aboutsummaryrefslogtreecommitdiff
path: root/dep/include/g3dlite/G3D/Quat.h
diff options
context:
space:
mode:
Diffstat (limited to 'dep/include/g3dlite/G3D/Quat.h')
-rw-r--r--dep/include/g3dlite/G3D/Quat.h75
1 files changed, 75 insertions, 0 deletions
diff --git a/dep/include/g3dlite/G3D/Quat.h b/dep/include/g3dlite/G3D/Quat.h
index 2c7fe68353e..f53d70be909 100644
--- a/dep/include/g3dlite/G3D/Quat.h
+++ b/dep/include/g3dlite/G3D/Quat.h
@@ -1,34 +1,46 @@
/**
@file Quat.h
+
Quaternion
+
@maintainer Morgan McGuire, matrix@graphics3d.com
+
@created 2002-01-23
@edited 2006-05-10
*/
+
#ifndef G3D_QUAT_H
#define G3D_QUAT_H
+
#include "G3D/platform.h"
#include "G3D/g3dmath.h"
#include "G3D/Vector3.h"
#include "G3D/Matrix3.h"
#include <string>
+
namespace G3D {
+
/**
Unit quaternions are used in computer graphics to represent
rotation about an axis. Any 3x3 rotation matrix can
be stored as a quaternion.
+
A quaternion represents the sum of a real scalar and
an imaginary vector: ix + jy + kz + w. A unit quaternion
representing a rotation by A about axis v has the form
[sin(A/2)*v, cos(A/2)]. For a unit quaternion, q.conj() == q.inverse()
is a rotation by -A about v. -q is the same rotation as q
(negate both the axis and angle).
+
A non-unit quaterion q represents the same rotation as
q.unitize() (Dam98 pg 28).
+
Although quaternion-vector operations (eg. Quat + Vector3) are
well defined, they are not supported by this class because
they typically are bugs when they appear in code.
+
Do not subclass.
+
<B>BETA API -- subject to change</B>
@cite Erik B. Dam, Martin Koch, Martin Lillholm, Quaternions, Interpolation and Animation. Technical Report DIKU-TR-98/5, Department of Computer Science, University of Copenhagen, Denmark. 1998.
*/
@@ -39,64 +51,81 @@ private:
bool operator>(const Quat&) const;
bool operator<=(const Quat&) const;
bool operator>=(const Quat&) const;
+
public:
+
/**
q = [sin(angle / 2) * axis, cos(angle / 2)]
+
In Watt & Watt's notation, s = w, v = (x, y, z)
In the Real-Time Rendering notation, u = (x, y, z), w = w
*/
float x, y, z, w;
+
/**
Initializes to a zero degree rotation.
*/
inline Quat() : x(0), y(0), z(0), w(1) {}
+
Quat(
const Matrix3& rot);
+
inline Quat(float _x, float _y, float _z, float _w) :
x(_x), y(_y), z(_z), w(_w) {}
+
/** Defaults to a pure vector quaternion */
inline Quat(const Vector3& v, float _w = 0) : x(v.x), y(v.y), z(v.z), w(_w) {
}
+
/**
The real part of the quaternion.
*/
inline const float& real() const {
return w;
}
+
inline float& real() {
return w;
}
+
/** Note: two quats can represent the Quat::sameRotation and not be equal. */
bool fuzzyEq(const Quat& q) {
return G3D::fuzzyEq(x, q.x) && G3D::fuzzyEq(y, q.y) && G3D::fuzzyEq(z, q.z) && G3D::fuzzyEq(w, q.w);
}
+
/** True if these quaternions represent the same rotation (note that every rotation is
represented by two values; q and -q).
*/
bool sameRotation(const Quat& q) {
return fuzzyEq(q) || fuzzyEq(-q);
}
+
inline Quat operator-() const {
return Quat(-x, -y, -z, -w);
}
+
/**
Returns the imaginary part (x, y, z)
*/
inline const Vector3& imag() const {
return *(reinterpret_cast<const Vector3*>(this));
}
+
inline Vector3& imag() {
return *(reinterpret_cast<Vector3*>(this));
}
+
/** q = [sin(angle/2)*axis, cos(angle/2)] */
static Quat fromAxisAngleRotation(
const Vector3& axis,
float angle);
+
/** Returns the axis and angle of rotation represented
by this quaternion (i.e. q = [sin(angle/2)*axis, cos(angle/2)]) */
void toAxisAngleRotation(
Vector3& axis,
double& angle) const;
+
void toAxisAngleRotation(
Vector3& axis,
float& angle) const {
@@ -104,13 +133,18 @@ public:
toAxisAngleRotation(axis, d);
angle = (float)d;
}
+
Matrix3 toRotationMatrix() const;
+
void toRotationMatrix(
Matrix3& rot) const;
+
/**
Spherical linear interpolation: linear interpolation along the
shortest (3D) great-circle route between two quaternions.
+
Note: Correct rotations are expected between 0 and PI in the right order.
+
@cite Based on Game Physics -- David Eberly pg 538-540
@param threshold Critical angle between between rotations at which
the algorithm switches to normalized lerp, which is more
@@ -120,56 +154,72 @@ public:
const Quat& other,
float alpha,
float threshold = 0.05f) const;
+
/** Normalized linear interpolation of quaternion components. */
Quat nlerp(const Quat& other, float alpha) const;
+
/**
Negates the imaginary part.
*/
inline Quat conj() const {
return Quat(-x, -y, -z, w);
}
+
inline float sum() const {
return x + y + z + w;
}
+
inline float average() const {
return sum() / 4.0f;
}
+
inline Quat operator*(float s) const {
return Quat(x * s, y * s, z * s, w * s);
}
+
/** @cite Based on Watt & Watt, page 360 */
friend Quat operator* (float s, const Quat& q);
+
inline Quat operator/(float s) const {
return Quat(x / s, y / s, z / s, w / s);
}
+
inline float dot(const Quat& other) const {
return (x * other.x) + (y * other.y) + (z * other.z) + (w * other.w);
}
+
/** Note that q<SUP>-1</SUP> = q.conj() for a unit quaternion.
@cite Dam99 page 13 */
inline Quat inverse() const {
return conj() / dot(*this);
}
+
Quat operator-(const Quat& other) const;
+
Quat operator+(const Quat& other) const;
+
/**
Quaternion multiplication (composition of rotations).
Note that this does not commute.
*/
Quat operator*(const Quat& other) const;
+
/* (*this) * other.inverse() */
Quat operator/(const Quat& other) const {
return (*this) * other.inverse();
}
+
/** Is the magnitude nearly 1.0? */
inline bool isUnit(float tolerance = 1e-5) const {
return abs(dot(*this) - 1.0f) < tolerance;
}
+
inline float magnitude() const {
return sqrtf(dot(*this));
}
+
inline Quat log() const {
if ((x == 0) && (y == 0) && (z == 0)) {
if (w > 0) {
@@ -197,14 +247,17 @@ public:
// Solve for A in q = [sin(A)*v, cos(A)]
Vector3 u(x, y, z);
double len = u.magnitude();
+
if (len == 0.0) {
return
}
double A = atan2((double)w, len);
Vector3 v = u / len;
+
return Quat(v * A, 0);
}
*/
+
/** exp q = [sin(A) * v, cos(A)] where q = [Av, 0].
Only defined for pure-vector quaternions */
inline Quat exp() const {
@@ -215,10 +268,12 @@ public:
return Quat(sinf(A) * v, cosf(A));
}
+
/**
Raise this quaternion to a power. For a rotation, this is
the effect of rotating x times as much as the original
quaterion.
+
Note that q.pow(a).pow(b) == q.pow(a + b)
@cite Dam98 pg 21
*/
@@ -226,6 +281,7 @@ public:
return (log() * x).exp();
}
+
/**
@deprecated
Use toUnit()
@@ -238,6 +294,7 @@ public:
return *this / sqrtf(mag2);
}
}
+
/**
Returns a unit quaterion obtained by dividing through by
the magnitude.
@@ -245,6 +302,7 @@ public:
inline Quat toUnit() const {
return unitize();
}
+
/**
The linear algebra 2-norm, sqrt(q dot q). This matches
the value used in Dam's 1998 tech report but differs from the
@@ -254,6 +312,7 @@ public:
inline float norm() const {
return magnitude();
}
+
// access quaternion as q[0] = q.x, q[1] = q.y, q[2] = q.z, q[3] = q.w
//
// WARNING. These member functions rely on
@@ -261,11 +320,14 @@ public:
// (2) the data packed in a 4*sizeof(float) memory block
const float& operator[] (int i) const;
float& operator[] (int i);
+
/** Generate uniform random unit quaternion (i.e. random "direction")
@cite From "Uniform Random Rotations", Ken Shoemake, Graphics Gems III.
*/
static Quat unitRandom();
+
// 2-char swizzles
+
Vector2 xx() const;
Vector2 yx() const;
Vector2 zx() const;
@@ -282,7 +344,9 @@ public:
Vector2 yw() const;
Vector2 zw() const;
Vector2 ww() const;
+
// 3-char swizzles
+
Vector3 xxx() const;
Vector3 yxx() const;
Vector3 zxx() const;
@@ -347,7 +411,9 @@ public:
Vector3 yww() const;
Vector3 zww() const;
Vector3 www() const;
+
// 4-char swizzles
+
Vector4 xxxx() const;
Vector4 yxxx() const;
Vector4 zxxx() const;
@@ -605,24 +671,33 @@ public:
Vector4 zwww() const;
Vector4 wwww() const;
};
+
inline Quat exp(const Quat& q) {
return q.exp();
}
+
inline Quat log(const Quat& q) {
return q.log();
}
+
inline G3D::Quat operator*(double s, const G3D::Quat& q) {
return q * (float)s;
}
+
inline G3D::Quat operator*(float s, const G3D::Quat& q) {
return q * s;
}
+
} // Namespace G3D
+
// Outside the namespace to avoid overloading confusion for C++
inline G3D::Quat pow(const G3D::Quat& q, double x) {
return q.pow((float)x);
}
+
+
#include "Quat.inl"
+
#endif