0; iRow < 3; iRow++) {
- for (int iCol = 0; iCol < 3; iCol++) {
- kProd[iRow][iCol] = fScalar * rkMatrix.elt[iRow][iCol];
- }
- }
-
- return kProd;
-}
-
-Matrix3 operator* (float fScalar, const Matrix3& rkMatrix) {
- return (double)fScalar * rkMatrix;
-}
-
-
-Matrix3 operator* (int fScalar, const Matrix3& rkMatrix) {
- return (double)fScalar * rkMatrix;
-}
-//----------------------------------------------------------------------------
-Matrix3 Matrix3::transpose () const {
- Matrix3 kTranspose;
-
- for (int iRow = 0; iRow < 3; iRow++) {
- for (int iCol = 0; iCol < 3; iCol++) {
- kTranspose[iRow][iCol] = elt[iCol][iRow];
- }
- }
-
- return kTranspose;
-}
-
-//----------------------------------------------------------------------------
-bool Matrix3::inverse (Matrix3& rkInverse, float fTolerance) const {
- // Invert a 3x3 using cofactors. This is about 8 times faster than
- // the Numerical Recipes code which uses Gaussian elimination.
-
- rkInverse[0][0] = elt[1][1] * elt[2][2] -
- elt[1][2] * elt[2][1];
- rkInverse[0][1] = elt[0][2] * elt[2][1] -
- elt[0][1] * elt[2][2];
- rkInverse[0][2] = elt[0][1] * elt[1][2] -
- elt[0][2] * elt[1][1];
- rkInverse[1][0] = elt[1][2] * elt[2][0] -
- elt[1][0] * elt[2][2];
- rkInverse[1][1] = elt[0][0] * elt[2][2] -
- elt[0][2] * elt[2][0];
- rkInverse[1][2] = elt[0][2] * elt[1][0] -
- elt[0][0] * elt[1][2];
- rkInverse[2][0] = elt[1][0] * elt[2][1] -
- elt[1][1] * elt[2][0];
- rkInverse[2][1] = elt[0][1] * elt[2][0] -
- elt[0][0] * elt[2][1];
- rkInverse[2][2] = elt[0][0] * elt[1][1] -
- elt[0][1] * elt[1][0];
-
- float fDet =
- elt[0][0] * rkInverse[0][0] +
- elt[0][1] * rkInverse[1][0] +
- elt[0][2] * rkInverse[2][0];
-
- if ( G3D::abs(fDet) <= fTolerance )
- return false;
-
- float fInvDet = 1.0 / fDet;
-
- for (int iRow = 0; iRow < 3; iRow++) {
- for (int iCol = 0; iCol < 3; iCol++)
- rkInverse[iRow][iCol] *= fInvDet;
- }
-
- return true;
-}
-
-//----------------------------------------------------------------------------
-Matrix3 Matrix3::inverse (float fTolerance) const {
- Matrix3 kInverse = Matrix3::zero();
- inverse(kInverse, fTolerance);
- return kInverse;
-}
-
-//----------------------------------------------------------------------------
-float Matrix3::determinant () const {
- float fCofactor00 = elt[1][1] * elt[2][2] -
- elt[1][2] * elt[2][1];
- float fCofactor10 = elt[1][2] * elt[2][0] -
- elt[1][0] * elt[2][2];
- float fCofactor20 = elt[1][0] * elt[2][1] -
- elt[1][1] * elt[2][0];
-
- float fDet =
- elt[0][0] * fCofactor00 +
- elt[0][1] * fCofactor10 +
- elt[0][2] * fCofactor20;
-
- return fDet;
-}
-
-//----------------------------------------------------------------------------
-void Matrix3::bidiagonalize (Matrix3& kA, Matrix3& kL,
- Matrix3& kR) {
- float afV[3], afW[3];
- float fLength, fSign, fT1, fInvT1, fT2;
- bool bIdentity;
-
- // map first column to (*,0,0)
- fLength = sqrt(kA[0][0] * kA[0][0] + kA[1][0] * kA[1][0] +
- kA[2][0] * kA[2][0]);
-
- if ( fLength > 0.0 ) {
- fSign = (kA[0][0] > 0.0 ? 1.0 : -1.0);
- fT1 = kA[0][0] + fSign * fLength;
- fInvT1 = 1.0 / fT1;
- afV[1] = kA[1][0] * fInvT1;
- afV[2] = kA[2][0] * fInvT1;
-
- fT2 = -2.0 / (1.0 + afV[1] * afV[1] + afV[2] * afV[2]);
- afW[0] = fT2 * (kA[0][0] + kA[1][0] * afV[1] + kA[2][0] * afV[2]);
- afW[1] = fT2 * (kA[0][1] + kA[1][1] * afV[1] + kA[2][1] * afV[2]);
- afW[2] = fT2 * (kA[0][2] + kA[1][2] * afV[1] + kA[2][2] * afV[2]);
- kA[0][0] += afW[0];
- kA[0][1] += afW[1];
- kA[0][2] += afW[2];
- kA[1][1] += afV[1] * afW[1];
- kA[1][2] += afV[1] * afW[2];
- kA[2][1] += afV[2] * afW[1];
- kA[2][2] += afV[2] * afW[2];
-
- kL[0][0] = 1.0 + fT2;
- kL[0][1] = kL[1][0] = fT2 * afV[1];
- kL[0][2] = kL[2][0] = fT2 * afV[2];
- kL[1][1] = 1.0 + fT2 * afV[1] * afV[1];
- kL[1][2] = kL[2][1] = fT2 * afV[1] * afV[2];
- kL[2][2] = 1.0 + fT2 * afV[2] * afV[2];
- bIdentity = false;
- } else {
- kL = Matrix3::identity();
- bIdentity = true;
- }
-
- // map first row to (*,*,0)
- fLength = sqrt(kA[0][1] * kA[0][1] + kA[0][2] * kA[0][2]);
-
- if ( fLength > 0.0 ) {
- fSign = (kA[0][1] > 0.0 ? 1.0 : -1.0);
- fT1 = kA[0][1] + fSign * fLength;
- afV[2] = kA[0][2] / fT1;
-
- fT2 = -2.0 / (1.0 + afV[2] * afV[2]);
- afW[0] = fT2 * (kA[0][1] + kA[0][2] * afV[2]);
- afW[1] = fT2 * (kA[1][1] + kA[1][2] * afV[2]);
- afW[2] = fT2 * (kA[2][1] + kA[2][2] * afV[2]);
- kA[0][1] += afW[0];
- kA[1][1] += afW[1];
- kA[1][2] += afW[1] * afV[2];
- kA[2][1] += afW[2];
- kA[2][2] += afW[2] * afV[2];
-
- kR[0][0] = 1.0;
- kR[0][1] = kR[1][0] = 0.0;
- kR[0][2] = kR[2][0] = 0.0;
- kR[1][1] = 1.0 + fT2;
- kR[1][2] = kR[2][1] = fT2 * afV[2];
- kR[2][2] = 1.0 + fT2 * afV[2] * afV[2];
- } else {
- kR = Matrix3::identity();
- }
-
- // map second column to (*,*,0)
- fLength = sqrt(kA[1][1] * kA[1][1] + kA[2][1] * kA[2][1]);
-
- if ( fLength > 0.0 ) {
- fSign = (kA[1][1] > 0.0 ? 1.0 : -1.0);
- fT1 = kA[1][1] + fSign * fLength;
- afV[2] = kA[2][1] / fT1;
-
- fT2 = -2.0 / (1.0 + afV[2] * afV[2]);
- afW[1] = fT2 * (kA[1][1] + kA[2][1] * afV[2]);
- afW[2] = fT2 * (kA[1][2] + kA[2][2] * afV[2]);
- kA[1][1] += afW[1];
- kA[1][2] += afW[2];
- kA[2][2] += afV[2] * afW[2];
-
- float fA = 1.0 + fT2;
- float fB = fT2 * afV[2];
- float fC = 1.0 + fB * afV[2];
-
- if ( bIdentity ) {
- kL[0][0] = 1.0;
- kL[0][1] = kL[1][0] = 0.0;
- kL[0][2] = kL[2][0] = 0.0;
- kL[1][1] = fA;
- kL[1][2] = kL[2][1] = fB;
- kL[2][2] = fC;
- } else {
- for (int iRow = 0; iRow < 3; iRow++) {
- float fTmp0 = kL[iRow][1];
- float fTmp1 = kL[iRow][2];
- kL[iRow][1] = fA * fTmp0 + fB * fTmp1;
- kL[iRow][2] = fB * fTmp0 + fC * fTmp1;
- }
- }
- }
-}
-
-//----------------------------------------------------------------------------
-void Matrix3::golubKahanStep (Matrix3& kA, Matrix3& kL,
- Matrix3& kR) {
- float fT11 = kA[0][1] * kA[0][1] + kA[1][1] * kA[1][1];
- float fT22 = kA[1][2] * kA[1][2] + kA[2][2] * kA[2][2];
- float fT12 = kA[1][1] * kA[1][2];
- float fTrace = fT11 + fT22;
- float fDiff = fT11 - fT22;
- float fDiscr = sqrt(fDiff * fDiff + 4.0 * fT12 * fT12);
- float fRoot1 = 0.5 * (fTrace + fDiscr);
- float fRoot2 = 0.5 * (fTrace - fDiscr);
-
- // adjust right
- float fY = kA[0][0] - (G3D::abs(fRoot1 - fT22) <=
- G3D::abs(fRoot2 - fT22) ? fRoot1 : fRoot2);
- float fZ = kA[0][1];
- float fInvLength = 1.0 / sqrt(fY * fY + fZ * fZ);
- float fSin = fZ * fInvLength;
- float fCos = -fY * fInvLength;
-
- float fTmp0 = kA[0][0];
- float fTmp1 = kA[0][1];
- kA[0][0] = fCos * fTmp0 - fSin * fTmp1;
- kA[0][1] = fSin * fTmp0 + fCos * fTmp1;
- kA[1][0] = -fSin * kA[1][1];
- kA[1][1] *= fCos;
-
- int iRow;
-
- for (iRow = 0; iRow < 3; iRow++) {
- fTmp0 = kR[0][iRow];
- fTmp1 = kR[1][iRow];
- kR[0][iRow] = fCos * fTmp0 - fSin * fTmp1;
- kR[1][iRow] = fSin * fTmp0 + fCos * fTmp1;
- }
-
- // adjust left
- fY = kA[0][0];
-
- fZ = kA[1][0];
-
- fInvLength = 1.0 / sqrt(fY * fY + fZ * fZ);
-
- fSin = fZ * fInvLength;
-
- fCos = -fY * fInvLength;
-
- kA[0][0] = fCos * kA[0][0] - fSin * kA[1][0];
-
- fTmp0 = kA[0][1];
-
- fTmp1 = kA[1][1];
-
- kA[0][1] = fCos * fTmp0 - fSin * fTmp1;
-
- kA[1][1] = fSin * fTmp0 + fCos * fTmp1;
-
- kA[0][2] = -fSin * kA[1][2];
-
- kA[1][2] *= fCos;
-
- int iCol;
-
- for (iCol = 0; iCol < 3; iCol++) {
- fTmp0 = kL[iCol][0];
- fTmp1 = kL[iCol][1];
- kL[iCol][0] = fCos * fTmp0 - fSin * fTmp1;
- kL[iCol][1] = fSin * fTmp0 + fCos * fTmp1;
- }
-
- // adjust right
- fY = kA[0][1];
-
- fZ = kA[0][2];
-
- fInvLength = 1.0 / sqrt(fY * fY + fZ * fZ);
-
- fSin = fZ * fInvLength;
-
- fCos = -fY * fInvLength;
-
- kA[0][1] = fCos * kA[0][1] - fSin * kA[0][2];
-
- fTmp0 = kA[1][1];
-
- fTmp1 = kA[1][2];
-
- kA[1][1] = fCos * fTmp0 - fSin * fTmp1;
-
- kA[1][2] = fSin * fTmp0 + fCos * fTmp1;
-
- kA[2][1] = -fSin * kA[2][2];
-
- kA[2][2] *= fCos;
-
- for (iRow = 0; iRow < 3; iRow++) {
- fTmp0 = kR[1][iRow];
- fTmp1 = kR[2][iRow];
- kR[1][iRow] = fCos * fTmp0 - fSin * fTmp1;
- kR[2][iRow] = fSin * fTmp0 + fCos * fTmp1;
- }
-
- // adjust left
- fY = kA[1][1];
-
- fZ = kA[2][1];
-
- fInvLength = 1.0 / sqrt(fY * fY + fZ * fZ);
-
- fSin = fZ * fInvLength;
-
- fCos = -fY * fInvLength;
-
- kA[1][1] = fCos * kA[1][1] - fSin * kA[2][1];
-
- fTmp0 = kA[1][2];
-
- fTmp1 = kA[2][2];
-
- kA[1][2] = fCos * fTmp0 - fSin * fTmp1;
-
- kA[2][2] = fSin * fTmp0 + fCos * fTmp1;
-
- for (iCol = 0; iCol < 3; iCol++) {
- fTmp0 = kL[iCol][1];
- fTmp1 = kL[iCol][2];
- kL[iCol][1] = fCos * fTmp0 - fSin * fTmp1;
- kL[iCol][2] = fSin * fTmp0 + fCos * fTmp1;
- }
-}
-
-//----------------------------------------------------------------------------
-void Matrix3::singularValueDecomposition (Matrix3& kL, Vector3& kS,
- Matrix3& kR) const {
- int iRow, iCol;
-
- Matrix3 kA = *this;
- bidiagonalize(kA, kL, kR);
-
- for (int i = 0; i < ms_iSvdMaxIterations; i++) {
- float fTmp, fTmp0, fTmp1;
- float fSin0, fCos0, fTan0;
- float fSin1, fCos1, fTan1;
-
- bool bTest1 = (G3D::abs(kA[0][1]) <=
- ms_fSvdEpsilon * (G3D::abs(kA[0][0]) + G3D::abs(kA[1][1])));
- bool bTest2 = (G3D::abs(kA[1][2]) <=
- ms_fSvdEpsilon * (G3D::abs(kA[1][1]) + G3D::abs(kA[2][2])));
-
- if ( bTest1 ) {
- if ( bTest2 ) {
- kS[0] = kA[0][0];
- kS[1] = kA[1][1];
- kS[2] = kA[2][2];
- break;
- } else {
- // 2x2 closed form factorization
- fTmp = (kA[1][1] * kA[1][1] - kA[2][2] * kA[2][2] +
- kA[1][2] * kA[1][2]) / (kA[1][2] * kA[2][2]);
- fTan0 = 0.5 * (fTmp + sqrt(fTmp * fTmp + 4.0));
- fCos0 = 1.0 / sqrt(1.0 + fTan0 * fTan0);
- fSin0 = fTan0 * fCos0;
-
- for (iCol = 0; iCol < 3; iCol++) {
- fTmp0 = kL[iCol][1];
- fTmp1 = kL[iCol][2];
- kL[iCol][1] = fCos0 * fTmp0 - fSin0 * fTmp1;
- kL[iCol][2] = fSin0 * fTmp0 + fCos0 * fTmp1;
- }
-
- fTan1 = (kA[1][2] - kA[2][2] * fTan0) / kA[1][1];
- fCos1 = 1.0 / sqrt(1.0 + fTan1 * fTan1);
- fSin1 = -fTan1 * fCos1;
-
- for (iRow = 0; iRow < 3; iRow++) {
- fTmp0 = kR[1][iRow];
- fTmp1 = kR[2][iRow];
- kR[1][iRow] = fCos1 * fTmp0 - fSin1 * fTmp1;
- kR[2][iRow] = fSin1 * fTmp0 + fCos1 * fTmp1;
- }
-
- kS[0] = kA[0][0];
- kS[1] = fCos0 * fCos1 * kA[1][1] -
- fSin1 * (fCos0 * kA[1][2] - fSin0 * kA[2][2]);
- kS[2] = fSin0 * fSin1 * kA[1][1] +
- fCos1 * (fSin0 * kA[1][2] + fCos0 * kA[2][2]);
- break;
- }
- } else {
- if ( bTest2 ) {
- // 2x2 closed form factorization
- fTmp = (kA[0][0] * kA[0][0] + kA[1][1] * kA[1][1] -
- kA[0][1] * kA[0][1]) / (kA[0][1] * kA[1][1]);
- fTan0 = 0.5 * ( -fTmp + sqrt(fTmp * fTmp + 4.0));
- fCos0 = 1.0 / sqrt(1.0 + fTan0 * fTan0);
- fSin0 = fTan0 * fCos0;
-
- for (iCol = 0; iCol < 3; iCol++) {
- fTmp0 = kL[iCol][0];
- fTmp1 = kL[iCol][1];
- kL[iCol][0] = fCos0 * fTmp0 - fSin0 * fTmp1;
- kL[iCol][1] = fSin0 * fTmp0 + fCos0 * fTmp1;
- }
-
- fTan1 = (kA[0][1] - kA[1][1] * fTan0) / kA[0][0];
- fCos1 = 1.0 / sqrt(1.0 + fTan1 * fTan1);
- fSin1 = -fTan1 * fCos1;
-
- for (iRow = 0; iRow < 3; iRow++) {
- fTmp0 = kR[0][iRow];
- fTmp1 = kR[1][iRow];
- kR[0][iRow] = fCos1 * fTmp0 - fSin1 * fTmp1;
- kR[1][iRow] = fSin1 * fTmp0 + fCos1 * fTmp1;
- }
-
- kS[0] = fCos0 * fCos1 * kA[0][0] -
- fSin1 * (fCos0 * kA[0][1] - fSin0 * kA[1][1]);
- kS[1] = fSin0 * fSin1 * kA[0][0] +
- fCos1 * (fSin0 * kA[0][1] + fCos0 * kA[1][1]);
- kS[2] = kA[2][2];
- break;
- } else {
- golubKahanStep(kA, kL, kR);
- }
- }
- }
-
- // positize diagonal
- for (iRow = 0; iRow < 3; iRow++) {
- if ( kS[iRow] < 0.0 ) {
- kS[iRow] = -kS[iRow];
-
- for (iCol = 0; iCol < 3; iCol++)
- kR[iRow][iCol] = -kR[iRow][iCol];
- }
- }
-}
-
-//----------------------------------------------------------------------------
-void Matrix3::singularValueComposition (const Matrix3& kL,
- const Vector3& kS, const Matrix3& kR) {
- int iRow, iCol;
- Matrix3 kTmp;
-
- // product S*R
- for (iRow = 0; iRow < 3; iRow++) {
- for (iCol = 0; iCol < 3; iCol++)
- kTmp[iRow][iCol] = kS[iRow] * kR[iRow][iCol];
- }
-
- // product L*S*R
- for (iRow = 0; iRow < 3; iRow++) {
- for (iCol = 0; iCol < 3; iCol++) {
- elt[iRow][iCol] = 0.0;
-
- for (int iMid = 0; iMid < 3; iMid++)
- elt[iRow][iCol] += kL[iRow][iMid] * kTmp[iMid][iCol];
- }
- }
-}
-
-//----------------------------------------------------------------------------
-void Matrix3::orthonormalize () {
- // Algorithm uses Gram-Schmidt orthogonalization. If 'this' matrix is
- // M = [m0|m1|m2], then orthonormal output matrix is Q = [q0|q1|q2],
- //
- // q0 = m0/|m0|
- // q1 = (m1-(q0*m1)q0)/|m1-(q0*m1)q0|
- // q2 = (m2-(q0*m2)q0-(q1*m2)q1)/|m2-(q0*m2)q0-(q1*m2)q1|
- //
- // where |V| indicates length of vector V and A*B indicates dot
- // product of vectors A and B.
-
- // compute q0
- float fInvLength = 1.0 / sqrt(elt[0][0] * elt[0][0]
- + elt[1][0] * elt[1][0] +
- elt[2][0] * elt[2][0]);
-
- elt[0][0] *= fInvLength;
- elt[1][0] *= fInvLength;
- elt[2][0] *= fInvLength;
-
- // compute q1
- float fDot0 =
- elt[0][0] * elt[0][1] +
- elt[1][0] * elt[1][1] +
- elt[2][0] * elt[2][1];
-
- elt[0][1] -= fDot0 * elt[0][0];
- elt[1][1] -= fDot0 * elt[1][0];
- elt[2][1] -= fDot0 * elt[2][0];
-
- fInvLength = 1.0 / sqrt(elt[0][1] * elt[0][1] +
- elt[1][1] * elt[1][1] +
- elt[2][1] * elt[2][1]);
-
- elt[0][1] *= fInvLength;
- elt[1][1] *= fInvLength;
- elt[2][1] *= fInvLength;
-
- // compute q2
- float fDot1 =
- elt[0][1] * elt[0][2] +
- elt[1][1] * elt[1][2] +
- elt[2][1] * elt[2][2];
-
- fDot0 =
- elt[0][0] * elt[0][2] +
- elt[1][0] * elt[1][2] +
- elt[2][0] * elt[2][2];
-
- elt[0][2] -= fDot0 * elt[0][0] + fDot1 * elt[0][1];
- elt[1][2] -= fDot0 * elt[1][0] + fDot1 * elt[1][1];
- elt[2][2] -= fDot0 * elt[2][0] + fDot1 * elt[2][1];
-
- fInvLength = 1.0 / sqrt(elt[0][2] * elt[0][2] +
- elt[1][2] * elt[1][2] +
- elt[2][2] * elt[2][2]);
-
- elt[0][2] *= fInvLength;
- elt[1][2] *= fInvLength;
- elt[2][2] *= fInvLength;
-}
-
-//----------------------------------------------------------------------------
-void Matrix3::qDUDecomposition (Matrix3& kQ,
- Vector3& kD, Vector3& kU) const {
- // Factor M = QR = QDU where Q is orthogonal, D is diagonal,
- // and U is upper triangular with ones on its diagonal. Algorithm uses
- // Gram-Schmidt orthogonalization (the QR algorithm).
- //
- // If M = [ m0 | m1 | m2 ] and Q = [ q0 | q1 | q2 ], then
- //
- // q0 = m0/|m0|
- // q1 = (m1-(q0*m1)q0)/|m1-(q0*m1)q0|
- // q2 = (m2-(q0*m2)q0-(q1*m2)q1)/|m2-(q0*m2)q0-(q1*m2)q1|
- //
- // where |V| indicates length of vector V and A*B indicates dot
- // product of vectors A and B. The matrix R has entries
- //
- // r00 = q0*m0 r01 = q0*m1 r02 = q0*m2
- // r10 = 0 r11 = q1*m1 r12 = q1*m2
- // r20 = 0 r21 = 0 r22 = q2*m2
- //
- // so D = diag(r00,r11,r22) and U has entries u01 = r01/r00,
- // u02 = r02/r00, and u12 = r12/r11.
-
- // Q = rotation
- // D = scaling
- // U = shear
-
- // D stores the three diagonal entries r00, r11, r22
- // U stores the entries U[0] = u01, U[1] = u02, U[2] = u12
-
- // build orthogonal matrix Q
- float fInvLength = 1.0 / sqrt(elt[0][0] * elt[0][0]
- + elt[1][0] * elt[1][0] +
- elt[2][0] * elt[2][0]);
- kQ[0][0] = elt[0][0] * fInvLength;
- kQ[1][0] = elt[1][0] * fInvLength;
- kQ[2][0] = elt[2][0] * fInvLength;
-
- float fDot = kQ[0][0] * elt[0][1] + kQ[1][0] * elt[1][1] +
- kQ[2][0] * elt[2][1];
- kQ[0][1] = elt[0][1] - fDot * kQ[0][0];
- kQ[1][1] = elt[1][1] - fDot * kQ[1][0];
- kQ[2][1] = elt[2][1] - fDot * kQ[2][0];
- fInvLength = 1.0 / sqrt(kQ[0][1] * kQ[0][1] + kQ[1][1] * kQ[1][1] +
- kQ[2][1] * kQ[2][1]);
- kQ[0][1] *= fInvLength;
- kQ[1][1] *= fInvLength;
- kQ[2][1] *= fInvLength;
-
- fDot = kQ[0][0] * elt[0][2] + kQ[1][0] * elt[1][2] +
- kQ[2][0] * elt[2][2];
- kQ[0][2] = elt[0][2] - fDot * kQ[0][0];
- kQ[1][2] = elt[1][2] - fDot * kQ[1][0];
- kQ[2][2] = elt[2][2] - fDot * kQ[2][0];
- fDot = kQ[0][1] * elt[0][2] + kQ[1][1] * elt[1][2] +
- kQ[2][1] * elt[2][2];
- kQ[0][2] -= fDot * kQ[0][1];
- kQ[1][2] -= fDot * kQ[1][1];
- kQ[2][2] -= fDot * kQ[2][1];
- fInvLength = 1.0 / sqrt(kQ[0][2] * kQ[0][2] + kQ[1][2] * kQ[1][2] +
- kQ[2][2] * kQ[2][2]);
- kQ[0][2] *= fInvLength;
- kQ[1][2] *= fInvLength;
- kQ[2][2] *= fInvLength;
-
- // guarantee that orthogonal matrix has determinant 1 (no reflections)
- float fDet = kQ[0][0] * kQ[1][1] * kQ[2][2] + kQ[0][1] * kQ[1][2] * kQ[2][0] +
- kQ[0][2] * kQ[1][0] * kQ[2][1] - kQ[0][2] * kQ[1][1] * kQ[2][0] -
- kQ[0][1] * kQ[1][0] * kQ[2][2] - kQ[0][0] * kQ[1][2] * kQ[2][1];
-
- if ( fDet < 0.0 ) {
- for (int iRow = 0; iRow < 3; iRow++)
- for (int iCol = 0; iCol < 3; iCol++)
- kQ[iRow][iCol] = -kQ[iRow][iCol];
- }
-
- // build "right" matrix R
- Matrix3 kR;
-
- kR[0][0] = kQ[0][0] * elt[0][0] + kQ[1][0] * elt[1][0] +
- kQ[2][0] * elt[2][0];
-
- kR[0][1] = kQ[0][0] * elt[0][1] + kQ[1][0] * elt[1][1] +
- kQ[2][0] * elt[2][1];
-
- kR[1][1] = kQ[0][1] * elt[0][1] + kQ[1][1] * elt[1][1] +
- kQ[2][1] * elt[2][1];
-
- kR[0][2] = kQ[0][0] * elt[0][2] + kQ[1][0] * elt[1][2] +
- kQ[2][0] * elt[2][2];
-
- kR[1][2] = kQ[0][1] * elt[0][2] + kQ[1][1] * elt[1][2] +
- kQ[2][1] * elt[2][2];
-
- kR[2][2] = kQ[0][2] * elt[0][2] + kQ[1][2] * elt[1][2] +
- kQ[2][2] * elt[2][2];
-
- // the scaling component
- kD[0] = kR[0][0];
-
- kD[1] = kR[1][1];
-
- kD[2] = kR[2][2];
-
- // the shear component
- float fInvD0 = 1.0 / kD[0];
-
- kU[0] = kR[0][1] * fInvD0;
-
- kU[1] = kR[0][2] * fInvD0;
-
- kU[2] = kR[1][2] / kD[1];
-}
-
-//----------------------------------------------------------------------------
-float Matrix3::maxCubicRoot (float afCoeff[3]) {
- // Spectral norm is for A^T*A, so characteristic polynomial
- // P(x) = c[0]+c[1]*x+c[2]*x^2+x^3 has three positive float roots.
- // This yields the assertions c[0] < 0 and c[2]*c[2] >= 3*c[1].
-
- // quick out for uniform scale (triple root)
- const float fOneThird = 1.0f / 3.0f;
- const float fEpsilon = 1e-06f;
- float fDiscr = afCoeff[2] * afCoeff[2] - 3.0f * afCoeff[1];
-
- if ( fDiscr <= fEpsilon )
- return -fOneThird*afCoeff[2];
-
- // Compute an upper bound on roots of P(x). This assumes that A^T*A
- // has been scaled by its largest entry.
- float fX = 1.0f;
-
- float fPoly = afCoeff[0] + fX * (afCoeff[1] + fX * (afCoeff[2] + fX));
-
- if ( fPoly < 0.0f ) {
- // uses a matrix norm to find an upper bound on maximum root
- fX = G3D::abs(afCoeff[0]);
- float fTmp = 1.0 + G3D::abs(afCoeff[1]);
-
- if ( fTmp > fX )
- fX = fTmp;
-
- fTmp = 1.0 + G3D::abs(afCoeff[2]);
-
- if ( fTmp > fX )
- fX = fTmp;
- }
-
- // Newton's method to find root
- float fTwoC2 = 2.0f * afCoeff[2];
-
- for (int i = 0; i < 16; i++) {
- fPoly = afCoeff[0] + fX * (afCoeff[1] + fX * (afCoeff[2] + fX));
-
- if ( G3D::abs(fPoly) <= fEpsilon )
- return fX;
-
- float fDeriv = afCoeff[1] + fX * (fTwoC2 + 3.0f * fX);
-
- fX -= fPoly / fDeriv;
- }
-
- return fX;
-}
-
-//----------------------------------------------------------------------------
-float Matrix3::spectralNorm () const {
- Matrix3 kP;
- int iRow, iCol;
- float fPmax = 0.0;
-
- for (iRow = 0; iRow < 3; iRow++) {
- for (iCol = 0; iCol < 3; iCol++) {
- kP[iRow][iCol] = 0.0;
-
- for (int iMid = 0; iMid < 3; iMid++) {
- kP[iRow][iCol] +=
- elt[iMid][iRow] * elt[iMid][iCol];
- }
-
- if ( kP[iRow][iCol] > fPmax )
- fPmax = kP[iRow][iCol];
- }
- }
-
- float fInvPmax = 1.0 / fPmax;
-
- for (iRow = 0; iRow < 3; iRow++) {
- for (iCol = 0; iCol < 3; iCol++)
- kP[iRow][iCol] *= fInvPmax;
- }
-
- float afCoeff[3];
- afCoeff[0] = -(kP[0][0] * (kP[1][1] * kP[2][2] - kP[1][2] * kP[2][1]) +
- kP[0][1] * (kP[2][0] * kP[1][2] - kP[1][0] * kP[2][2]) +
- kP[0][2] * (kP[1][0] * kP[2][1] - kP[2][0] * kP[1][1]));
- afCoeff[1] = kP[0][0] * kP[1][1] - kP[0][1] * kP[1][0] +
- kP[0][0] * kP[2][2] - kP[0][2] * kP[2][0] +
- kP[1][1] * kP[2][2] - kP[1][2] * kP[2][1];
- afCoeff[2] = -(kP[0][0] + kP[1][1] + kP[2][2]);
-
- float fRoot = maxCubicRoot(afCoeff);
- float fNorm = sqrt(fPmax * fRoot);
- return fNorm;
-}
-
-//----------------------------------------------------------------------------
-void Matrix3::toAxisAngle (Vector3& rkAxis, float& rfRadians) const {
- //
- // Let (x,y,z) be the unit-length axis and let A be an angle of rotation.
- // The rotation matrix is R = I + sin(A)*P + (1-cos(A))*P^2 (Rodrigues' formula) where
- // I is the identity and
- //
- // +- -+
- // P = | 0 -z +y |
- // | +z 0 -x |
- // | -y +x 0 |
- // +- -+
- //
- // If A > 0, R represents a counterclockwise rotation about the axis in
- // the sense of looking from the tip of the axis vector towards the
- // origin. Some algebra will show that
- //
- // cos(A) = (trace(R)-1)/2 and R - R^t = 2*sin(A)*P
- //
- // In the event that A = pi, R-R^t = 0 which prevents us from extracting
- // the axis through P. Instead note that R = I+2*P^2 when A = pi, so
- // P^2 = (R-I)/2. The diagonal entries of P^2 are x^2-1, y^2-1, and
- // z^2-1. We can solve these for axis (x,y,z). Because the angle is pi,
- // it does not matter which sign you choose on the square roots.
-
- float fTrace = elt[0][0] + elt[1][1] + elt[2][2];
- float fCos = 0.5f * (fTrace - 1.0f);
- rfRadians = G3D::aCos(fCos); // in [0,PI]
-
- if ( rfRadians > 0.0 ) {
- if ( rfRadians < pi() ) {
- rkAxis.x = elt[2][1] - elt[1][2];
- rkAxis.y = elt[0][2] - elt[2][0];
- rkAxis.z = elt[1][0] - elt[0][1];
- rkAxis.unitize();
- } else {
- // angle is PI
- float fHalfInverse;
-
- if ( elt[0][0] >= elt[1][1] ) {
- // r00 >= r11
- if ( elt[0][0] >= elt[2][2] ) {
- // r00 is maximum diagonal term
- rkAxis.x = 0.5 * sqrt(elt[0][0] -
- elt[1][1] - elt[2][2] + 1.0);
- fHalfInverse = 0.5 / rkAxis.x;
- rkAxis.y = fHalfInverse * elt[0][1];
- rkAxis.z = fHalfInverse * elt[0][2];
- } else {
- // r22 is maximum diagonal term
- rkAxis.z = 0.5 * sqrt(elt[2][2] -
- elt[0][0] - elt[1][1] + 1.0);
- fHalfInverse = 0.5 / rkAxis.z;
- rkAxis.x = fHalfInverse * elt[0][2];
- rkAxis.y = fHalfInverse * elt[1][2];
- }
- } else {
- // r11 > r00
- if ( elt[1][1] >= elt[2][2] ) {
- // r11 is maximum diagonal term
- rkAxis.y = 0.5 * sqrt(elt[1][1] -
- elt[0][0] - elt[2][2] + 1.0);
- fHalfInverse = 0.5 / rkAxis.y;
- rkAxis.x = fHalfInverse * elt[0][1];
- rkAxis.z = fHalfInverse * elt[1][2];
- } else {
- // r22 is maximum diagonal term
- rkAxis.z = 0.5 * sqrt(elt[2][2] -
- elt[0][0] - elt[1][1] + 1.0);
- fHalfInverse = 0.5 / rkAxis.z;
- rkAxis.x = fHalfInverse * elt[0][2];
- rkAxis.y = fHalfInverse * elt[1][2];
- }
- }
- }
- } else {
- // The angle is 0 and the matrix is the identity. Any axis will
- // work, so just use the x-axis.
- rkAxis.x = 1.0;
- rkAxis.y = 0.0;
- rkAxis.z = 0.0;
- }
-}
-
-//----------------------------------------------------------------------------
-Matrix3 Matrix3::fromAxisAngle (const Vector3& _axis, float fRadians) {
- Vector3 axis = _axis.direction();
-
- Matrix3 m;
- float fCos = cos(fRadians);
- float fSin = sin(fRadians);
- float fOneMinusCos = 1.0 - fCos;
- float fX2 = square(axis.x);
- float fY2 = square(axis.y);
- float fZ2 = square(axis.z);
- float fXYM = axis.x * axis.y * fOneMinusCos;
- float fXZM = axis.x * axis.z * fOneMinusCos;
- float fYZM = axis.y * axis.z * fOneMinusCos;
- float fXSin = axis.x * fSin;
- float fYSin = axis.y * fSin;
- float fZSin = axis.z * fSin;
-
- m.elt[0][0] = fX2 * fOneMinusCos + fCos;
- m.elt[0][1] = fXYM - fZSin;
- m.elt[0][2] = fXZM + fYSin;
-
- m.elt[1][0] = fXYM + fZSin;
- m.elt[1][1] = fY2 * fOneMinusCos + fCos;
- m.elt[1][2] = fYZM - fXSin;
-
- m.elt[2][0] = fXZM - fYSin;
- m.elt[2][1] = fYZM + fXSin;
- m.elt[2][2] = fZ2 * fOneMinusCos + fCos;
-
- return m;
-}
-
-//----------------------------------------------------------------------------
-bool Matrix3::toEulerAnglesXYZ (float& rfXAngle, float& rfYAngle,
- float& rfZAngle) const {
- // rot = cy*cz -cy*sz sy
- // cz*sx*sy+cx*sz cx*cz-sx*sy*sz -cy*sx
- // -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy
-
- if ( elt[0][2] < 1.0f ) {
- if ( elt[0][2] > -1.0f ) {
- rfXAngle = G3D::aTan2( -elt[1][2], elt[2][2]);
- rfYAngle = (float) G3D::aSin(elt[0][2]);
- rfZAngle = G3D::aTan2( -elt[0][1], elt[0][0]);
- return true;
- } else {
- // WARNING. Not unique. XA - ZA = -atan2(r10,r11)
- rfXAngle = -G3D::aTan2(elt[1][0], elt[1][1]);
- rfYAngle = -(float)halfPi();
- rfZAngle = 0.0f;
- return false;
- }
- } else {
- // WARNING. Not unique. XAngle + ZAngle = atan2(r10,r11)
- rfXAngle = G3D::aTan2(elt[1][0], elt[1][1]);
- rfYAngle = (float)halfPi();
- rfZAngle = 0.0f;
- return false;
- }
-}
-
-//----------------------------------------------------------------------------
-bool Matrix3::toEulerAnglesXZY (float& rfXAngle, float& rfZAngle,
- float& rfYAngle) const {
- // rot = cy*cz -sz cz*sy
- // sx*sy+cx*cy*sz cx*cz -cy*sx+cx*sy*sz
- // -cx*sy+cy*sx*sz cz*sx cx*cy+sx*sy*sz
-
- if ( elt[0][1] < 1.0f ) {
- if ( elt[0][1] > -1.0f ) {
- rfXAngle = G3D::aTan2(elt[2][1], elt[1][1]);
- rfZAngle = (float) asin( -elt[0][1]);
- rfYAngle = G3D::aTan2(elt[0][2], elt[0][0]);
- return true;
- } else {
- // WARNING. Not unique. XA - YA = atan2(r20,r22)
- rfXAngle = G3D::aTan2(elt[2][0], elt[2][2]);
- rfZAngle = (float)halfPi();
- rfYAngle = 0.0;
- return false;
- }
- } else {
- // WARNING. Not unique. XA + YA = atan2(-r20,r22)
- rfXAngle = G3D::aTan2( -elt[2][0], elt[2][2]);
- rfZAngle = -(float)halfPi();
- rfYAngle = 0.0f;
- return false;
- }
-}
-
-//----------------------------------------------------------------------------
-bool Matrix3::toEulerAnglesYXZ (float& rfYAngle, float& rfXAngle,
- float& rfZAngle) const {
- // rot = cy*cz+sx*sy*sz cz*sx*sy-cy*sz cx*sy
- // cx*sz cx*cz -sx
- // -cz*sy+cy*sx*sz cy*cz*sx+sy*sz cx*cy
-
- if ( elt[1][2] < 1.0 ) {
- if ( elt[1][2] > -1.0 ) {
- rfYAngle = G3D::aTan2(elt[0][2], elt[2][2]);
- rfXAngle = (float) asin( -elt[1][2]);
- rfZAngle = G3D::aTan2(elt[1][0], elt[1][1]);
- return true;
- } else {
- // WARNING. Not unique. YA - ZA = atan2(r01,r00)
- rfYAngle = G3D::aTan2(elt[0][1], elt[0][0]);
- rfXAngle = (float)halfPi();
- rfZAngle = 0.0;
- return false;
- }
- } else {
- // WARNING. Not unique. YA + ZA = atan2(-r01,r00)
- rfYAngle = G3D::aTan2( -elt[0][1], elt[0][0]);
- rfXAngle = -(float)halfPi();
- rfZAngle = 0.0f;
- return false;
- }
-}
-
-//----------------------------------------------------------------------------
-bool Matrix3::toEulerAnglesYZX (float& rfYAngle, float& rfZAngle,
- float& rfXAngle) const {
- // rot = cy*cz sx*sy-cx*cy*sz cx*sy+cy*sx*sz
- // sz cx*cz -cz*sx
- // -cz*sy cy*sx+cx*sy*sz cx*cy-sx*sy*sz
-
- if ( elt[1][0] < 1.0 ) {
- if ( elt[1][0] > -1.0 ) {
- rfYAngle = G3D::aTan2( -elt[2][0], elt[0][0]);
- rfZAngle = (float) asin(elt[1][0]);
- rfXAngle = G3D::aTan2( -elt[1][2], elt[1][1]);
- return true;
- } else {
- // WARNING. Not unique. YA - XA = -atan2(r21,r22);
- rfYAngle = -G3D::aTan2(elt[2][1], elt[2][2]);
- rfZAngle = -(float)halfPi();
- rfXAngle = 0.0;
- return false;
- }
- } else {
- // WARNING. Not unique. YA + XA = atan2(r21,r22)
- rfYAngle = G3D::aTan2(elt[2][1], elt[2][2]);
- rfZAngle = (float)halfPi();
- rfXAngle = 0.0f;
- return false;
- }
-}
-
-//----------------------------------------------------------------------------
-bool Matrix3::toEulerAnglesZXY (float& rfZAngle, float& rfXAngle,
- float& rfYAngle) const {
- // rot = cy*cz-sx*sy*sz -cx*sz cz*sy+cy*sx*sz
- // cz*sx*sy+cy*sz cx*cz -cy*cz*sx+sy*sz
- // -cx*sy sx cx*cy
-
- if ( elt[2][1] < 1.0 ) {
- if ( elt[2][1] > -1.0 ) {
- rfZAngle = G3D::aTan2( -elt[0][1], elt[1][1]);
- rfXAngle = (float) asin(elt[2][1]);
- rfYAngle = G3D::aTan2( -elt[2][0], elt[2][2]);
- return true;
- } else {
- // WARNING. Not unique. ZA - YA = -atan(r02,r00)
- rfZAngle = -G3D::aTan2(elt[0][2], elt[0][0]);
- rfXAngle = -(float)halfPi();
- rfYAngle = 0.0f;
- return false;
- }
- } else {
- // WARNING. Not unique. ZA + YA = atan2(r02,r00)
- rfZAngle = G3D::aTan2(elt[0][2], elt[0][0]);
- rfXAngle = (float)halfPi();
- rfYAngle = 0.0f;
- return false;
- }
-}
-
-//----------------------------------------------------------------------------
-bool Matrix3::toEulerAnglesZYX (float& rfZAngle, float& rfYAngle,
- float& rfXAngle) const {
- // rot = cy*cz cz*sx*sy-cx*sz cx*cz*sy+sx*sz
- // cy*sz cx*cz+sx*sy*sz -cz*sx+cx*sy*sz
- // -sy cy*sx cx*cy
-
- if ( elt[2][0] < 1.0 ) {
- if ( elt[2][0] > -1.0 ) {
- rfZAngle = atan2f(elt[1][0], elt[0][0]);
- rfYAngle = asinf(-(double)elt[2][1]);
- rfXAngle = atan2f(elt[2][1], elt[2][2]);
- return true;
- } else {
- // WARNING. Not unique. ZA - XA = -atan2(r01,r02)
- rfZAngle = -G3D::aTan2(elt[0][1], elt[0][2]);
- rfYAngle = (float)halfPi();
- rfXAngle = 0.0f;
- return false;
- }
- } else {
- // WARNING. Not unique. ZA + XA = atan2(-r01,-r02)
- rfZAngle = G3D::aTan2( -elt[0][1], -elt[0][2]);
- rfYAngle = -(float)halfPi();
- rfXAngle = 0.0f;
- return false;
- }
-}
-
-//----------------------------------------------------------------------------
-Matrix3 Matrix3::fromEulerAnglesXYZ (float fYAngle, float fPAngle,
- float fRAngle) {
- float fCos, fSin;
-
- fCos = cosf(fYAngle);
- fSin = sinf(fYAngle);
- Matrix3 kXMat(1.0f, 0.0f, 0.0f, 0.0f, fCos, -fSin, 0.0, fSin, fCos);
-
- fCos = cosf(fPAngle);
- fSin = sinf(fPAngle);
- Matrix3 kYMat(fCos, 0.0f, fSin, 0.0f, 1.0f, 0.0f, -fSin, 0.0f, fCos);
-
- fCos = cosf(fRAngle);
- fSin = sinf(fRAngle);
- Matrix3 kZMat(fCos, -fSin, 0.0f, fSin, fCos, 0.0f, 0.0f, 0.0f, 1.0f);
-
- return kXMat * (kYMat * kZMat);
-}
-
-//----------------------------------------------------------------------------
-Matrix3 Matrix3::fromEulerAnglesXZY (float fYAngle, float fPAngle,
- float fRAngle) {
-
- float fCos, fSin;
-
- fCos = cosf(fYAngle);
- fSin = sinf(fYAngle);
- Matrix3 kXMat(1.0, 0.0, 0.0, 0.0, fCos, -fSin, 0.0, fSin, fCos);
-
- fCos = cosf(fPAngle);
- fSin = sinf(fPAngle);
- Matrix3 kZMat(fCos, -fSin, 0.0, fSin, fCos, 0.0, 0.0, 0.0, 1.0);
-
- fCos = cosf(fRAngle);
- fSin = sinf(fRAngle);
- Matrix3 kYMat(fCos, 0.0, fSin, 0.0, 1.0, 0.0, -fSin, 0.0, fCos);
-
- return kXMat * (kZMat * kYMat);
-}
-
-//----------------------------------------------------------------------------
-Matrix3 Matrix3::fromEulerAnglesYXZ(
- float fYAngle,
- float fPAngle,
- float fRAngle) {
-
- float fCos, fSin;
-
- fCos = cos(fYAngle);
- fSin = sin(fYAngle);
- Matrix3 kYMat(fCos, 0.0f, fSin, 0.0f, 1.0f, 0.0f, -fSin, 0.0f, fCos);
-
- fCos = cos(fPAngle);
- fSin = sin(fPAngle);
- Matrix3 kXMat(1.0f, 0.0f, 0.0f, 0.0f, fCos, -fSin, 0.0f, fSin, fCos);
-
- fCos = cos(fRAngle);
- fSin = sin(fRAngle);
- Matrix3 kZMat(fCos, -fSin, 0.0f, fSin, fCos, 0.0f, 0.0f, 0.0f, 1.0f);
-
- return kYMat * (kXMat * kZMat);
-}
-
-//----------------------------------------------------------------------------
-Matrix3 Matrix3::fromEulerAnglesYZX(
- float fYAngle,
- float fPAngle,
- float fRAngle) {
-
- float fCos, fSin;
-
- fCos = cos(fYAngle);
- fSin = sin(fYAngle);
- Matrix3 kYMat(fCos, 0.0f, fSin, 0.0f, 1.0f, 0.0f, -fSin, 0.0f, fCos);
-
- fCos = cos(fPAngle);
- fSin = sin(fPAngle);
- Matrix3 kZMat(fCos, -fSin, 0.0f, fSin, fCos, 0.0f, 0.0f, 0.0f, 1.0f);
-
- fCos = cos(fRAngle);
- fSin = sin(fRAngle);
- Matrix3 kXMat(1.0f, 0.0f, 0.0f, 0.0f, fCos, -fSin, 0.0f, fSin, fCos);
-
- return kYMat * (kZMat * kXMat);
-}
-
-//----------------------------------------------------------------------------
-Matrix3 Matrix3::fromEulerAnglesZXY (float fYAngle, float fPAngle,
- float fRAngle) {
- float fCos, fSin;
-
- fCos = cos(fYAngle);
- fSin = sin(fYAngle);
- Matrix3 kZMat(fCos, -fSin, 0.0, fSin, fCos, 0.0, 0.0, 0.0, 1.0);
-
- fCos = cos(fPAngle);
- fSin = sin(fPAngle);
- Matrix3 kXMat(1.0, 0.0, 0.0, 0.0, fCos, -fSin, 0.0, fSin, fCos);
-
- fCos = cos(fRAngle);
- fSin = sin(fRAngle);
- Matrix3 kYMat(fCos, 0.0, fSin, 0.0, 1.0, 0.0, -fSin, 0.0, fCos);
-
- return kZMat * (kXMat * kYMat);
-}
-
-//----------------------------------------------------------------------------
-Matrix3 Matrix3::fromEulerAnglesZYX (float fYAngle, float fPAngle,
- float fRAngle) {
- float fCos, fSin;
-
- fCos = cos(fYAngle);
- fSin = sin(fYAngle);
- Matrix3 kZMat(fCos, -fSin, 0.0, fSin, fCos, 0.0, 0.0, 0.0, 1.0);
-
- fCos = cos(fPAngle);
- fSin = sin(fPAngle);
- Matrix3 kYMat(fCos, 0.0, fSin, 0.0, 1.0, 0.0, -fSin, 0.0, fCos);
-
- fCos = cos(fRAngle);
- fSin = sin(fRAngle);
- Matrix3 kXMat(1.0, 0.0, 0.0, 0.0, fCos, -fSin, 0.0, fSin, fCos);
-
- return kZMat * (kYMat * kXMat);
-}
-
-//----------------------------------------------------------------------------
-void Matrix3::tridiagonal (float afDiag[3], float afSubDiag[3]) {
- // Householder reduction T = Q^t M Q
- // Input:
- // mat, symmetric 3x3 matrix M
- // Output:
- // mat, orthogonal matrix Q
- // diag, diagonal entries of T
- // subd, subdiagonal entries of T (T is symmetric)
-
- float fA = elt[0][0];
- float fB = elt[0][1];
- float fC = elt[0][2];
- float fD = elt[1][1];
- float fE = elt[1][2];
- float fF = elt[2][2];
-
- afDiag[0] = fA;
- afSubDiag[2] = 0.0;
-
- if ( G3D::abs(fC) >= EPSILON ) {
- float fLength = sqrt(fB * fB + fC * fC);
- float fInvLength = 1.0 / fLength;
- fB *= fInvLength;
- fC *= fInvLength;
- float fQ = 2.0 * fB * fE + fC * (fF - fD);
- afDiag[1] = fD + fC * fQ;
- afDiag[2] = fF - fC * fQ;
- afSubDiag[0] = fLength;
- afSubDiag[1] = fE - fB * fQ;
- elt[0][0] = 1.0;
- elt[0][1] = 0.0;
- elt[0][2] = 0.0;
- elt[1][0] = 0.0;
- elt[1][1] = fB;
- elt[1][2] = fC;
- elt[2][0] = 0.0;
- elt[2][1] = fC;
- elt[2][2] = -fB;
- } else {
- afDiag[1] = fD;
- afDiag[2] = fF;
- afSubDiag[0] = fB;
- afSubDiag[1] = fE;
- elt[0][0] = 1.0;
- elt[0][1] = 0.0;
- elt[0][2] = 0.0;
- elt[1][0] = 0.0;
- elt[1][1] = 1.0;
- elt[1][2] = 0.0;
- elt[2][0] = 0.0;
- elt[2][1] = 0.0;
- elt[2][2] = 1.0;
- }
-}
-
-//----------------------------------------------------------------------------
-bool Matrix3::qLAlgorithm (float afDiag[3], float afSubDiag[3]) {
- // QL iteration with implicit shifting to reduce matrix from tridiagonal
- // to diagonal
-
- for (int i0 = 0; i0 < 3; i0++) {
- const int iMaxIter = 32;
- int iIter;
-
- for (iIter = 0; iIter < iMaxIter; iIter++) {
- int i1;
-
- for (i1 = i0; i1 <= 1; i1++) {
- float fSum = G3D::abs(afDiag[i1]) +
- G3D::abs(afDiag[i1 + 1]);
-
- if ( G3D::abs(afSubDiag[i1]) + fSum == fSum )
- break;
- }
-
- if ( i1 == i0 )
- break;
-
- float fTmp0 = (afDiag[i0 + 1] - afDiag[i0]) / (2.0 * afSubDiag[i0]);
-
- float fTmp1 = sqrt(fTmp0 * fTmp0 + 1.0);
-
- if ( fTmp0 < 0.0 )
- fTmp0 = afDiag[i1] - afDiag[i0] + afSubDiag[i0] / (fTmp0 - fTmp1);
- else
- fTmp0 = afDiag[i1] - afDiag[i0] + afSubDiag[i0] / (fTmp0 + fTmp1);
-
- float fSin = 1.0;
-
- float fCos = 1.0;
-
- float fTmp2 = 0.0;
-
- for (int i2 = i1 - 1; i2 >= i0; i2--) {
- float fTmp3 = fSin * afSubDiag[i2];
- float fTmp4 = fCos * afSubDiag[i2];
-
- if (G3D::abs(fTmp3) >= G3D::abs(fTmp0)) {
- fCos = fTmp0 / fTmp3;
- fTmp1 = sqrt(fCos * fCos + 1.0);
- afSubDiag[i2 + 1] = fTmp3 * fTmp1;
- fSin = 1.0 / fTmp1;
- fCos *= fSin;
- } else {
- fSin = fTmp3 / fTmp0;
- fTmp1 = sqrt(fSin * fSin + 1.0);
- afSubDiag[i2 + 1] = fTmp0 * fTmp1;
- fCos = 1.0 / fTmp1;
- fSin *= fCos;
- }
-
- fTmp0 = afDiag[i2 + 1] - fTmp2;
- fTmp1 = (afDiag[i2] - fTmp0) * fSin + 2.0 * fTmp4 * fCos;
- fTmp2 = fSin * fTmp1;
- afDiag[i2 + 1] = fTmp0 + fTmp2;
- fTmp0 = fCos * fTmp1 - fTmp4;
-
- for (int iRow = 0; iRow < 3; iRow++) {
- fTmp3 = elt[iRow][i2 + 1];
- elt[iRow][i2 + 1] = fSin * elt[iRow][i2] +
- fCos * fTmp3;
- elt[iRow][i2] = fCos * elt[iRow][i2] -
- fSin * fTmp3;
- }
- }
-
- afDiag[i0] -= fTmp2;
- afSubDiag[i0] = fTmp0;
- afSubDiag[i1] = 0.0;
- }
-
- if ( iIter == iMaxIter ) {
- // should not get here under normal circumstances
- return false;
- }
- }
-
- return true;
-}
-
-//----------------------------------------------------------------------------
-void Matrix3::eigenSolveSymmetric (float afEigenvalue[3],
- Vector3 akEigenvector[3]) const {
- Matrix3 kMatrix = *this;
- float afSubDiag[3];
- kMatrix.tridiagonal(afEigenvalue, afSubDiag);
- kMatrix.qLAlgorithm(afEigenvalue, afSubDiag);
-
- for (int i = 0; i < 3; i++) {
- akEigenvector[i][0] = kMatrix[0][i];
- akEigenvector[i][1] = kMatrix[1][i];
- akEigenvector[i][2] = kMatrix[2][i];
- }
-
- // make eigenvectors form a right--handed system
- Vector3 kCross = akEigenvector[1].cross(akEigenvector[2]);
-
- float fDet = akEigenvector[0].dot(kCross);
-
- if ( fDet < 0.0 ) {
- akEigenvector[2][0] = - akEigenvector[2][0];
- akEigenvector[2][1] = - akEigenvector[2][1];
- akEigenvector[2][2] = - akEigenvector[2][2];
- }
-}
-
-//----------------------------------------------------------------------------
-void Matrix3::tensorProduct (const Vector3& rkU, const Vector3& rkV,
- Matrix3& rkProduct) {
- for (int iRow = 0; iRow < 3; iRow++) {
- for (int iCol = 0; iCol < 3; iCol++) {
- rkProduct[iRow][iCol] = rkU[iRow] * rkV[iCol];
- }
- }
-}
-
-//----------------------------------------------------------------------------
-
-// Runs in 52 cycles on AMD, 76 cycles on Intel Centrino
-//
-// The loop unrolling is necessary for performance.
-// I was unable to improve performance further by flattening the matrices
-// into float*'s instead of 2D arrays.
-//
-// -morgan
-void Matrix3::_mul(const Matrix3& A, const Matrix3& B, Matrix3& out) {
- const float* ARowPtr = A.elt[0];
- float* outRowPtr = out.elt[0];
- outRowPtr[0] =
- ARowPtr[0] * B.elt[0][0] +
- ARowPtr[1] * B.elt[1][0] +
- ARowPtr[2] * B.elt[2][0];
- outRowPtr[1] =
- ARowPtr[0] * B.elt[0][1] +
- ARowPtr[1] * B.elt[1][1] +
- ARowPtr[2] * B.elt[2][1];
- outRowPtr[2] =
- ARowPtr[0] * B.elt[0][2] +
- ARowPtr[1] * B.elt[1][2] +
- ARowPtr[2] * B.elt[2][2];
-
- ARowPtr = A.elt[1];
- outRowPtr = out.elt[1];
-
- outRowPtr[0] =
- ARowPtr[0] * B.elt[0][0] +
- ARowPtr[1] * B.elt[1][0] +
- ARowPtr[2] * B.elt[2][0];
- outRowPtr[1] =
- ARowPtr[0] * B.elt[0][1] +
- ARowPtr[1] * B.elt[1][1] +
- ARowPtr[2] * B.elt[2][1];
- outRowPtr[2] =
- ARowPtr[0] * B.elt[0][2] +
- ARowPtr[1] * B.elt[1][2] +
- ARowPtr[2] * B.elt[2][2];
-
- ARowPtr = A.elt[2];
- outRowPtr = out.elt[2];
-
- outRowPtr[0] =
- ARowPtr[0] * B.elt[0][0] +
- ARowPtr[1] * B.elt[1][0] +
- ARowPtr[2] * B.elt[2][0];
- outRowPtr[1] =
- ARowPtr[0] * B.elt[0][1] +
- ARowPtr[1] * B.elt[1][1] +
- ARowPtr[2] * B.elt[2][1];
- outRowPtr[2] =
- ARowPtr[0] * B.elt[0][2] +
- ARowPtr[1] * B.elt[1][2] +
- ARowPtr[2] * B.elt[2][2];
-}
-
-//----------------------------------------------------------------------------
-void Matrix3::_transpose(const Matrix3& A, Matrix3& out) {
- out[0][0] = A.elt[0][0];
- out[0][1] = A.elt[1][0];
- out[0][2] = A.elt[2][0];
- out[1][0] = A.elt[0][1];
- out[1][1] = A.elt[1][1];
- out[1][2] = A.elt[2][1];
- out[2][0] = A.elt[0][2];
- out[2][1] = A.elt[1][2];
- out[2][2] = A.elt[2][2];
-}
-
-//-----------------------------------------------------------------------------
-std::string Matrix3::toString() const {
- return G3D::format("[%g, %g, %g; %g, %g, %g; %g, %g, %g]",
- elt[0][0], elt[0][1], elt[0][2],
- elt[1][0], elt[1][1], elt[1][2],
- elt[2][0], elt[2][1], elt[2][2]);
-}
-
-
-
-} // namespace
-