aboutsummaryrefslogtreecommitdiff
path: root/dep/include/g3dlite/G3D/Quat.h
diff options
context:
space:
mode:
Diffstat (limited to 'dep/include/g3dlite/G3D/Quat.h')
-rw-r--r--dep/include/g3dlite/G3D/Quat.h725
1 files changed, 0 insertions, 725 deletions
diff --git a/dep/include/g3dlite/G3D/Quat.h b/dep/include/g3dlite/G3D/Quat.h
deleted file mode 100644
index 9ef3d57b301..00000000000
--- a/dep/include/g3dlite/G3D/Quat.h
+++ /dev/null
@@ -1,725 +0,0 @@
-/**
- @file Quat.h
-
- Quaternion
-
- @maintainer Morgan McGuire, http://graphics.cs.williams.edu
-
- @created 2002-01-23
- @edited 2009-05-10
- */
-
-#ifndef G3D_Quat_h
-#define G3D_Quat_h
-
-#include "G3D/platform.h"
-#include "G3D/g3dmath.h"
-#include "G3D/Vector3.h"
-#include "G3D/Matrix3.h"
-#include <string>
-
-namespace G3D {
-
-/**
- Unit quaternions are used in computer graphics to represent
- rotation about an axis. Any 3x3 rotation matrix can
- be stored as a quaternion.
-
- A quaternion represents the sum of a real scalar and
- an imaginary vector: ix + jy + kz + w. A unit quaternion
- representing a rotation by A about axis v has the form
- [sin(A/2)*v, cos(A/2)]. For a unit quaternion, q.conj() == q.inverse()
- is a rotation by -A about v. -q is the same rotation as q
- (negate both the axis and angle).
-
- A non-unit quaterion q represents the same rotation as
- q.unitize() (Dam98 pg 28).
-
- Although quaternion-vector operations (eg. Quat + Vector3) are
- well defined, they are not supported by this class because
- they typically are bugs when they appear in code.
-
- Do not subclass.
-
- <B>BETA API -- subject to change</B>
- @cite Erik B. Dam, Martin Koch, Martin Lillholm, Quaternions, Interpolation and Animation. Technical Report DIKU-TR-98/5, Department of Computer Science, University of Copenhagen, Denmark. 1998.
- */
-class Quat {
-private:
- // Hidden operators
- bool operator<(const Quat&) const;
- bool operator>(const Quat&) const;
- bool operator<=(const Quat&) const;
- bool operator>=(const Quat&) const;
-
-public:
-
- /**
- q = [sin(angle / 2) * axis, cos(angle / 2)]
-
- In Watt & Watt's notation, s = w, v = (x, y, z)
- In the Real-Time Rendering notation, u = (x, y, z), w = w
- */
- float x, y, z, w;
-
- /**
- Initializes to a zero degree rotation.
- */
- inline Quat() : x(0), y(0), z(0), w(1) {}
-
- Quat(
- const Matrix3& rot);
-
- inline Quat(float _x, float _y, float _z, float _w) :
- x(_x), y(_y), z(_z), w(_w) {}
-
- /** Defaults to a pure vector quaternion */
- inline Quat(const Vector3& v, float _w = 0) : x(v.x), y(v.y), z(v.z), w(_w) {
- }
-
- /**
- The real part of the quaternion.
- */
- inline const float& real() const {
- return w;
- }
-
- inline float& real() {
- return w;
- }
-
- /** Note: two quats can represent the Quat::sameRotation and not be equal. */
- bool fuzzyEq(const Quat& q) {
- return G3D::fuzzyEq(x, q.x) && G3D::fuzzyEq(y, q.y) && G3D::fuzzyEq(z, q.z) && G3D::fuzzyEq(w, q.w);
- }
-
- /** True if these quaternions represent the same rotation (note that every rotation is
- represented by two values; q and -q).
- */
- bool sameRotation(const Quat& q) {
- return fuzzyEq(q) || fuzzyEq(-q);
- }
-
- inline Quat operator-() const {
- return Quat(-x, -y, -z, -w);
- }
-
- /**
- Returns the imaginary part (x, y, z)
- */
- inline const Vector3& imag() const {
- return *(reinterpret_cast<const Vector3*>(this));
- }
-
- inline Vector3& imag() {
- return *(reinterpret_cast<Vector3*>(this));
- }
-
- /** q = [sin(angle/2)*axis, cos(angle/2)] */
- static Quat fromAxisAngleRotation(
- const Vector3& axis,
- float angle);
-
- /** Returns the axis and angle of rotation represented
- by this quaternion (i.e. q = [sin(angle/2)*axis, cos(angle/2)]) */
- void toAxisAngleRotation(
- Vector3& axis,
- double& angle) const;
-
- void toAxisAngleRotation(
- Vector3& axis,
- float& angle) const {
- double d;
- toAxisAngleRotation(axis, d);
- angle = (float)d;
- }
-
- Matrix3 toRotationMatrix() const;
-
- void toRotationMatrix(
- Matrix3& rot) const;
-
- /**
- Spherical linear interpolation: linear interpolation along the
- shortest (3D) great-circle route between two quaternions.
-
- Note: Correct rotations are expected between 0 and PI in the right order.
-
- @cite Based on Game Physics -- David Eberly pg 538-540
- @param threshold Critical angle between between rotations at which
- the algorithm switches to normalized lerp, which is more
- numerically stable in those situations. 0.0 will always slerp.
- */
- Quat slerp(
- const Quat& other,
- float alpha,
- float threshold = 0.05f) const;
-
- /** Normalized linear interpolation of quaternion components. */
- Quat nlerp(const Quat& other, float alpha) const;
-
- /**
- Negates the imaginary part.
- */
- inline Quat conj() const {
- return Quat(-x, -y, -z, w);
- }
-
- inline float sum() const {
- return x + y + z + w;
- }
-
- inline float average() const {
- return sum() / 4.0f;
- }
-
- inline Quat operator*(float s) const {
- return Quat(x * s, y * s, z * s, w * s);
- }
-
- inline Quat& operator*=(float s) {
- x *= s;
- y *= s;
- z *= s;
- w *= s;
- return *this;
- }
-
- /** @cite Based on Watt & Watt, page 360 */
- friend Quat operator* (float s, const Quat& q);
-
- inline Quat operator/(float s) const {
- return Quat(x / s, y / s, z / s, w / s);
- }
-
- inline float dot(const Quat& other) const {
- return (x * other.x) + (y * other.y) + (z * other.z) + (w * other.w);
- }
-
- /** Note that q<SUP>-1</SUP> = q.conj() for a unit quaternion.
- @cite Dam99 page 13 */
- inline Quat inverse() const {
- return conj() / dot(*this);
- }
-
- Quat operator-(const Quat& other) const;
-
- Quat operator+(const Quat& other) const;
-
- /**
- Quaternion multiplication (composition of rotations).
- Note that this does not commute.
- */
- Quat operator*(const Quat& other) const;
-
- /* (*this) * other.inverse() */
- Quat operator/(const Quat& other) const {
- return (*this) * other.inverse();
- }
-
-
- /** Is the magnitude nearly 1.0? */
- inline bool isUnit(float tolerance = 1e-5) const {
- return abs(dot(*this) - 1.0f) < tolerance;
- }
-
-
- inline float magnitude() const {
- return sqrtf(dot(*this));
- }
-
- inline Quat log() const {
- if ((x == 0) && (y == 0) && (z == 0)) {
- if (w > 0) {
- return Quat(0, 0, 0, ::logf(w));
- } else if (w < 0) {
- // Log of a negative number. Multivalued, any number of the form
- // (PI * v, ln(-q.w))
- return Quat((float)pi(), 0, 0, ::logf(-w));
- } else {
- // log of zero!
- return Quat((float)nan(), (float)nan(), (float)nan(), (float)nan());
- }
- } else {
- // Partly imaginary.
- float imagLen = sqrtf(x * x + y * y + z * z);
- float len = sqrtf(imagLen * imagLen + w * w);
- float theta = atan2f(imagLen, (float)w);
- float t = theta / imagLen;
- return Quat(t * x, t * y, t * z, ::logf(len));
- }
- }
- /** log q = [Av, 0] where q = [sin(A) * v, cos(A)].
- Only for unit quaternions
- debugAssertM(isUnit(), "Log only defined for unit quaternions");
- // Solve for A in q = [sin(A)*v, cos(A)]
- Vector3 u(x, y, z);
- double len = u.magnitude();
-
- if (len == 0.0) {
- return
- }
- double A = atan2((double)w, len);
- Vector3 v = u / len;
-
- return Quat(v * A, 0);
- }
- */
-
- /** exp q = [sin(A) * v, cos(A)] where q = [Av, 0].
- Only defined for pure-vector quaternions */
- inline Quat exp() const {
- debugAssertM(w == 0, "exp only defined for vector quaternions");
- Vector3 u(x, y, z);
- float A = u.magnitude();
- Vector3 v = u / A;
- return Quat(sinf(A) * v, cosf(A));
- }
-
-
- /**
- Raise this quaternion to a power. For a rotation, this is
- the effect of rotating x times as much as the original
- quaterion.
-
- Note that q.pow(a).pow(b) == q.pow(a + b)
- @cite Dam98 pg 21
- */
- inline Quat pow(float x) const {
- return (log() * x).exp();
- }
-
- inline void unitize() {
- float mag2 = dot(*this);
- if (! G3D::fuzzyEq(mag2, 1.0f)) {
- *this *= rsq(mag2);
- }
- }
-
- /**
- Returns a unit quaterion obtained by dividing through by
- the magnitude.
- */
- inline Quat toUnit() const {
- Quat x = *this;
- x.unitize();
- return x;
- }
-
- /**
- The linear algebra 2-norm, sqrt(q dot q). This matches
- the value used in Dam's 1998 tech report but differs from the
- n(q) value used in Eberly's 1999 paper, which is the square of the
- norm.
- */
- inline float norm() const {
- return magnitude();
- }
-
- // access quaternion as q[0] = q.x, q[1] = q.y, q[2] = q.z, q[3] = q.w
- //
- // WARNING. These member functions rely on
- // (1) Quat not having virtual functions
- // (2) the data packed in a 4*sizeof(float) memory block
- const float& operator[] (int i) const;
- float& operator[] (int i);
-
- /** Generate uniform random unit quaternion (i.e. random "direction")
- @cite From "Uniform Random Rotations", Ken Shoemake, Graphics Gems III.
- */
- static Quat unitRandom();
-
- void deserialize(class BinaryInput& b);
- void serialize(class BinaryOutput& b) const;
-
- // 2-char swizzles
-
- Vector2 xx() const;
- Vector2 yx() const;
- Vector2 zx() const;
- Vector2 wx() const;
- Vector2 xy() const;
- Vector2 yy() const;
- Vector2 zy() const;
- Vector2 wy() const;
- Vector2 xz() const;
- Vector2 yz() const;
- Vector2 zz() const;
- Vector2 wz() const;
- Vector2 xw() const;
- Vector2 yw() const;
- Vector2 zw() const;
- Vector2 ww() const;
-
- // 3-char swizzles
-
- Vector3 xxx() const;
- Vector3 yxx() const;
- Vector3 zxx() const;
- Vector3 wxx() const;
- Vector3 xyx() const;
- Vector3 yyx() const;
- Vector3 zyx() const;
- Vector3 wyx() const;
- Vector3 xzx() const;
- Vector3 yzx() const;
- Vector3 zzx() const;
- Vector3 wzx() const;
- Vector3 xwx() const;
- Vector3 ywx() const;
- Vector3 zwx() const;
- Vector3 wwx() const;
- Vector3 xxy() const;
- Vector3 yxy() const;
- Vector3 zxy() const;
- Vector3 wxy() const;
- Vector3 xyy() const;
- Vector3 yyy() const;
- Vector3 zyy() const;
- Vector3 wyy() const;
- Vector3 xzy() const;
- Vector3 yzy() const;
- Vector3 zzy() const;
- Vector3 wzy() const;
- Vector3 xwy() const;
- Vector3 ywy() const;
- Vector3 zwy() const;
- Vector3 wwy() const;
- Vector3 xxz() const;
- Vector3 yxz() const;
- Vector3 zxz() const;
- Vector3 wxz() const;
- Vector3 xyz() const;
- Vector3 yyz() const;
- Vector3 zyz() const;
- Vector3 wyz() const;
- Vector3 xzz() const;
- Vector3 yzz() const;
- Vector3 zzz() const;
- Vector3 wzz() const;
- Vector3 xwz() const;
- Vector3 ywz() const;
- Vector3 zwz() const;
- Vector3 wwz() const;
- Vector3 xxw() const;
- Vector3 yxw() const;
- Vector3 zxw() const;
- Vector3 wxw() const;
- Vector3 xyw() const;
- Vector3 yyw() const;
- Vector3 zyw() const;
- Vector3 wyw() const;
- Vector3 xzw() const;
- Vector3 yzw() const;
- Vector3 zzw() const;
- Vector3 wzw() const;
- Vector3 xww() const;
- Vector3 yww() const;
- Vector3 zww() const;
- Vector3 www() const;
-
- // 4-char swizzles
-
- Vector4 xxxx() const;
- Vector4 yxxx() const;
- Vector4 zxxx() const;
- Vector4 wxxx() const;
- Vector4 xyxx() const;
- Vector4 yyxx() const;
- Vector4 zyxx() const;
- Vector4 wyxx() const;
- Vector4 xzxx() const;
- Vector4 yzxx() const;
- Vector4 zzxx() const;
- Vector4 wzxx() const;
- Vector4 xwxx() const;
- Vector4 ywxx() const;
- Vector4 zwxx() const;
- Vector4 wwxx() const;
- Vector4 xxyx() const;
- Vector4 yxyx() const;
- Vector4 zxyx() const;
- Vector4 wxyx() const;
- Vector4 xyyx() const;
- Vector4 yyyx() const;
- Vector4 zyyx() const;
- Vector4 wyyx() const;
- Vector4 xzyx() const;
- Vector4 yzyx() const;
- Vector4 zzyx() const;
- Vector4 wzyx() const;
- Vector4 xwyx() const;
- Vector4 ywyx() const;
- Vector4 zwyx() const;
- Vector4 wwyx() const;
- Vector4 xxzx() const;
- Vector4 yxzx() const;
- Vector4 zxzx() const;
- Vector4 wxzx() const;
- Vector4 xyzx() const;
- Vector4 yyzx() const;
- Vector4 zyzx() const;
- Vector4 wyzx() const;
- Vector4 xzzx() const;
- Vector4 yzzx() const;
- Vector4 zzzx() const;
- Vector4 wzzx() const;
- Vector4 xwzx() const;
- Vector4 ywzx() const;
- Vector4 zwzx() const;
- Vector4 wwzx() const;
- Vector4 xxwx() const;
- Vector4 yxwx() const;
- Vector4 zxwx() const;
- Vector4 wxwx() const;
- Vector4 xywx() const;
- Vector4 yywx() const;
- Vector4 zywx() const;
- Vector4 wywx() const;
- Vector4 xzwx() const;
- Vector4 yzwx() const;
- Vector4 zzwx() const;
- Vector4 wzwx() const;
- Vector4 xwwx() const;
- Vector4 ywwx() const;
- Vector4 zwwx() const;
- Vector4 wwwx() const;
- Vector4 xxxy() const;
- Vector4 yxxy() const;
- Vector4 zxxy() const;
- Vector4 wxxy() const;
- Vector4 xyxy() const;
- Vector4 yyxy() const;
- Vector4 zyxy() const;
- Vector4 wyxy() const;
- Vector4 xzxy() const;
- Vector4 yzxy() const;
- Vector4 zzxy() const;
- Vector4 wzxy() const;
- Vector4 xwxy() const;
- Vector4 ywxy() const;
- Vector4 zwxy() const;
- Vector4 wwxy() const;
- Vector4 xxyy() const;
- Vector4 yxyy() const;
- Vector4 zxyy() const;
- Vector4 wxyy() const;
- Vector4 xyyy() const;
- Vector4 yyyy() const;
- Vector4 zyyy() const;
- Vector4 wyyy() const;
- Vector4 xzyy() const;
- Vector4 yzyy() const;
- Vector4 zzyy() const;
- Vector4 wzyy() const;
- Vector4 xwyy() const;
- Vector4 ywyy() const;
- Vector4 zwyy() const;
- Vector4 wwyy() const;
- Vector4 xxzy() const;
- Vector4 yxzy() const;
- Vector4 zxzy() const;
- Vector4 wxzy() const;
- Vector4 xyzy() const;
- Vector4 yyzy() const;
- Vector4 zyzy() const;
- Vector4 wyzy() const;
- Vector4 xzzy() const;
- Vector4 yzzy() const;
- Vector4 zzzy() const;
- Vector4 wzzy() const;
- Vector4 xwzy() const;
- Vector4 ywzy() const;
- Vector4 zwzy() const;
- Vector4 wwzy() const;
- Vector4 xxwy() const;
- Vector4 yxwy() const;
- Vector4 zxwy() const;
- Vector4 wxwy() const;
- Vector4 xywy() const;
- Vector4 yywy() const;
- Vector4 zywy() const;
- Vector4 wywy() const;
- Vector4 xzwy() const;
- Vector4 yzwy() const;
- Vector4 zzwy() const;
- Vector4 wzwy() const;
- Vector4 xwwy() const;
- Vector4 ywwy() const;
- Vector4 zwwy() const;
- Vector4 wwwy() const;
- Vector4 xxxz() const;
- Vector4 yxxz() const;
- Vector4 zxxz() const;
- Vector4 wxxz() const;
- Vector4 xyxz() const;
- Vector4 yyxz() const;
- Vector4 zyxz() const;
- Vector4 wyxz() const;
- Vector4 xzxz() const;
- Vector4 yzxz() const;
- Vector4 zzxz() const;
- Vector4 wzxz() const;
- Vector4 xwxz() const;
- Vector4 ywxz() const;
- Vector4 zwxz() const;
- Vector4 wwxz() const;
- Vector4 xxyz() const;
- Vector4 yxyz() const;
- Vector4 zxyz() const;
- Vector4 wxyz() const;
- Vector4 xyyz() const;
- Vector4 yyyz() const;
- Vector4 zyyz() const;
- Vector4 wyyz() const;
- Vector4 xzyz() const;
- Vector4 yzyz() const;
- Vector4 zzyz() const;
- Vector4 wzyz() const;
- Vector4 xwyz() const;
- Vector4 ywyz() const;
- Vector4 zwyz() const;
- Vector4 wwyz() const;
- Vector4 xxzz() const;
- Vector4 yxzz() const;
- Vector4 zxzz() const;
- Vector4 wxzz() const;
- Vector4 xyzz() const;
- Vector4 yyzz() const;
- Vector4 zyzz() const;
- Vector4 wyzz() const;
- Vector4 xzzz() const;
- Vector4 yzzz() const;
- Vector4 zzzz() const;
- Vector4 wzzz() const;
- Vector4 xwzz() const;
- Vector4 ywzz() const;
- Vector4 zwzz() const;
- Vector4 wwzz() const;
- Vector4 xxwz() const;
- Vector4 yxwz() const;
- Vector4 zxwz() const;
- Vector4 wxwz() const;
- Vector4 xywz() const;
- Vector4 yywz() const;
- Vector4 zywz() const;
- Vector4 wywz() const;
- Vector4 xzwz() const;
- Vector4 yzwz() const;
- Vector4 zzwz() const;
- Vector4 wzwz() const;
- Vector4 xwwz() const;
- Vector4 ywwz() const;
- Vector4 zwwz() const;
- Vector4 wwwz() const;
- Vector4 xxxw() const;
- Vector4 yxxw() const;
- Vector4 zxxw() const;
- Vector4 wxxw() const;
- Vector4 xyxw() const;
- Vector4 yyxw() const;
- Vector4 zyxw() const;
- Vector4 wyxw() const;
- Vector4 xzxw() const;
- Vector4 yzxw() const;
- Vector4 zzxw() const;
- Vector4 wzxw() const;
- Vector4 xwxw() const;
- Vector4 ywxw() const;
- Vector4 zwxw() const;
- Vector4 wwxw() const;
- Vector4 xxyw() const;
- Vector4 yxyw() const;
- Vector4 zxyw() const;
- Vector4 wxyw() const;
- Vector4 xyyw() const;
- Vector4 yyyw() const;
- Vector4 zyyw() const;
- Vector4 wyyw() const;
- Vector4 xzyw() const;
- Vector4 yzyw() const;
- Vector4 zzyw() const;
- Vector4 wzyw() const;
- Vector4 xwyw() const;
- Vector4 ywyw() const;
- Vector4 zwyw() const;
- Vector4 wwyw() const;
- Vector4 xxzw() const;
- Vector4 yxzw() const;
- Vector4 zxzw() const;
- Vector4 wxzw() const;
- Vector4 xyzw() const;
- Vector4 yyzw() const;
- Vector4 zyzw() const;
- Vector4 wyzw() const;
- Vector4 xzzw() const;
- Vector4 yzzw() const;
- Vector4 zzzw() const;
- Vector4 wzzw() const;
- Vector4 xwzw() const;
- Vector4 ywzw() const;
- Vector4 zwzw() const;
- Vector4 wwzw() const;
- Vector4 xxww() const;
- Vector4 yxww() const;
- Vector4 zxww() const;
- Vector4 wxww() const;
- Vector4 xyww() const;
- Vector4 yyww() const;
- Vector4 zyww() const;
- Vector4 wyww() const;
- Vector4 xzww() const;
- Vector4 yzww() const;
- Vector4 zzww() const;
- Vector4 wzww() const;
- Vector4 xwww() const;
- Vector4 ywww() const;
- Vector4 zwww() const;
- Vector4 wwww() const;
-};
-
-inline Quat exp(const Quat& q) {
- return q.exp();
-}
-
-inline Quat log(const Quat& q) {
- return q.log();
-}
-
-inline G3D::Quat operator*(double s, const G3D::Quat& q) {
- return q * (float)s;
-}
-
-inline G3D::Quat operator*(float s, const G3D::Quat& q) {
- return q * s;
-}
-
-inline float& Quat::operator[] (int i) {
- debugAssert(i >= 0);
- debugAssert(i < 4);
- return ((float*)this)[i];
-}
-
-inline const float& Quat::operator[] (int i) const {
- debugAssert(i >= 0);
- debugAssert(i < 4);
- return ((float*)this)[i];
-}
-
-inline Quat Quat::operator-(const Quat& other) const {
- return Quat(x - other.x, y - other.y, z - other.z, w - other.w);
-}
-
-inline Quat Quat::operator+(const Quat& other) const {
- return Quat(x + other.x, y + other.y, z + other.z, w + other.w);
-}
-
-} // Namespace G3D
-
-// Outside the namespace to avoid overloading confusion for C++
-inline G3D::Quat pow(const G3D::Quat& q, double x) {
- return q.pow((float)x);
-}
-
-
-#endif