diff options
Diffstat (limited to 'dep/include/g3dlite/G3D/g3dmath.h')
-rw-r--r-- | dep/include/g3dlite/G3D/g3dmath.h | 845 |
1 files changed, 0 insertions, 845 deletions
diff --git a/dep/include/g3dlite/G3D/g3dmath.h b/dep/include/g3dlite/G3D/g3dmath.h deleted file mode 100644 index d16214ebb37..00000000000 --- a/dep/include/g3dlite/G3D/g3dmath.h +++ /dev/null @@ -1,845 +0,0 @@ -/** - @file g3dmath.h - - Math util class. - - @maintainer Morgan McGuire, http://graphics.cs.williams.edu - @cite highestBit by Jukka Liimatta - - @created 2001-06-02 - @edited 2009-04-07 - - Copyright 2000-2006, Morgan McGuire. - All rights reserved. - */ - -#ifndef G3D_g3dmath_h -#define G3D_g3dmath_h - -#ifdef _MSC_VER -// Disable conditional expression is constant, which occurs incorrectly on inlined functions -# pragma warning (push) -# pragma warning (disable : 4127) -// disable: "C++ exception handler used" -# pragma warning (disable : 4530) -#endif - -#include "G3D/platform.h" -#include <ctype.h> -#include <float.h> -#include <limits> -#include <stdlib.h> - -#ifdef _MSC_VER - // Visual Studio is missing inttypes.h -# ifndef PRId64 -# define PRId64 "I64d" -# endif -#else -#include <inttypes.h> -#endif - -/*These defines enable functionality introduced with the 1999 ISO C -**standard. They must be defined before the inclusion of math.h to -**engage them. If optimisation is enabled, these functions will be -**inlined. With optimisation switched off, you have to link in the -**maths library using -lm. -*/ - -#define _ISOC9X_SOURCE1 -#define _ISOC99_SOURCE1 -#define __USE_ISOC9X1 -#define __USE_ISOC991 - -#include <math.h> - -#include "G3D/debug.h" - -#undef min -#undef max - -namespace G3D { - -#ifdef _MSC_VER -inline double __fastcall drand48() { - return ::rand() / double(RAND_MAX); -} - -#if !defined(_WIN64) - -/** - Win32 implementation of the C99 fast rounding routines. - - @cite routines are - Copyright (C) 2001 Erik de Castro Lopo <erikd AT mega-nerd DOT com> - - Permission to use, copy, modify, distribute, and sell this file for any - purpose is hereby granted without fee, provided that the above copyright - and this permission notice appear in all copies. No representations are - made about the suitability of this software for any purpose. It is - provided "as is" without express or implied warranty. -*/ - -__inline long int lrint (double flt) { - int intgr; - - _asm { - fld flt - fistp intgr - }; - - return intgr; -} - -__inline long int lrintf(float flt) { - int intgr; - - _asm { - fld flt - fistp intgr - }; - - return intgr; -} - -#else - - __inline long int lrint (double flt) { - return (long int)floor(flt+0.5f); - } - - __inline long int lrintf(float flt) { - return (long int)floorf(flt+0.5f); - } - -#endif - -#endif - - -#define fuzzyEpsilon (0.00001f) -/** - This value should not be tested against directly, instead - G3D::isNan() and G3D::isFinite() will return reliable results. */ -double inf(); - -/** This value should not be tested against directly, instead - G3D::isNan() and G3D::isFinite() will return reliable results. */ -double nan(); - -float finf(); - -float fnan(); - -inline double pi() { - return 3.1415926535898; -} - -inline double halfPi() { - return 1.57079633; -} - -inline double twoPi() { - return 6.28318531; -} - -typedef signed char int8; -typedef unsigned char uint8; -typedef short int16; -typedef unsigned short uint16; -typedef int int32; -typedef unsigned int uint32; - -#ifdef _MSC_EXTENSIONS - typedef __int64 int64; - typedef unsigned __int64 uint64; -#elif ! defined(_MSC_VER) - typedef int64_t int64; - typedef uint64_t uint64; -#else - typedef long long int64; - typedef unsigned long long uint64; -#endif - -typedef float float32; -typedef double float64; - -int iAbs(int iValue); -int iCeil(double fValue); - -/** - Clamps the value to the range [low, hi] (inclusive) - */ -int iClamp(int val, int low, int hi); -int16 iClamp(int16 val, int16 low, int16 hi); -double clamp(double val, double low, double hi); -float clamp(float val, float low, float hi); - -/** - Returns a + (b - a) * f; - */ -inline double lerp(double a, double b, double f) { - return a + (b - a) * f; -} - -inline float lerp(float a, float b, float f) { - return a + (b - a) * f; -} - -/** - Wraps the value to the range [0, hi) (exclusive - on the high end). This is like the clock arithmetic - produced by % (modulo) except the result is guaranteed - to be positive. - */ -int iWrap(int val, int hi); - -int iFloor(double fValue); - -int iSign(int iValue); -int iSign(double fValue); - -inline int iSign(float f) { - return iSign((double)f); -} - - -/** - Fast round to integer using the lrint routine. - Typically 6x faster than casting to integer. - */ -inline int iRound(double fValue) { - return lrint(fValue); -} - -/** - Fast round to integer using the lrint routine. - Typically 6x faster than casting to integer. - */ -inline int iRound(float f) { - return lrintf(f); -} - -/** - Returns a random number uniformly at random between low and hi - (inclusive). - @deprecated Use Random::integer - */ -int iRandom(int low, int hi); - -double abs (double fValue); -double aCos (double fValue); -double aSin (double fValue); -double aTan (double fValue); -double aTan2 (double fY, double fX); -double sign (double fValue); -double square (double fValue); - -/** - Returns true if the argument is a finite real number. - */ -bool isFinite(double x); - -/** - Returns true if the argument is NaN (not a number). - You can't use x == nan to test this because all - comparisons against nan return false. - */ -bool isNaN(double x); -bool isNaN(float x); -inline bool isNaN(int x) { - (void)x; - return false; -} - -/** - Computes x % 3. - */ -int iMod3(int x); - -/** - Uniform random number between low and hi, inclusive. [low, hi] - @deprecated - @sa Random::uniform - */ -float uniformRandom(float low = 0.0f, float hi = 1.0f); - -/** - Normally distributed random number. - - @deprecated - @sa Random::gaussian - */ -float gaussRandom(float mean = 0.0f, float stdev = 1.0f); - - -/** Returns x<sup>5</sup> */ -template <class T> -inline T pow5(T x) { - const T y = x * x; - return y * y * x; -} - - -template <class T> -inline T min(const T& x, const T& y) { - return std::min<T>(x, y); -} - -template <class T> -inline T min(const T& x, const T& y, const T& z) { - return std::min<T>(std::min<T>(x, y), z); -} - -template <class T> -inline T min(const T& x, const T& y, const T& z, const T& w) { - return std::min<T>(std::min<T>(x, y), std::min<T>(z, w)); -} - -template <class T> -inline T max(const T& x, const T& y) { - return std::max<T>(x, y); -} - -template <class T> -inline T max(const T& x, const T& y, const T& z) { - return std::max<T>(std::max<T>(x, y), z); -} - -template <class T> -inline T max(const T& x, const T& y, const T& z, const T& w) { - return std::max<T>(std::max<T>(x, y), std::max<T>(z, w)); -} - -int iMin(int x, int y); -int iMax(int x, int y); - -double square(double x); -double sumSquares(double x, double y); -double sumSquares(double x, double y, double z); -double distance(double x, double y); -double distance(double x, double y, double z); - -/** - Returnes the 0-based index of the highest 1 bit from - the left. -1 means the number was 0. - - @cite Based on code by jukka@liimatta.org - */ -int highestBit(uint32 x); - -/** - Note that fuzzyEq(a, b) && fuzzyEq(b, c) does not imply - fuzzyEq(a, c), although that will be the case on some - occasions. - */ -bool fuzzyEq(double a, double b); - -/** True if a is definitely not equal to b. - Guaranteed false if a == b. - Possibly false when a != b.*/ -bool fuzzyNe(double a, double b); - -/** Is a strictly greater than b? (Guaranteed false if a <= b). - (Possibly false if a > b) */ -bool fuzzyGt(double a, double b); - -/** Is a near or greater than b? */ -bool fuzzyGe(double a, double b); - -/** Is a strictly less than b? (Guaranteed false if a >= b)*/ -bool fuzzyLt(double a, double b); - -/** Is a near or less than b? */ -bool fuzzyLe(double a, double b); - -/** - Computes 1 / sqrt(x). - */ -inline float rsq(float x) { - return 1.0f / sqrtf(x); -} - -/** - Return the next power of 2 higher than the input - If the input is already a power of 2, the output will be the same - as the input. - */ -int ceilPow2(unsigned int in); - -/** Returns 2^x */ -inline int pow2(unsigned int x) { - return 1 << x; -} - -inline double log2(double x) { - return ::log(x) * 1.442695; -} - -inline float log2(float x) { - return ::logf(x) * 1.442695f; -} - -inline double log2(int x) { - return log2((double)x); -} - - -/** - * True if num is a power of two. - */ -bool isPow2(int num); - -bool isOdd(int num); -bool isEven(int num); - -double toRadians(double deg); -double toDegrees(double rad); - -/** - Returns true if x is not exactly equal to 0.0f. - */ -inline bool any(float x) { - return x != 0; -} - -/** - Returns true if x is not exactly equal to 0.0f. - */ -inline bool all(float x) { - return x != 0; -} - -/** - v / v (for DirectX/Cg support) - */ -inline float normalize(float v) { - return v / v; -} - -/** - a * b (for DirectX/Cg support) - */ -inline float dot(float a, float b) { - return a * b; -} - - -/** - a * b (for DirectX/Cg support) - */ -inline float mul(float a, float b) { - return a * b; -} - -/** - 2^x - */ -inline double exp2(double x) { - return pow(2.0, x); -} - -inline float exp2(float x) { - return powf(2.0f, x); -} - -/** @deprecated Use rsq */ -inline double rsqrt(double x) { - return 1.0 / sqrt(x); -} - -/** @deprecated Use rsq */ -inline float rsqrt(float x) { - // TODO: default this to using the SSE2 instruction - return 1.0 / sqrtf(x); -} - -/** - sin(x)/x - */ -inline double sinc(double x) { - double r = sin(x) / x; - - if (isNaN(r)) { - return 1.0; - } else { - return r; - } -} - -/** - Computes a floating point modulo; the result is t wrapped to the range [lo, hi). - */ -inline float wrap(float t, float lo, float hi) { - if ((t >= lo) && (t < hi)) { - return t; - } - - debugAssert(hi > lo); - - float interval = hi - lo; - - return t - interval * iFloor((t - lo) / interval); -} - - -inline double wrap(double t, double lo, double hi) { - if ((t >= lo) && (t < hi)) { - return t; - } - - debugAssert(hi > lo); - - double interval = hi - lo; - - return t - interval * iFloor((t - lo) / interval); -} - -inline double wrap(double t, double hi) { - return wrap(t, 0.0, hi); -} - - -inline bool isFinite(double x) { - return ! isNaN(x) && (x < G3D::inf()) && (x > -G3D::inf()); -} - -inline bool isFinite(float x) { - return ! isNaN(x) && (x < G3D::finf()) && (x > -G3D::finf()); -} - -//---------------------------------------------------------------------------- -inline int iAbs (int iValue) { - return ( iValue >= 0 ? iValue : -iValue ); -} - -//---------------------------------------------------------------------------- -inline int iCeil (double fValue) { - return int(::ceil(fValue)); -} - -//---------------------------------------------------------------------------- - -inline int iClamp(int val, int low, int hi) { - debugAssert(low <= hi); - if (val <= low) { - return low; - } else if (val >= hi) { - return hi; - } else { - return val; - } -} - -//---------------------------------------------------------------------------- - -inline int16 iClamp(int16 val, int16 low, int16 hi) { - debugAssert(low <= hi); - if (val <= low) { - return low; - } else if (val >= hi) { - return hi; - } else { - return val; - } -} - -//---------------------------------------------------------------------------- - -inline double clamp(double val, double low, double hi) { - debugAssert(low <= hi); - if (val <= low) { - return low; - } else if (val >= hi) { - return hi; - } else { - return val; - } -} - -inline float clamp(float val, float low, float hi) { - debugAssert(low <= hi); - if (val <= low) { - return low; - } else if (val >= hi) { - return hi; - } else { - return val; - } -} -//---------------------------------------------------------------------------- - -inline int iWrap(int val, int hi) { - if (val < 0) { - return ((val % hi) + hi) % hi; - } else { - return val % hi; - } -} - -//---------------------------------------------------------------------------- -inline int iFloor (double fValue) { - return int(::floor(fValue)); -} - -//---------------------------------------------------------------------------- -inline int iSign (int iValue) { - return ( iValue > 0 ? + 1 : ( iValue < 0 ? -1 : 0 ) ); -} - -inline int iSign (double fValue) { - return ( fValue > 0.0 ? + 1 : ( fValue < 0.0 ? -1 : 0 ) ); -} - -//---------------------------------------------------------------------------- -inline double abs (double fValue) { - return double(::fabs(fValue)); -} - -//---------------------------------------------------------------------------- -inline double aCos (double fValue) { - if ( -1.0 < fValue ) { - if ( fValue < 1.0 ) - return double(::acos(fValue)); - else - return 0.0; - } else { - return pi(); - } -} - -//---------------------------------------------------------------------------- -inline double aSin (double fValue) { - if ( -1.0 < fValue ) { - if ( fValue < 1.0 ) { - return double(::asin(fValue)); - } else { - return -halfPi(); - } - } else { - return halfPi(); - } -} - -//---------------------------------------------------------------------------- -inline double aTan (double fValue) { - return double(::atan(fValue)); -} - -//---------------------------------------------------------------------------- -inline double aTan2 (double fY, double fX) { - return double(::atan2(fY, fX)); -} - -//---------------------------------------------------------------------------- -inline double sign (double fValue) { - if (fValue > 0.0) { - return 1.0; - } - - if (fValue < 0.0) { - return -1.0; - } - - return 0.0; -} - -inline float sign (float fValue) { - if (fValue > 0.0f) { - return 1.0f; - } - - if (fValue < 0.0f) { - return -1.0f; - } - - return 0.0f; -} - - -inline float uniformRandom(float low, float hi) { - return (hi - low) * float(::rand()) / float(RAND_MAX) + low; -} - -inline double square(double x) { - return x * x; -} - -inline float square(float x) { - return x * x; -} - -inline int square(int x) { - return x * x; -} - -//---------------------------------------------------------------------------- -inline double sumSquares(double x, double y) { - return x*x + y*y; -} - -//---------------------------------------------------------------------------- -inline float sumSquares(float x, float y) { - return x*x + y*y; -} - -//---------------------------------------------------------------------------- -inline double sumSquares(double x, double y, double z) { - return x*x + y*y + z*z; -} - -//---------------------------------------------------------------------------- -inline float sumSquares(float x, float y, float z) { - return x*x + y*y + z*z; -} - -//---------------------------------------------------------------------------- -inline double distance(double x, double y) { - return sqrt(sumSquares(x, y)); -} - -//---------------------------------------------------------------------------- -inline float distance(float x, float y) { - return sqrt(sumSquares(x, y)); -} - -//---------------------------------------------------------------------------- -inline double distance(double x, double y, double z) { - return sqrt(sumSquares(x, y, z)); -} - -//---------------------------------------------------------------------------- -inline float distance(float x, float y, float z) { - return sqrt(sumSquares(x, y, z)); -} - -//---------------------------------------------------------------------------- - -/** @deprecated use G3D::min */ -inline int iMin(int x, int y) { - return (x >= y) ? y : x; -} - -//---------------------------------------------------------------------------- -/** @deprecated use G3D::min */ -inline int iMax(int x, int y) { - return (x >= y) ? x : y; -} - -//---------------------------------------------------------------------------- -inline int ceilPow2(unsigned int in) { - in -= 1; - - in |= in >> 16; - in |= in >> 8; - in |= in >> 4; - in |= in >> 2; - in |= in >> 1; - - return in + 1; -} - -inline bool isPow2(int num) { - return ((num & -num) == num); -} - -inline bool isOdd(int num) { - return (num & 1) == 1; -} - -inline bool isEven(int num) { - return (num & 1) == 0; -} - -inline double toRadians(double deg) { - return deg * pi() / 180.0; -} - -inline double toDegrees(double rad) { - return rad * 180.0 / pi(); -} - -inline float toRadians(float deg) { - return deg * (float)pi() / 180.0f; -} - -inline float toDegrees(float rad) { - return rad * 180.0f / (float)pi(); -} - -inline float toRadians(int deg) { - return deg * (float)pi() / 180.0f; -} - -inline float toDegrees(int rad) { - return rad * 180.0f / (float)pi(); -} -/** - Computes an appropriate epsilon for comparing a and b. - */ -inline double eps(double a, double b) { - // For a and b to be nearly equal, they must have nearly - // the same magnitude. This means that we can ignore b - // since it either has the same magnitude or the comparison - // will fail anyway. - (void)b; - const double aa = abs(a) + 1.0; - if (aa == inf()) { - return fuzzyEpsilon; - } else { - return fuzzyEpsilon * aa; - } -} - -inline bool fuzzyEq(double a, double b) { - return (a == b) || (abs(a - b) <= eps(a, b)); -} - -inline bool fuzzyNe(double a, double b) { - return ! fuzzyEq(a, b); -} - -inline bool fuzzyGt(double a, double b) { - return a > b + eps(a, b); -} - -inline bool fuzzyGe(double a, double b) { - return a > b - eps(a, b); -} - -inline bool fuzzyLt(double a, double b) { - return a < b - eps(a, b); -} - -inline bool fuzzyLe(double a, double b) { - return a < b + eps(a, b); -} - -inline int iMod3(int x) { - return x % 3; -} - -/** - Given a 32-bit integer, returns the integer with the bytes in the opposite order. - */ -inline uint32 flipEndian32(const uint32 x) { - return (x << 24) | ((x & 0xFF00) << 8) | - ((x & 0xFF0000) >> 8) | ((x & 0xFF000000) >> 24); -} - -/** - Given a 16-bit integer, returns the integer with the bytes in the opposite order. - */ -inline uint16 flipEndian16(const uint16 x) { - return (x << 8) | ((x & 0xFF00) >> 8); -} - - -} // namespace - -#ifdef _MSC_VER -# pragma warning (pop) -#endif - -#endif - |