aboutsummaryrefslogtreecommitdiff
path: root/dep/include/g3dlite/G3D/Quat.h
diff options
context:
space:
mode:
Diffstat (limited to 'dep/include/g3dlite/G3D/Quat.h')
-rw-r--r--dep/include/g3dlite/G3D/Quat.h702
1 files changed, 702 insertions, 0 deletions
diff --git a/dep/include/g3dlite/G3D/Quat.h b/dep/include/g3dlite/G3D/Quat.h
new file mode 100644
index 00000000000..b852fe0fd47
--- /dev/null
+++ b/dep/include/g3dlite/G3D/Quat.h
@@ -0,0 +1,702 @@
+/**
+ @file Quat.h
+
+ Quaternion
+
+ @maintainer Morgan McGuire, matrix@graphics3d.com
+
+ @created 2002-01-23
+ @edited 2006-05-10
+ */
+
+#ifndef G3D_QUAT_H
+#define G3D_QUAT_H
+
+#include "G3D/platform.h"
+#include "G3D/g3dmath.h"
+#include "G3D/Vector3.h"
+#include "G3D/Matrix3.h"
+#include <string>
+
+namespace G3D {
+
+/**
+ Unit quaternions are used in computer graphics to represent
+ rotation about an axis. Any 3x3 rotation matrix can
+ be stored as a quaternion.
+
+ A quaternion represents the sum of a real scalar and
+ an imaginary vector: ix + jy + kz + w. A unit quaternion
+ representing a rotation by A about axis v has the form
+ [sin(A/2)*v, cos(A/2)]. For a unit quaternion, q.conj() == q.inverse()
+ is a rotation by -A about v. -q is the same rotation as q
+ (negate both the axis and angle).
+
+ A non-unit quaterion q represents the same rotation as
+ q.unitize() (Dam98 pg 28).
+
+ Although quaternion-vector operations (eg. Quat + Vector3) are
+ well defined, they are not supported by this class because
+ they typically are bugs when they appear in code.
+
+ Do not subclass.
+
+ <B>BETA API -- subject to change</B>
+ @cite Erik B. Dam, Martin Koch, Martin Lillholm, Quaternions, Interpolation and Animation. Technical Report DIKU-TR-98/5, Department of Computer Science, University of Copenhagen, Denmark. 1998.
+ */
+class Quat {
+private:
+ // Hidden operators
+ bool operator<(const Quat&) const;
+ bool operator>(const Quat&) const;
+ bool operator<=(const Quat&) const;
+ bool operator>=(const Quat&) const;
+
+public:
+
+ /**
+ q = [sin(angle / 2) * axis, cos(angle / 2)]
+
+ In Watt & Watt's notation, s = w, v = (x, y, z)
+ In the Real-Time Rendering notation, u = (x, y, z), w = w
+ */
+ float x, y, z, w;
+
+ /**
+ Initializes to a zero degree rotation.
+ */
+ inline Quat() : x(0), y(0), z(0), w(1) {}
+
+ Quat(
+ const Matrix3& rot);
+
+ inline Quat(float _x, float _y, float _z, float _w) :
+ x(_x), y(_y), z(_z), w(_w) {}
+
+ /** Defaults to a pure vector quaternion */
+ inline Quat(const Vector3& v, float _w = 0) : x(v.x), y(v.y), z(v.z), w(_w) {
+ }
+
+ /**
+ The real part of the quaternion.
+ */
+ inline const float& real() const {
+ return w;
+ }
+
+ inline float& real() {
+ return w;
+ }
+
+ /** Note: two quats can represent the Quat::sameRotation and not be equal. */
+ bool fuzzyEq(const Quat& q) {
+ return G3D::fuzzyEq(x, q.x) && G3D::fuzzyEq(y, q.y) && G3D::fuzzyEq(z, q.z) && G3D::fuzzyEq(w, q.w);
+ }
+
+ /** True if these quaternions represent the same rotation (note that every rotation is
+ represented by two values; q and -q).
+ */
+ bool sameRotation(const Quat& q) {
+ return fuzzyEq(q) || fuzzyEq(-q);
+ }
+
+ inline Quat operator-() const {
+ return Quat(-x, -y, -z, -w);
+ }
+
+ /**
+ Returns the imaginary part (x, y, z)
+ */
+ inline const Vector3& imag() const {
+ return *(reinterpret_cast<const Vector3*>(this));
+ }
+
+ inline Vector3& imag() {
+ return *(reinterpret_cast<Vector3*>(this));
+ }
+
+ /** q = [sin(angle/2)*axis, cos(angle/2)] */
+ static Quat fromAxisAngleRotation(
+ const Vector3& axis,
+ float angle);
+
+ /** Returns the axis and angle of rotation represented
+ by this quaternion (i.e. q = [sin(angle/2)*axis, cos(angle/2)]) */
+ void toAxisAngleRotation(
+ Vector3& axis,
+ double& angle) const;
+
+ void toAxisAngleRotation(
+ Vector3& axis,
+ float& angle) const {
+ double d;
+ toAxisAngleRotation(axis, d);
+ angle = (float)d;
+ }
+
+ Matrix3 toRotationMatrix() const;
+
+ void toRotationMatrix(
+ Matrix3& rot) const;
+
+ /**
+ Spherical linear interpolation: linear interpolation along the
+ shortest (3D) great-circle route between two quaternions.
+
+ Note: Correct rotations are expected between 0 and PI in the right order.
+
+ @cite Based on Game Physics -- David Eberly pg 538-540
+ @param threshold Critical angle between between rotations at which
+ the algorithm switches to normalized lerp, which is more
+ numerically stable in those situations. 0.0 will always slerp.
+ */
+ Quat slerp(
+ const Quat& other,
+ float alpha,
+ float threshold = 0.05f) const;
+
+ /** Normalized linear interpolation of quaternion components. */
+ Quat nlerp(const Quat& other, float alpha) const;
+
+ /**
+ Negates the imaginary part.
+ */
+ inline Quat conj() const {
+ return Quat(-x, -y, -z, w);
+ }
+
+ inline float sum() const {
+ return x + y + z + w;
+ }
+
+ inline float average() const {
+ return sum() / 4.0f;
+ }
+
+ inline Quat operator*(float s) const {
+ return Quat(x * s, y * s, z * s, w * s);
+ }
+
+ /** @cite Based on Watt & Watt, page 360 */
+ friend Quat operator* (float s, const Quat& q);
+
+ inline Quat operator/(float s) const {
+ return Quat(x / s, y / s, z / s, w / s);
+ }
+
+ inline float dot(const Quat& other) const {
+ return (x * other.x) + (y * other.y) + (z * other.z) + (w * other.w);
+ }
+
+ /** Note that q<SUP>-1</SUP> = q.conj() for a unit quaternion.
+ @cite Dam99 page 13 */
+ inline Quat inverse() const {
+ return conj() / dot(*this);
+ }
+
+ Quat operator-(const Quat& other) const;
+
+ Quat operator+(const Quat& other) const;
+
+ /**
+ Quaternion multiplication (composition of rotations).
+ Note that this does not commute.
+ */
+ Quat operator*(const Quat& other) const;
+
+ /* (*this) * other.inverse() */
+ Quat operator/(const Quat& other) const {
+ return (*this) * other.inverse();
+ }
+
+
+ /** Is the magnitude nearly 1.0? */
+ inline bool isUnit(float tolerance = 1e-5) const {
+ return abs(dot(*this) - 1.0f) < tolerance;
+ }
+
+
+ inline float magnitude() const {
+ return sqrtf(dot(*this));
+ }
+
+ inline Quat log() const {
+ if ((x == 0) && (y == 0) && (z == 0)) {
+ if (w > 0) {
+ return Quat(0, 0, 0, ::logf(w));
+ } else if (w < 0) {
+ // Log of a negative number. Multivalued, any number of the form
+ // (PI * v, ln(-q.w))
+ return Quat((float)G3D_PI, 0, 0, ::logf(-w));
+ } else {
+ // log of zero!
+ return Quat((float)nan(), (float)nan(), (float)nan(), (float)nan());
+ }
+ } else {
+ // Partly imaginary.
+ float imagLen = sqrtf(x * x + y * y + z * z);
+ float len = sqrtf(imagLen * imagLen + w * w);
+ float theta = atan2f(imagLen, (float)w);
+ float t = theta / imagLen;
+ return Quat(t * x, t * y, t * z, ::logf(len));
+ }
+ }
+ /** log q = [Av, 0] where q = [sin(A) * v, cos(A)].
+ Only for unit quaternions
+ debugAssertM(isUnit(), "Log only defined for unit quaternions");
+ // Solve for A in q = [sin(A)*v, cos(A)]
+ Vector3 u(x, y, z);
+ double len = u.magnitude();
+
+ if (len == 0.0) {
+ return
+ }
+ double A = atan2((double)w, len);
+ Vector3 v = u / len;
+
+ return Quat(v * A, 0);
+ }
+ */
+
+ /** exp q = [sin(A) * v, cos(A)] where q = [Av, 0].
+ Only defined for pure-vector quaternions */
+ inline Quat exp() const {
+ debugAssertM(w == 0, "exp only defined for vector quaternions");
+ Vector3 u(x, y, z);
+ float A = u.magnitude();
+ Vector3 v = u / A;
+ return Quat(sinf(A) * v, cosf(A));
+ }
+
+
+ /**
+ Raise this quaternion to a power. For a rotation, this is
+ the effect of rotating x times as much as the original
+ quaterion.
+
+ Note that q.pow(a).pow(b) == q.pow(a + b)
+ @cite Dam98 pg 21
+ */
+ inline Quat pow(float x) const {
+ return (log() * x).exp();
+ }
+
+
+ /**
+ @deprecated
+ Use toUnit()
+ */
+ inline Quat unitize() const {
+ float mag2 = dot(*this);
+ if (G3D::fuzzyEq(mag2, 1.0f)) {
+ return *this;
+ } else {
+ return *this / sqrtf(mag2);
+ }
+ }
+
+ /**
+ Returns a unit quaterion obtained by dividing through by
+ the magnitude.
+ */
+ inline Quat toUnit() const {
+ return unitize();
+ }
+
+ /**
+ The linear algebra 2-norm, sqrt(q dot q). This matches
+ the value used in Dam's 1998 tech report but differs from the
+ n(q) value used in Eberly's 1999 paper, which is the square of the
+ norm.
+ */
+ inline float norm() const {
+ return magnitude();
+ }
+
+ // access quaternion as q[0] = q.x, q[1] = q.y, q[2] = q.z, q[3] = q.w
+ //
+ // WARNING. These member functions rely on
+ // (1) Quat not having virtual functions
+ // (2) the data packed in a 4*sizeof(float) memory block
+ const float& operator[] (int i) const;
+ float& operator[] (int i);
+
+ /** Generate uniform random unit quaternion (i.e. random "direction")
+ @cite From "Uniform Random Rotations", Ken Shoemake, Graphics Gems III.
+ */
+ static Quat unitRandom();
+
+ // 2-char swizzles
+
+ Vector2 xx() const;
+ Vector2 yx() const;
+ Vector2 zx() const;
+ Vector2 wx() const;
+ Vector2 xy() const;
+ Vector2 yy() const;
+ Vector2 zy() const;
+ Vector2 wy() const;
+ Vector2 xz() const;
+ Vector2 yz() const;
+ Vector2 zz() const;
+ Vector2 wz() const;
+ Vector2 xw() const;
+ Vector2 yw() const;
+ Vector2 zw() const;
+ Vector2 ww() const;
+
+ // 3-char swizzles
+
+ Vector3 xxx() const;
+ Vector3 yxx() const;
+ Vector3 zxx() const;
+ Vector3 wxx() const;
+ Vector3 xyx() const;
+ Vector3 yyx() const;
+ Vector3 zyx() const;
+ Vector3 wyx() const;
+ Vector3 xzx() const;
+ Vector3 yzx() const;
+ Vector3 zzx() const;
+ Vector3 wzx() const;
+ Vector3 xwx() const;
+ Vector3 ywx() const;
+ Vector3 zwx() const;
+ Vector3 wwx() const;
+ Vector3 xxy() const;
+ Vector3 yxy() const;
+ Vector3 zxy() const;
+ Vector3 wxy() const;
+ Vector3 xyy() const;
+ Vector3 yyy() const;
+ Vector3 zyy() const;
+ Vector3 wyy() const;
+ Vector3 xzy() const;
+ Vector3 yzy() const;
+ Vector3 zzy() const;
+ Vector3 wzy() const;
+ Vector3 xwy() const;
+ Vector3 ywy() const;
+ Vector3 zwy() const;
+ Vector3 wwy() const;
+ Vector3 xxz() const;
+ Vector3 yxz() const;
+ Vector3 zxz() const;
+ Vector3 wxz() const;
+ Vector3 xyz() const;
+ Vector3 yyz() const;
+ Vector3 zyz() const;
+ Vector3 wyz() const;
+ Vector3 xzz() const;
+ Vector3 yzz() const;
+ Vector3 zzz() const;
+ Vector3 wzz() const;
+ Vector3 xwz() const;
+ Vector3 ywz() const;
+ Vector3 zwz() const;
+ Vector3 wwz() const;
+ Vector3 xxw() const;
+ Vector3 yxw() const;
+ Vector3 zxw() const;
+ Vector3 wxw() const;
+ Vector3 xyw() const;
+ Vector3 yyw() const;
+ Vector3 zyw() const;
+ Vector3 wyw() const;
+ Vector3 xzw() const;
+ Vector3 yzw() const;
+ Vector3 zzw() const;
+ Vector3 wzw() const;
+ Vector3 xww() const;
+ Vector3 yww() const;
+ Vector3 zww() const;
+ Vector3 www() const;
+
+ // 4-char swizzles
+
+ Vector4 xxxx() const;
+ Vector4 yxxx() const;
+ Vector4 zxxx() const;
+ Vector4 wxxx() const;
+ Vector4 xyxx() const;
+ Vector4 yyxx() const;
+ Vector4 zyxx() const;
+ Vector4 wyxx() const;
+ Vector4 xzxx() const;
+ Vector4 yzxx() const;
+ Vector4 zzxx() const;
+ Vector4 wzxx() const;
+ Vector4 xwxx() const;
+ Vector4 ywxx() const;
+ Vector4 zwxx() const;
+ Vector4 wwxx() const;
+ Vector4 xxyx() const;
+ Vector4 yxyx() const;
+ Vector4 zxyx() const;
+ Vector4 wxyx() const;
+ Vector4 xyyx() const;
+ Vector4 yyyx() const;
+ Vector4 zyyx() const;
+ Vector4 wyyx() const;
+ Vector4 xzyx() const;
+ Vector4 yzyx() const;
+ Vector4 zzyx() const;
+ Vector4 wzyx() const;
+ Vector4 xwyx() const;
+ Vector4 ywyx() const;
+ Vector4 zwyx() const;
+ Vector4 wwyx() const;
+ Vector4 xxzx() const;
+ Vector4 yxzx() const;
+ Vector4 zxzx() const;
+ Vector4 wxzx() const;
+ Vector4 xyzx() const;
+ Vector4 yyzx() const;
+ Vector4 zyzx() const;
+ Vector4 wyzx() const;
+ Vector4 xzzx() const;
+ Vector4 yzzx() const;
+ Vector4 zzzx() const;
+ Vector4 wzzx() const;
+ Vector4 xwzx() const;
+ Vector4 ywzx() const;
+ Vector4 zwzx() const;
+ Vector4 wwzx() const;
+ Vector4 xxwx() const;
+ Vector4 yxwx() const;
+ Vector4 zxwx() const;
+ Vector4 wxwx() const;
+ Vector4 xywx() const;
+ Vector4 yywx() const;
+ Vector4 zywx() const;
+ Vector4 wywx() const;
+ Vector4 xzwx() const;
+ Vector4 yzwx() const;
+ Vector4 zzwx() const;
+ Vector4 wzwx() const;
+ Vector4 xwwx() const;
+ Vector4 ywwx() const;
+ Vector4 zwwx() const;
+ Vector4 wwwx() const;
+ Vector4 xxxy() const;
+ Vector4 yxxy() const;
+ Vector4 zxxy() const;
+ Vector4 wxxy() const;
+ Vector4 xyxy() const;
+ Vector4 yyxy() const;
+ Vector4 zyxy() const;
+ Vector4 wyxy() const;
+ Vector4 xzxy() const;
+ Vector4 yzxy() const;
+ Vector4 zzxy() const;
+ Vector4 wzxy() const;
+ Vector4 xwxy() const;
+ Vector4 ywxy() const;
+ Vector4 zwxy() const;
+ Vector4 wwxy() const;
+ Vector4 xxyy() const;
+ Vector4 yxyy() const;
+ Vector4 zxyy() const;
+ Vector4 wxyy() const;
+ Vector4 xyyy() const;
+ Vector4 yyyy() const;
+ Vector4 zyyy() const;
+ Vector4 wyyy() const;
+ Vector4 xzyy() const;
+ Vector4 yzyy() const;
+ Vector4 zzyy() const;
+ Vector4 wzyy() const;
+ Vector4 xwyy() const;
+ Vector4 ywyy() const;
+ Vector4 zwyy() const;
+ Vector4 wwyy() const;
+ Vector4 xxzy() const;
+ Vector4 yxzy() const;
+ Vector4 zxzy() const;
+ Vector4 wxzy() const;
+ Vector4 xyzy() const;
+ Vector4 yyzy() const;
+ Vector4 zyzy() const;
+ Vector4 wyzy() const;
+ Vector4 xzzy() const;
+ Vector4 yzzy() const;
+ Vector4 zzzy() const;
+ Vector4 wzzy() const;
+ Vector4 xwzy() const;
+ Vector4 ywzy() const;
+ Vector4 zwzy() const;
+ Vector4 wwzy() const;
+ Vector4 xxwy() const;
+ Vector4 yxwy() const;
+ Vector4 zxwy() const;
+ Vector4 wxwy() const;
+ Vector4 xywy() const;
+ Vector4 yywy() const;
+ Vector4 zywy() const;
+ Vector4 wywy() const;
+ Vector4 xzwy() const;
+ Vector4 yzwy() const;
+ Vector4 zzwy() const;
+ Vector4 wzwy() const;
+ Vector4 xwwy() const;
+ Vector4 ywwy() const;
+ Vector4 zwwy() const;
+ Vector4 wwwy() const;
+ Vector4 xxxz() const;
+ Vector4 yxxz() const;
+ Vector4 zxxz() const;
+ Vector4 wxxz() const;
+ Vector4 xyxz() const;
+ Vector4 yyxz() const;
+ Vector4 zyxz() const;
+ Vector4 wyxz() const;
+ Vector4 xzxz() const;
+ Vector4 yzxz() const;
+ Vector4 zzxz() const;
+ Vector4 wzxz() const;
+ Vector4 xwxz() const;
+ Vector4 ywxz() const;
+ Vector4 zwxz() const;
+ Vector4 wwxz() const;
+ Vector4 xxyz() const;
+ Vector4 yxyz() const;
+ Vector4 zxyz() const;
+ Vector4 wxyz() const;
+ Vector4 xyyz() const;
+ Vector4 yyyz() const;
+ Vector4 zyyz() const;
+ Vector4 wyyz() const;
+ Vector4 xzyz() const;
+ Vector4 yzyz() const;
+ Vector4 zzyz() const;
+ Vector4 wzyz() const;
+ Vector4 xwyz() const;
+ Vector4 ywyz() const;
+ Vector4 zwyz() const;
+ Vector4 wwyz() const;
+ Vector4 xxzz() const;
+ Vector4 yxzz() const;
+ Vector4 zxzz() const;
+ Vector4 wxzz() const;
+ Vector4 xyzz() const;
+ Vector4 yyzz() const;
+ Vector4 zyzz() const;
+ Vector4 wyzz() const;
+ Vector4 xzzz() const;
+ Vector4 yzzz() const;
+ Vector4 zzzz() const;
+ Vector4 wzzz() const;
+ Vector4 xwzz() const;
+ Vector4 ywzz() const;
+ Vector4 zwzz() const;
+ Vector4 wwzz() const;
+ Vector4 xxwz() const;
+ Vector4 yxwz() const;
+ Vector4 zxwz() const;
+ Vector4 wxwz() const;
+ Vector4 xywz() const;
+ Vector4 yywz() const;
+ Vector4 zywz() const;
+ Vector4 wywz() const;
+ Vector4 xzwz() const;
+ Vector4 yzwz() const;
+ Vector4 zzwz() const;
+ Vector4 wzwz() const;
+ Vector4 xwwz() const;
+ Vector4 ywwz() const;
+ Vector4 zwwz() const;
+ Vector4 wwwz() const;
+ Vector4 xxxw() const;
+ Vector4 yxxw() const;
+ Vector4 zxxw() const;
+ Vector4 wxxw() const;
+ Vector4 xyxw() const;
+ Vector4 yyxw() const;
+ Vector4 zyxw() const;
+ Vector4 wyxw() const;
+ Vector4 xzxw() const;
+ Vector4 yzxw() const;
+ Vector4 zzxw() const;
+ Vector4 wzxw() const;
+ Vector4 xwxw() const;
+ Vector4 ywxw() const;
+ Vector4 zwxw() const;
+ Vector4 wwxw() const;
+ Vector4 xxyw() const;
+ Vector4 yxyw() const;
+ Vector4 zxyw() const;
+ Vector4 wxyw() const;
+ Vector4 xyyw() const;
+ Vector4 yyyw() const;
+ Vector4 zyyw() const;
+ Vector4 wyyw() const;
+ Vector4 xzyw() const;
+ Vector4 yzyw() const;
+ Vector4 zzyw() const;
+ Vector4 wzyw() const;
+ Vector4 xwyw() const;
+ Vector4 ywyw() const;
+ Vector4 zwyw() const;
+ Vector4 wwyw() const;
+ Vector4 xxzw() const;
+ Vector4 yxzw() const;
+ Vector4 zxzw() const;
+ Vector4 wxzw() const;
+ Vector4 xyzw() const;
+ Vector4 yyzw() const;
+ Vector4 zyzw() const;
+ Vector4 wyzw() const;
+ Vector4 xzzw() const;
+ Vector4 yzzw() const;
+ Vector4 zzzw() const;
+ Vector4 wzzw() const;
+ Vector4 xwzw() const;
+ Vector4 ywzw() const;
+ Vector4 zwzw() const;
+ Vector4 wwzw() const;
+ Vector4 xxww() const;
+ Vector4 yxww() const;
+ Vector4 zxww() const;
+ Vector4 wxww() const;
+ Vector4 xyww() const;
+ Vector4 yyww() const;
+ Vector4 zyww() const;
+ Vector4 wyww() const;
+ Vector4 xzww() const;
+ Vector4 yzww() const;
+ Vector4 zzww() const;
+ Vector4 wzww() const;
+ Vector4 xwww() const;
+ Vector4 ywww() const;
+ Vector4 zwww() const;
+ Vector4 wwww() const;
+};
+
+inline Quat exp(const Quat& q) {
+ return q.exp();
+}
+
+inline Quat log(const Quat& q) {
+ return q.log();
+}
+
+inline G3D::Quat operator*(double s, const G3D::Quat& q) {
+ return q * (float)s;
+}
+
+inline G3D::Quat operator*(float s, const G3D::Quat& q) {
+ return q * s;
+}
+
+} // Namespace G3D
+
+// Outside the namespace to avoid overloading confusion for C++
+inline G3D::Quat pow(const G3D::Quat& q, double x) {
+ return q.pow((float)x);
+}
+
+
+
+#include "Quat.inl"
+
+#endif