diff options
Diffstat (limited to 'dep/g3dlite/source/ConvexPolyhedron.cpp')
-rw-r--r-- | dep/g3dlite/source/ConvexPolyhedron.cpp | 32 |
1 files changed, 16 insertions, 16 deletions
diff --git a/dep/g3dlite/source/ConvexPolyhedron.cpp b/dep/g3dlite/source/ConvexPolyhedron.cpp index 5fa76e3ed41..b76d9160b34 100644 --- a/dep/g3dlite/source/ConvexPolyhedron.cpp +++ b/dep/g3dlite/source/ConvexPolyhedron.cpp @@ -27,7 +27,7 @@ ConvexPolygon::ConvexPolygon(const Vector3& v0, const Vector3& v1, const Vector3 bool ConvexPolygon::isEmpty() const { - return (_vertex.length() == 0) || (getArea() <= fuzzyEpsilon); + return (_vertex.length() == 0) || (getArea() <= fuzzyEpsilon32); } @@ -41,7 +41,7 @@ float ConvexPolygon::getArea() const { int length = _vertex.length(); // Split into triangle fan, compute individual area - for (int v = 2; v < length; v++) { + for (int v = 2; v < length; ++v) { int i0 = 0; int i1 = v - 1; int i2 = v; @@ -110,7 +110,7 @@ void ConvexPolygon::cut(const Plane& plane, ConvexPolygon &above, ConvexPolygon below._vertex.append(_vertex[v]); } - for (v = 1; v < length; v++) { + for (v = 1; v < length; ++v) { bool isAbove = plane.halfSpaceContains(_vertex[v]); if (lastAbove ^ isAbove) { @@ -141,7 +141,7 @@ void ConvexPolygon::cut(const Plane& plane, ConvexPolygon &above, ConvexPolygon } else { newEdge.start = interp; } - count++; + ++count; } lastAbove = isAbove; @@ -191,7 +191,7 @@ ConvexPolygon ConvexPolygon::inverse() const { int length = _vertex.length(); result._vertex.resize(length); - for (int v = 0; v < length; v++) { + for (int v = 0; v < length; ++v) { result._vertex[v] = _vertex[length - v - 1]; } @@ -210,7 +210,7 @@ void ConvexPolygon::removeDuplicateVertices(){ --i; // Don't move forward. } } - + // Check the last vertex against the first. if (_vertex[_vertex.size()-1].fuzzyEq(_vertex[0])){ _vertex.pop(); @@ -239,7 +239,7 @@ float ConvexPolyhedron::getVolume() const { // Choose the first _vertex of the first face as the origin. // This lets us skip one face, too, and avoids negative heights. Vector3 v0 = face[0]._vertex[0]; - for (int f = 1; f < face.length(); f++) { + for (int f = 1; f < face.length(); ++f) { const ConvexPolygon& poly = face[f]; float height = (poly._vertex[0] - v0).dot(poly.normal()); @@ -252,7 +252,7 @@ float ConvexPolyhedron::getVolume() const { } bool ConvexPolyhedron::isEmpty() const { - return (face.length() == 0) || (getVolume() <= fuzzyEpsilon); + return (face.length() == 0) || (getVolume() <= fuzzyEpsilon32); } void ConvexPolyhedron::cut(const Plane& plane, ConvexPolyhedron &above, ConvexPolyhedron &below) { @@ -280,11 +280,11 @@ void ConvexPolyhedron::cut(const Plane& plane, ConvexPolyhedron &above, ConvexPo for (int v = poly._vertex.length() - 1; (v >= 0) && (!ruledOut); v--) { double r = abc.dot(poly._vertex[v]) + d; if (r > eps) { - numAbove++; + ++numAbove; } else if (r < -eps) { - numBelow++; + ++numBelow; } else { - numIn++; + ++numIn; } ruledOut = (numAbove != 0) && (numBelow !=0); @@ -333,11 +333,11 @@ void ConvexPolyhedron::cut(const Plane& plane, ConvexPolyhedron &above, ConvexPo const Array<Vector3>& _vertex = (aEmpty ? b._vertex : a._vertex); int L = _vertex.length(); int count = 0; - for (int v = 0; v < L; v++) { + for (int v = 0; v < L; ++v) { if (plane.fuzzyContains(_vertex[v]) && plane.fuzzyContains(_vertex[(v + 1) % L])) { e.start = _vertex[v]; e.stop = _vertex[(v + 1) % L]; - count++; + ++count; } } @@ -366,7 +366,7 @@ void ConvexPolyhedron::cut(const Plane& plane, ConvexPolyhedron &above, ConvexPo // Collect the final polgyon by sorting the edges int numVertices = edge.length(); /*debugPrintf("\n"); -for (int xx=0; xx < numVertices; xx++) { +for (int xx=0; xx < numVertices; ++xx) { std::string s1 = edge[xx].start.toString(); std::string s2 = edge[xx].stop.toString(); debugPrintf("%s -> %s\n", s1.c_str(), s2.c_str()); @@ -387,7 +387,7 @@ for (int xx=0; xx < numVertices; xx++) { int index = 0; int num = edge.length(); double distance = (edge[index].start - last_vertex).squaredMagnitude(); - for (int e = 1; e < num; e++) { + for (int e = 1; e < num; ++e) { double d = (edge[e].start - last_vertex).squaredMagnitude(); if (d < distance) { @@ -430,7 +430,7 @@ bool ConvexPolygon2D::contains(const Vector2& p, bool reverse) const { // the polygon. (To adapt this algorithm for a concave polygon, // the *sum* of the areas must be non-negative). - float r = reverse ? -1 : 1; + float r = reverse ? -1.0f : 1.0f; for (int i0 = 0; i0 < m_vertex.size(); ++i0) { int i1 = (i0 + 1) % m_vertex.size(); |