diff options
Diffstat (limited to 'dep/g3dlite/G3D/CoordinateFrame.h')
-rw-r--r-- | dep/g3dlite/G3D/CoordinateFrame.h | 331 |
1 files changed, 331 insertions, 0 deletions
diff --git a/dep/g3dlite/G3D/CoordinateFrame.h b/dep/g3dlite/G3D/CoordinateFrame.h new file mode 100644 index 00000000000..7ed4d0acc65 --- /dev/null +++ b/dep/g3dlite/G3D/CoordinateFrame.h @@ -0,0 +1,331 @@ +/** + @file CoordinateFrame.h + + @maintainer Morgan McGuire, http://graphics.cs.williams.edu + + @created 2001-03-04 + @edited 2009-04-29 + + Copyright 2000-2009, Morgan McGuire. + All rights reserved. +*/ + +#ifndef G3D_CFrame_h +#define G3D_CFrame_h + +#include "G3D/platform.h" +#include "G3D/Vector3.h" +#include "G3D/Vector4.h" +#include "G3D/Matrix3.h" +#include "G3D/Array.h" +#include <math.h> +#include <string> +#include <stdio.h> +#include <cstdarg> +#include <assert.h> + +#ifdef _MSC_VER +// Turn off "conditional expression is constant" warning; MSVC generates this +// for debug assertions in inlined methods. +# pragma warning (disable : 4127) +#endif + + +namespace G3D { +class Any; + +/** + A rigid body RT (rotation-translation) transformation. + +CoordinateFrame abstracts a 4x4 matrix that maps object space to world space: + + v_world = C * v_object + +CoordinateFrame::rotation is the upper 3x3 submatrix, CoordinateFrame::translation +is the right 3x1 column. The 4th row is always [0 0 0 1], so it isn't stored. +So you don't have to remember which way the multiplication and transformation work, +it provides explicit toWorldSpace and toObjectSpace methods. Also, points, vectors +(directions), and surface normals transform differently, so they have separate methods. + +Some helper functions transform whole primitives like boxes in and out of object space. + +Convert to Matrix4 using CoordinateFrame::toMatrix4. You <I>can</I> construct a CoordinateFrame +from a Matrix4 using Matrix4::approxCoordinateFrame, however, because a Matrix4 is more +general than a CoordinateFrame, some information may be lost. + +@sa G3D::UprightFrame, G3D::PhysicsFrame, G3D::Matrix4, G3D::Quat +*/ +class CoordinateFrame { +public: + + /** Takes object space points to world space. */ + Matrix3 rotation; + + /** Takes object space points to world space. */ + Vector3 translation; + + /** \param any Must be in one of the following forms: + - CFrame((matrix3 expr), (vector3 expr)) + - CFrame::fromXYZYPRDegrees(#, #, #, #, #, #) + - CFrame { rotation = (matrix3 expr), translation = (vector3 expr) } + */ + CoordinateFrame(const Any& any); + + /** Converts the CFrame to an Any. */ + operator Any() const; + + inline bool operator==(const CoordinateFrame& other) const { + return (translation == other.translation) && (rotation == other.rotation); + } + + inline bool operator!=(const CoordinateFrame& other) const { + return !(*this == other); + } + + bool fuzzyEq(const CoordinateFrame& other) const; + + bool fuzzyIsIdentity() const; + + bool isIdentity() const; + + /** + Initializes to the identity coordinate frame. + */ + CoordinateFrame(); + + CoordinateFrame(const Vector3& _translation) : + rotation(Matrix3::identity()), translation(_translation) { + } + + CoordinateFrame(const Matrix3 &rotation, const Vector3 &translation) : + rotation(rotation), translation(translation) { + } + + CoordinateFrame(const Matrix3 &rotation) : + rotation(rotation), translation(Vector3::zero()) { + } + + CoordinateFrame(const class UprightFrame& f); + + static CoordinateFrame fromXYZYPRRadians(float x, float y, float z, float yaw = 0.0f, float pitch = 0.0f, float roll = 0.0f); + + /** Construct a coordinate frame from translation = (x,y,z) and + rotations (in that order) about Y, object space X, object space + Z. Note that because object-space axes are used, these are not + equivalent to Euler angles; they are known as Tait-Bryan + rotations and are more convenient for intuitive positioning.*/ + static CoordinateFrame fromXYZYPRDegrees(float x, float y, float z, float yaw = 0.0f, float pitch = 0.0f, float roll = 0.0f); + + CoordinateFrame(class BinaryInput& b); + + void deserialize(class BinaryInput& b); + + void serialize(class BinaryOutput& b) const; + + CoordinateFrame(const CoordinateFrame &other) : + rotation(other.rotation), translation(other.translation) {} + + /** + Computes the inverse of this coordinate frame. + */ + inline CoordinateFrame inverse() const { + CoordinateFrame out; + out.rotation = rotation.transpose(); + out.translation = -out.rotation * translation; + return out; + } + + inline ~CoordinateFrame() {} + + /** See also Matrix4::approxCoordinateFrame */ + class Matrix4 toMatrix4() const; + + void getXYZYPRRadians(float& x, float& y, float& z, float& yaw, float& pitch, float& roll) const; + void getXYZYPRDegrees(float& x, float& y, float& z, float& yaw, float& pitch, float& roll) const; + + + /** + Produces an XML serialization of this coordinate frame. + @deprecated + */ + std::string toXML() const; + + /** + Returns the heading of the lookVector as an angle in radians relative to + the world -z axis. That is, a counter-clockwise heading where north (-z) + is 0 and west (-x) is PI/2. + + Note that the heading ignores the Y axis, so an inverted + object has an inverted heading. + */ + inline float getHeading() const { + Vector3 look = rotation.column(2); + float angle = -(float) atan2(-look.x, look.z); + return angle; + } + + /** + Takes the coordinate frame into object space. + this->inverse() * c + */ + inline CoordinateFrame toObjectSpace(const CoordinateFrame& c) const { + return this->inverse() * c; + } + + inline Vector4 toObjectSpace(const Vector4& v) const { + return this->inverse().toWorldSpace(v); + } + + inline Vector4 toWorldSpace(const Vector4& v) const { + return Vector4(rotation * Vector3(v.x, v.y, v.z) + translation * v.w, v.w); + } + + /** + Transforms the point into world space. + */ + inline Vector3 pointToWorldSpace(const Vector3& v) const { + return Vector3( + rotation[0][0] * v[0] + rotation[0][1] * v[1] + rotation[0][2] * v[2] + translation[0], + rotation[1][0] * v[0] + rotation[1][1] * v[1] + rotation[1][2] * v[2] + translation[1], + rotation[2][0] * v[0] + rotation[2][1] * v[1] + rotation[2][2] * v[2] + translation[2]); + } + + /** + Transforms the point into object space. Assumes that the rotation matrix is orthonormal. + */ + inline Vector3 pointToObjectSpace(const Vector3& v) const { + float p[3]; + p[0] = v[0] - translation[0]; + p[1] = v[1] - translation[1]; + p[2] = v[2] - translation[2]; + debugAssert(G3D::fuzzyEq(rotation.determinant(), 1.0f)); + return Vector3( + rotation[0][0] * p[0] + rotation[1][0] * p[1] + rotation[2][0] * p[2], + rotation[0][1] * p[0] + rotation[1][1] * p[1] + rotation[2][1] * p[2], + rotation[0][2] * p[0] + rotation[1][2] * p[1] + rotation[2][2] * p[2]); + } + + /** + Transforms the vector into world space (no translation). + */ + inline Vector3 vectorToWorldSpace(const Vector3& v) const { + return rotation * v; + } + + inline Vector3 normalToWorldSpace(const Vector3& v) const { + return rotation * v; + } + + class Ray toObjectSpace(const Ray& r) const; + + Ray toWorldSpace(const Ray& r) const; + + /** + Transforms the vector into object space (no translation). + */ + inline Vector3 vectorToObjectSpace(const Vector3 &v) const { + // Multiply on the left (same as rotation.transpose() * v) + return v * rotation; + } + + inline Vector3 normalToObjectSpace(const Vector3 &v) const { + // Multiply on the left (same as rotation.transpose() * v) + return v * rotation; + } + + void pointToWorldSpace(const Array<Vector3>& v, Array<Vector3>& vout) const; + + void normalToWorldSpace(const Array<Vector3>& v, Array<Vector3>& vout) const; + + void vectorToWorldSpace(const Array<Vector3>& v, Array<Vector3>& vout) const; + + void pointToObjectSpace(const Array<Vector3>& v, Array<Vector3>& vout) const; + + void normalToObjectSpace(const Array<Vector3>& v, Array<Vector3>& vout) const; + + void vectorToObjectSpace(const Array<Vector3>& v, Array<Vector3>& vout) const; + + class Box toWorldSpace(const class AABox& b) const; + + class Box toWorldSpace(const class Box& b) const; + + class Cylinder toWorldSpace(const class Cylinder& b) const; + + class Capsule toWorldSpace(const class Capsule& b) const; + + class Plane toWorldSpace(const class Plane& p) const; + + class Sphere toWorldSpace(const class Sphere& b) const; + + class Triangle toWorldSpace(const class Triangle& t) const; + + class Box toObjectSpace(const AABox& b) const; + + class Box toObjectSpace(const Box& b) const; + + class Plane toObjectSpace(const Plane& p) const; + + class Sphere toObjectSpace(const Sphere& b) const; + + Triangle toObjectSpace(const Triangle& t) const; + + /** Compose: create the transformation that is <I>other</I> followed by <I>this</I>.*/ + CoordinateFrame operator*(const CoordinateFrame &other) const { + return CoordinateFrame(rotation * other.rotation, + pointToWorldSpace(other.translation)); + } + + CoordinateFrame operator+(const Vector3& v) const { + return CoordinateFrame(rotation, translation + v); + } + + CoordinateFrame operator-(const Vector3& v) const { + return CoordinateFrame(rotation, translation - v); + } + + void lookAt(const Vector3& target); + + void lookAt( + const Vector3& target, + Vector3 up); + + /** The direction this camera is looking (its negative z axis)*/ + inline Vector3 lookVector() const { + return -rotation.column(2); + } + + /** Returns the ray starting at the camera origin travelling in direction CoordinateFrame::lookVector. */ + class Ray lookRay() const; + + /** Up direction for this camera (its y axis). */ + inline Vector3 upVector() const { + return rotation.column(1); + } + + inline Vector3 rightVector() const { + return rotation.column(0); + } + + /** + If a viewer looks along the look vector, this is the viewer's "left". + Useful for strafing motions and building alternative coordinate frames. + */ + inline Vector3 leftVector() const { + return -rotation.column(0); + } + + /** + Linearly interpolates between two coordinate frames, using + Quat::slerp for the rotations. + */ + CoordinateFrame lerp( + const CoordinateFrame& other, + float alpha) const; + +}; + +typedef CoordinateFrame CFrame; + +} // namespace + +#endif |