diff options
Diffstat (limited to 'dep/include/g3dlite/G3D/Matrix.h')
-rw-r--r-- | dep/include/g3dlite/G3D/Matrix.h | 634 |
1 files changed, 634 insertions, 0 deletions
diff --git a/dep/include/g3dlite/G3D/Matrix.h b/dep/include/g3dlite/G3D/Matrix.h new file mode 100644 index 00000000000..3c5394d9a76 --- /dev/null +++ b/dep/include/g3dlite/G3D/Matrix.h @@ -0,0 +1,634 @@ +/** + @file Matrix.h + @author Morgan McGuire, http://graphics.cs.williams.edu + + @created 2005-10-23 + @edited 2007-07-18 + */ + +#ifndef G3D_MATRIX_H +#define G3D_MATRIX_H + +#include "G3D/g3dmath.h" +#include "G3D/Vector3.h" +#include "G3D/Vector4.h" +#include "G3D/Matrix3.h" +#include "G3D/Matrix4.h" +#include "G3D/ReferenceCount.h" + +namespace G3D { + +/** + N x M matrix. + + The actual data is tracked internally by a reference counted pointer; + it is efficient to pass and assign Matrix objects because no data is actually copied. + This avoids the headache of pointers and allows natural math notation: + + <PRE> + Matrix A, B, C; + // ... + + C = A * f(B); + C = C.inverse(); + + A = Matrix::identity(4); + C = A; + C.set(0, 0, 2.0); // Triggers a copy of the data so that A remains unchanged. + + // etc. + + </PRE> + + The Matrix::debugNumCopyOps and Matrix::debugNumAllocOps counters + increment every time an operation forces the copy and allocation of matrices. You + can use these to detect slow operations when efficiency is a major concern. + + Some methods accept an output argument instead of returning a value. For example, + <CODE>A = B.transpose()</CODE> can also be invoked as <CODE>B.transpose(A)</CODE>. + The latter may be more efficient, since Matrix may be able to re-use the storage of + A (if it has approximatly the right size and isn't currently shared with another matrix). + + @sa G3D::Matrix3, G3D::Matrix4, G3D::Vector2, G3D::Vector3, G3D::Vector4, G3D::CoordinateFrame + + @beta + */ +class Matrix { +public: + /** + Internal precision. Currently float, but this may become a templated class in the future + to allow operations like Matrix<double> and Matrix<ComplexFloat>. + + Not necessarily a plain-old-data type (e.g., could ComplexFloat), but must be something + with no constructor, that can be safely memcpyd, and that has a bit pattern of all zeros + when zero.*/ + typedef float T; + + /** Incremented every time the elements of a matrix are copied. Useful for profiling your + own code that uses Matrix to determine when it is slow due to copying.*/ + static int debugNumCopyOps; + + /** Incremented every time a new matrix object is allocated. Useful for profiling your + own code that uses Matrix to determine when it is slow due to allocation.*/ + static int debugNumAllocOps; + +private: +public: + + /** Used internally by Matrix. + + Does not throw exceptions-- assumes the caller has taken care of + argument checking. */ + class Impl : public ReferenceCountedObject { + public: + + static void* operator new(size_t size) { + return System::malloc(size); + } + + static void operator delete(void* p) { + System::free(p); + } + + ~Impl(); + + private: + friend class Matrix; + + /** elt[r][c] = the element. Pointers into data.*/ + T** elt; + + /** Row major data for the entire matrix. */ + T* data; + + /** The number of rows */ + int R; + + /** The number of columns */ + int C; + + int dataSize; + + /** If R*C is much larger or smaller than the current, deletes all previous data + and resets to random data. Otherwise re-uses existing memory and just resets + R, C, and the row pointers. */ + void setSize(int newRows, int newCols); + + inline Impl() : elt(NULL), data(NULL), R(0), C(0), dataSize(0) {} + + Impl(const Matrix3& M); + + Impl(const Matrix4& M); + + inline Impl(int r, int c) : elt(NULL), data(NULL), R(0), C(0), dataSize(0) { + setSize(r, c); + } + + Impl& operator=(const Impl& m); + + inline Impl(const Impl& B) : elt(NULL), data(NULL), R(0), C(0), dataSize(0) { + // Use the assignment operator + *this = B; + } + + void setZero(); + + inline void set(int r, int c, T v) { + debugAssert(r < R); + debugAssert(c < C); + elt[r][c] = v; + } + + inline const T& get(int r, int c) const { + debugAssert(r < R); + debugAssert(c < C); + return elt[r][c]; + } + + /** Multiplies this by B and puts the result in out. */ + void mul(const Impl& B, Impl& out) const; + + /** Ok if out == this or out == B */ + void add(const Impl& B, Impl& out) const; + + /** Ok if out == this or out == B */ + void add(T B, Impl& out) const; + + /** Ok if out == this or out == B */ + void sub(const Impl& B, Impl& out) const; + + /** Ok if out == this or out == B */ + void sub(T B, Impl& out) const; + + /** B - this */ + void lsub(T B, Impl& out) const; + + /** Ok if out == this or out == B */ + void arrayMul(const Impl& B, Impl& out) const; + + /** Ok if out == this or out == B */ + void mul(T B, Impl& out) const; + + /** Ok if out == this or out == B */ + void arrayDiv(const Impl& B, Impl& out) const; + + /** Ok if out == this or out == B */ + void div(T B, Impl& out) const; + + void negate(Impl& out) const; + + /** Slow way of computing an inverse; for reference */ + void inverseViaAdjoint(Impl& out) const; + + /** Use Gaussian elimination with pivots to solve for the inverse destructively in place. */ + void inverseInPlaceGaussJordan(); + + void adjoint(Impl& out) const; + + /** Matrix of all cofactors */ + void cofactor(Impl& out) const; + + /** + Cofactor [r][c] is defined as C[r][c] = -1 ^(r+c) * det(A[r][c]), + where A[r][c] is the (R-1)x(C-1) matrix formed by removing row r and + column c from the original matrix. + */ + T cofactor(int r, int c) const; + + /** Ok if out == this or out == B */ + void transpose(Impl& out) const; + + T determinant() const; + + /** Determinant computed without the given row and column */ + T determinant(int r, int c) const; + + void arrayLog(Impl& out) const; + + void arrayExp(Impl& out) const; + + void arraySqrt(Impl& out) const; + + void arrayCos(Impl& out) const; + + void arraySin(Impl& out) const; + + void swapRows(int r0, int r1); + + void swapAndNegateCols(int c0, int c1); + + void mulRow(int r, const T& v); + + void abs(Impl& out) const; + + /** Makes a (R-1)x(C-1) copy of this matrix */ + void withoutRowAndCol(int excludeRow, int excludeCol, Impl& out) const; + + bool anyNonZero() const; + + bool allNonZero() const; + + void setRow(int r, const T* vals); + + void setCol(int c, const T* vals); + }; +private: + + typedef ReferenceCountedPointer<Impl> ImplRef; + + ImplRef impl; + + inline Matrix(ImplRef i) : impl(i) {} + inline Matrix(Impl* i) : impl(ImplRef(i)) {} + + /** Used by SVD */ + class SortRank { + public: + T value; + int col; + + inline bool operator>(const SortRank& x) const { + return x.value > value; + } + + inline bool operator<(const SortRank& x) const { + return x.value < value; + } + + inline bool operator>=(const SortRank& x) const { + return x.value >= value; + } + + inline bool operator<=(const SortRank& x) const { + return x.value <= value; + } + + inline bool operator==(const SortRank& x) const { + return x.value == value; + } + + inline bool operator!=(const SortRank& x) const { + return x.value != value; + } + }; + + Matrix vectorPseudoInverse() const; + Matrix partitionPseudoInverse() const; + Matrix colPartPseudoInverse() const; + Matrix rowPartPseudoInverse() const; + + Matrix col2PseudoInverse(const Matrix& B) const; + Matrix col3PseudoInverse(const Matrix& B) const; + Matrix col4PseudoInverse(const Matrix& B) const; + Matrix row2PseudoInverse(const Matrix& B) const; + Matrix row3PseudoInverse(const Matrix& B) const; + Matrix row4PseudoInverse(const Matrix& B) const; + +public: + + Matrix() : impl(new Impl(0, 0)) {} + + Matrix(const Matrix3& M) : impl(new Impl(M)) {} + + Matrix(const Matrix4& M) : impl(new Impl(M)) {} + + template<class S> + static Matrix fromDiagonal(const Array<S>& d) { + Matrix D = zero(d.length(), d.length()); + for (int i = 0; i < d.length(); ++i) { + D.set(i, i, d[i]); + } + return D; + } + + static Matrix fromDiagonal(const Matrix& d); + + /** Returns a new matrix that is all zero. */ + Matrix(int R, int C) : impl(new Impl(R, C)) { + impl->setZero(); + } + + /** Returns a new matrix that is all zero. */ + static Matrix zero(int R, int C); + + /** Returns a new matrix that is all one. */ + static Matrix one(int R, int C); + + /** Returns a new identity matrix */ + static Matrix identity(int N); + + /** Uniformly distributed values between zero and one. */ + static Matrix random(int R, int C); + + /** The number of rows */ + inline int rows() const { + return impl->R; + } + + /** Number of columns */ + inline int cols() const { + return impl->C; + } + + /** Generally more efficient than A * B */ + Matrix& operator*=(const T& B); + + /** Generally more efficient than A / B */ + Matrix& operator/=(const T& B); + + /** Generally more efficient than A + B */ + Matrix& operator+=(const T& B); + + /** Generally more efficient than A - B */ + Matrix& operator-=(const T& B); + + /** No performance advantage over A * B because + matrix multiplication requires intermediate + storage. */ + Matrix& operator*=(const Matrix& B); + + /** Generally more efficient than A + B */ + Matrix& operator+=(const Matrix& B); + + /** Generally more efficient than A - B */ + Matrix& operator-=(const Matrix& B); + + /** Returns a new matrix that is a subset of this one, + from r1:r2 to c1:c2, inclusive.*/ + Matrix subMatrix(int r1, int r2, int c1, int c2) const; + + /** Matrix multiplication. To perform element-by-element multiplication, + see arrayMul. */ + inline Matrix operator*(const Matrix& B) const { + Matrix C(impl->R, B.impl->C); + impl->mul(*B.impl, *C.impl); + return C; + } + + /** See also A *= B, which is more efficient in many cases */ + inline Matrix operator*(const T& B) const { + Matrix C(impl->R, impl->C); + impl->mul(B, *C.impl); + return C; + } + + /** See also A += B, which is more efficient in many cases */ + inline Matrix operator+(const Matrix& B) const { + Matrix C(impl->R, impl->C); + impl->add(*B.impl, *C.impl); + return C; + } + + /** See also A -= B, which is more efficient in many cases */ + inline Matrix operator-(const Matrix& B) const { + Matrix C(impl->R, impl->C); + impl->sub(*B.impl, *C.impl); + return C; + } + + /** See also A += B, which is more efficient in many cases */ + inline Matrix operator+(const T& v) const { + Matrix C(impl->R, impl->C); + impl->add(v, *C.impl); + return C; + } + + /** See also A -= B, which is more efficient in many cases */ + inline Matrix operator-(const T& v) const { + Matrix C(impl->R, impl->C); + impl->sub(v, *C.impl); + return C; + } + + + Matrix operator>(const T& scalar) const; + + Matrix operator<(const T& scalar) const; + + Matrix operator>=(const T& scalar) const; + + Matrix operator<=(const T& scalar) const; + + Matrix operator==(const T& scalar) const; + + Matrix operator!=(const T& scalar) const; + + /** scalar B - this */ + inline Matrix lsub(const T& B) const { + Matrix C(impl->R, impl->C); + impl->lsub(B, *C.impl); + return C; + } + + inline Matrix arrayMul(const Matrix& B) const { + Matrix C(impl->R, impl->C); + impl->arrayMul(*B.impl, *C.impl); + return C; + } + + Matrix3 toMatrix3() const; + + Matrix4 toMatrix4() const; + + Vector2 toVector2() const; + + Vector3 toVector3() const; + + Vector4 toVector4() const; + + /** Mutates this */ + void arrayMulInPlace(const Matrix& B); + + /** Mutates this */ + void arrayDivInPlace(const Matrix& B); + + // Declares an array unary method and its explicit-argument counterpart +# define DECLARE_METHODS_1(method)\ + inline Matrix method() const {\ + Matrix C(impl->R, impl->C);\ + impl->method(*C.impl);\ + return C;\ + }\ + void method(Matrix& out) const; + + + DECLARE_METHODS_1(abs) + DECLARE_METHODS_1(arrayLog) + DECLARE_METHODS_1(arrayExp) + DECLARE_METHODS_1(arraySqrt) + DECLARE_METHODS_1(arrayCos) + DECLARE_METHODS_1(arraySin) + DECLARE_METHODS_1(negate) + +# undef DECLARE_METHODS_1 + + inline Matrix operator-() const { + return negate(); + } + + /** + A<SUP>-1</SUP> computed using the Gauss-Jordan algorithm, + for square matrices. + Run time is <I>O(R<sup>3</sup>)</I>, where <I>R</i> is the + number of rows. + */ + inline Matrix inverse() const { + Impl* A = new Impl(*impl); + A->inverseInPlaceGaussJordan(); + return Matrix(A); + } + + inline T determinant() const { + return impl->determinant(); + } + + /** + A<SUP>T</SUP> + */ + inline Matrix transpose() const { + Impl* A = new Impl(cols(), rows()); + impl->transpose(*A); + return Matrix(A); + } + + /** Transpose in place; more efficient than transpose */ + void transpose(Matrix& out) const; + + inline Matrix adjoint() const { + Impl* A = new Impl(cols(), rows()); + impl->adjoint(*A); + return Matrix(A); + } + + /** + (A<SUP>T</SUP>A)<SUP>-1</SUP>A<SUP>T</SUP>) computed + using SVD. + + @param tolerance Use -1 for automatic tolerance. + */ + Matrix pseudoInverse(float tolerance = -1) const; + + /** Called from pseudoInverse when the matrix has size > 4 along some dimension.*/ + Matrix svdPseudoInverse(float tolerance = -1) const; + + /** + (A<SUP>T</SUP>A)<SUP>-1</SUP>A<SUP>T</SUP>) computed + using Gauss-Jordan elimination. + */ + inline Matrix gaussJordanPseudoInverse() const { + Matrix trans = transpose(); + return (trans * (*this)).inverse() * trans; + } + + /** Singular value decomposition. Factors into three matrices + such that @a this = @a U * fromDiagonal(@a d) * @a V.transpose(). + + The matrix must have at least as many rows as columns. + + Run time is <I>O(C<sup>2</sup>*R)</I>. + + @param sort If true (default), the singular values + are arranged so that D is sorted from largest to smallest. + */ + void svd(Matrix& U, Array<T>& d, Matrix& V, bool sort = true) const; + + void set(int r, int c, T v); + + void setCol(int c, const Matrix& vec); + + void setRow(int r, const Matrix& vec); + + Matrix col(int c) const; + + Matrix row(int r) const; + + T get(int r, int c) const; + + Vector2int16 size() const { + return Vector2int16(rows(), cols()); + } + + int numElements() const { + return rows() * cols(); + } + + void swapRows(int r0, int r1); + + /** Swaps columns c0 and c1 and negates both */ + void swapAndNegateCols(int c0, int c1); + + void mulRow(int r, const T& v); + + /** Returns true if any element is non-zero */ + bool anyNonZero() const; + + /** Returns true if all elements are non-zero */ + bool allNonZero() const; + + inline bool allZero() const { + return !anyNonZero(); + } + + inline bool anyZero() const { + return !allNonZero(); + } + + /** Serializes in Matlab source format */ + void serialize(TextOutput& t) const; + + std::string toString(const std::string& name) const; + + std::string toString() const { + static const std::string name = ""; + return toString(name); + } + + /** 2-norm squared: sum(squares). (i.e., dot product with itself) */ + double normSquared() const; + + /** 2-norm (sqrt(sum(squares)) */ + double norm() const; + + /** + Low-level SVD functionality. Useful for applications that do not want + to construct a Matrix but need to perform the SVD operation. + + this = U * D * V' + + Assumes that rows >= cols + + @return NULL on success, a string describing the error on failure. + @param U rows x cols matrix to be decomposed, gets overwritten with U, a rows x cols matrix with orthogonal columns. + @param D vector of singular values of a (diagonal of the D matrix). Length cols. + @param V returns the right orthonormal transformation matrix, size cols x cols + + @cite Based on Dianne Cook's implementation, which is adapted from + svdecomp.c in XLISP-STAT 2.1, which is code from Numerical Recipes + adapted by Luke Tierney and David Betz. The Numerical Recipes code + is adapted from Forsythe et al, who based their code on Golub and + Reinsch's original implementation. + */ + static const char* svdCore(float** U, int rows, int cols, float* D, float** V); + +}; + +} + +inline G3D::Matrix operator-(const G3D::Matrix::T& v, const G3D::Matrix& M) { + return M.lsub(v); +} + +inline G3D::Matrix operator*(const G3D::Matrix::T& v, const G3D::Matrix& M) { + return M * v; +} + +inline G3D::Matrix operator+(const G3D::Matrix::T& v, const G3D::Matrix& M) { + return M + v; +} + +inline G3D::Matrix abs(const G3D::Matrix& M) { + return M.abs(); +} + +#endif + |