diff options
Diffstat (limited to 'dep/include/g3dlite/G3D/Plane.h')
-rw-r--r-- | dep/include/g3dlite/G3D/Plane.h | 156 |
1 files changed, 156 insertions, 0 deletions
diff --git a/dep/include/g3dlite/G3D/Plane.h b/dep/include/g3dlite/G3D/Plane.h new file mode 100644 index 00000000000..f00c15c0988 --- /dev/null +++ b/dep/include/g3dlite/G3D/Plane.h @@ -0,0 +1,156 @@ +/** + @file Plane.h + + Plane class + + @maintainer Morgan McGuire, matrix@graphics3d.com + + @created 2001-06-02 + @edited 2004-07-18 +*/ + +#ifndef G3D_PLANE_H +#define G3D_PLANE_H + +#include "G3D/platform.h" +#include "G3D/Vector3.h" +#include "G3D/Vector4.h" + +namespace G3D { + +/** + An infinite 2D plane in 3D space. + */ +class Plane { +private: + + /** normal.Dot(x,y,z) = distance */ + Vector3 _normal; + float _distance; + + /** + Assumes the normal has unit length. + */ + Plane(const Vector3& n, float d) : _normal(n), _distance(d) { + } + +public: + + Plane() : _normal(Vector3::unitY()), _distance(0) { + } + + /** + Constructs a plane from three points. + */ + Plane( + const Vector3& point0, + const Vector3& point1, + const Vector3& point2); + + /** + Constructs a plane from three points, where at most two are + at infinity (w = 0, not xyz = inf). + */ + Plane( + Vector4 point0, + Vector4 point1, + Vector4 point2); + + /** + The normal will be unitized. + */ + Plane( + const Vector3& __normal, + const Vector3& point); + + static Plane fromEquation(float a, float b, float c, float d); + + virtual ~Plane() {} + + /** + Returns true if point is on the side the normal points to or + is in the plane. + */ + inline bool halfSpaceContains(Vector3 point) const { + // Clamp to a finite range for testing + point = point.clamp(Vector3::minFinite(), Vector3::maxFinite()); + + // We can get away with putting values *at* the limits of the float32 range into + // a dot product, since the dot product is carried out on float64. + return _normal.dot(point) >= _distance; + } + + /** + Returns true if point is on the side the normal points to or + is in the plane. + */ + inline bool halfSpaceContains(const Vector4& point) const { + if (point.w == 0) { + return _normal.dot(point.xyz()) > 0; + } else { + return halfSpaceContains(point.xyz() / point.w); + } + } + + /** + Returns true if point is on the side the normal points to or + is in the plane. Only call on finite points. Faster than halfSpaceContains. + */ + inline bool halfSpaceContainsFinite(const Vector3& point) const { + debugAssert(point.isFinite()); + return _normal.dot(point) >= _distance; + } + + /** + Returns true if the point is nearly in the plane. + */ + inline bool fuzzyContains(const Vector3 &point) const { + return fuzzyEq(point.dot(_normal), _distance); + } + + inline const Vector3& normal() const { + return _normal; + } + + /** + Returns distance from point to plane. Distance is negative if point is behind (not in plane in direction opposite normal) the plane. + */ + inline float distance(const Vector3& x) const { + return (_normal.dot(x) - _distance); + } + + inline Vector3 closestPoint(const Vector3& x) const { + return x + (_normal * (-distance(x))); + } + + /** Returns normal * distance from origin */ + Vector3 center() const { + return _normal * _distance; + } + + /** + Inverts the facing direction of the plane so the new normal + is the inverse of the old normal. + */ + void flip(); + + /** + Returns the equation in the form: + + <CODE>normal.Dot(Vector3(<I>x</I>, <I>y</I>, <I>z</I>)) + d = 0</CODE> + */ + void getEquation(Vector3 &normal, double& d) const; + void getEquation(Vector3 &normal, float& d) const; + + /** + ax + by + cz + d = 0 + */ + void getEquation(double& a, double& b, double& c, double& d) const; + void getEquation(float& a, float& b, float& c, float& d) const; + + std::string toString() const; +}; + +} // namespace + +#endif |