diff options
Diffstat (limited to 'dep/recastnavigation/Detour/DetourNavMeshQuery.cpp')
-rw-r--r-- | dep/recastnavigation/Detour/DetourNavMeshQuery.cpp | 1265 |
1 files changed, 1040 insertions, 225 deletions
diff --git a/dep/recastnavigation/Detour/DetourNavMeshQuery.cpp b/dep/recastnavigation/Detour/DetourNavMeshQuery.cpp index 6a6eb94b6d4..e6557cf707e 100644 --- a/dep/recastnavigation/Detour/DetourNavMeshQuery.cpp +++ b/dep/recastnavigation/Detour/DetourNavMeshQuery.cpp @@ -27,6 +27,38 @@ #include "DetourAssert.h" #include <new> +/// @class dtQueryFilter +/// +/// <b>The Default Implementation</b> +/// +/// At construction: All area costs default to 1.0. All flags are included +/// and none are excluded. +/// +/// If a polygon has both an include and an exclude flag, it will be excluded. +/// +/// The way filtering works, a navigation mesh polygon must have at least one flag +/// set to ever be considered by a query. So a polygon with no flags will never +/// be considered. +/// +/// Setting the include flags to 0 will result in all polygons being excluded. +/// +/// <b>Custom Implementations</b> +/// +/// DT_VIRTUAL_QUERYFILTER must be defined in order to extend this class. +/// +/// Implement a custom query filter by overriding the virtual passFilter() +/// and getCost() functions. If this is done, both functions should be as +/// fast as possible. Use cached local copies of data rather than accessing +/// your own objects where possible. +/// +/// Custom implementations do not need to adhere to the flags or cost logic +/// used by the default implementation. +/// +/// In order for A* searches to work properly, the cost should be proportional to +/// the travel distance. Implementing a cost modifier less than 1.0 is likely +/// to lead to problems during pathfinding. +/// +/// @see dtNavMeshQuery dtQueryFilter::dtQueryFilter() : m_includeFlags(0xffff), @@ -49,7 +81,7 @@ float dtQueryFilter::getCost(const float* pa, const float* pb, const dtPolyRef /*curRef*/, const dtMeshTile* /*curTile*/, const dtPoly* curPoly, const dtPolyRef /*nextRef*/, const dtMeshTile* /*nextTile*/, const dtPoly* /*nextPoly*/) const { - return dtVdist(pa, pb) * m_areaCost[curPoly->area]; + return dtVdist(pa, pb) * m_areaCost[curPoly->getArea()]; } #else inline bool dtQueryFilter::passFilter(const dtPolyRef /*ref*/, @@ -67,8 +99,9 @@ inline float dtQueryFilter::getCost(const float* pa, const float* pb, return dtVdist(pa, pb) * m_areaCost[curPoly->getArea()]; } #endif - -static const float H_SCALE = 2.0f; // Search heuristic scale. + +// Edited by TC +static const float H_SCALE = 2.0f; // Search heuristic scale. dtNavMeshQuery* dtAllocNavMeshQuery() @@ -86,7 +119,25 @@ void dtFreeNavMeshQuery(dtNavMeshQuery* navmesh) } ////////////////////////////////////////////////////////////////////////////////////////// + +/// @class dtNavMeshQuery +/// +/// For methods that support undersized buffers, if the buffer is too small +/// to hold the entire result set the return status of the method will include +/// the #DT_BUFFER_TOO_SMALL flag. +/// +/// Constant member functions can be used by multiple clients without side +/// effects. (E.g. No change to the closed list. No impact on an in-progress +/// sliced path query. Etc.) +/// +/// Walls and portals: A @e wall is a polygon segment that is +/// considered impassable. A @e portal is a passable segment between polygons. +/// A portal may be treated as a wall based on the dtQueryFilter used for a query. +/// +/// @see dtNavMesh, dtQueryFilter, #dtAllocNavMeshQuery(), #dtAllocNavMeshQuery() + dtNavMeshQuery::dtNavMeshQuery() : + m_nav(0), m_tinyNodePool(0), m_nodePool(0), m_openList(0) @@ -107,6 +158,12 @@ dtNavMeshQuery::~dtNavMeshQuery() dtFree(m_openList); } +/// @par +/// +/// Must be the first function called after construction, before other +/// functions are used. +/// +/// This function can be used multiple times. dtStatus dtNavMeshQuery::init(const dtNavMesh* nav, const int maxNodes) { m_nav = nav; @@ -121,7 +178,7 @@ dtStatus dtNavMeshQuery::init(const dtNavMesh* nav, const int maxNodes) } m_nodePool = new (dtAlloc(sizeof(dtNodePool), DT_ALLOC_PERM)) dtNodePool(maxNodes, dtNextPow2(maxNodes/4)); if (!m_nodePool) - return DT_FAILURE_OUT_OF_MEMORY; + return DT_FAILURE | DT_OUT_OF_MEMORY; } else { @@ -132,7 +189,7 @@ dtStatus dtNavMeshQuery::init(const dtNavMesh* nav, const int maxNodes) { m_tinyNodePool = new (dtAlloc(sizeof(dtNodePool), DT_ALLOC_PERM)) dtNodePool(64, 32); if (!m_tinyNodePool) - return DT_FAILURE_OUT_OF_MEMORY; + return DT_FAILURE | DT_OUT_OF_MEMORY; } else { @@ -150,7 +207,7 @@ dtStatus dtNavMeshQuery::init(const dtNavMesh* nav, const int maxNodes) } m_openList = new (dtAlloc(sizeof(dtNodeQueue), DT_ALLOC_PERM)) dtNodeQueue(maxNodes); if (!m_openList) - return DT_FAILURE_OUT_OF_MEMORY; + return DT_FAILURE | DT_OUT_OF_MEMORY; } else { @@ -160,33 +217,328 @@ dtStatus dtNavMeshQuery::init(const dtNavMesh* nav, const int maxNodes) return DT_SUCCESS; } +dtStatus dtNavMeshQuery::findRandomPoint(const dtQueryFilter* filter, float (*frand)(), + dtPolyRef* randomRef, float* randomPt) const +{ + dtAssert(m_nav); + + // Randomly pick one tile. Assume that all tiles cover roughly the same area. + const dtMeshTile* tile = 0; + float tsum = 0.0f; + for (int i = 0; i < m_nav->getMaxTiles(); i++) + { + const dtMeshTile* t = m_nav->getTile(i); + if (!t || !t->header) continue; + + // Choose random tile using reservoi sampling. + const float area = 1.0f; // Could be tile area too. + tsum += area; + const float u = frand(); + if (u*tsum <= area) + tile = t; + } + if (!tile) + return DT_FAILURE; + + // Randomly pick one polygon weighted by polygon area. + const dtPoly* poly = 0; + dtPolyRef polyRef = 0; + const dtPolyRef base = m_nav->getPolyRefBase(tile); + + float areaSum = 0.0f; + for (int i = 0; i < tile->header->polyCount; ++i) + { + const dtPoly* p = &tile->polys[i]; + // Do not return off-mesh connection polygons. + if (p->getType() != DT_POLYTYPE_GROUND) + continue; + // Must pass filter + const dtPolyRef ref = base | (dtPolyRef)i; + if (!filter->passFilter(ref, tile, p)) + continue; + + // Calc area of the polygon. + float polyArea = 0.0f; + for (int j = 2; j < p->vertCount; ++j) + { + const float* va = &tile->verts[p->verts[0]*3]; + const float* vb = &tile->verts[p->verts[j-1]*3]; + const float* vc = &tile->verts[p->verts[j]*3]; + polyArea += dtTriArea2D(va,vb,vc); + } + + // Choose random polygon weighted by area, using reservoi sampling. + areaSum += polyArea; + const float u = frand(); + if (u*areaSum <= polyArea) + { + poly = p; + polyRef = ref; + } + } + + if (!poly) + return DT_FAILURE; + + // Randomly pick point on polygon. + const float* v = &tile->verts[poly->verts[0]*3]; + float verts[3*DT_VERTS_PER_POLYGON]; + float areas[DT_VERTS_PER_POLYGON]; + dtVcopy(&verts[0*3],v); + for (int j = 1; j < poly->vertCount; ++j) + { + v = &tile->verts[poly->verts[j]*3]; + dtVcopy(&verts[j*3],v); + } + + const float s = frand(); + const float t = frand(); + + float pt[3]; + dtRandomPointInConvexPoly(verts, poly->vertCount, areas, s, t, pt); + + float h = 0.0f; + dtStatus status = getPolyHeight(polyRef, pt, &h); + if (dtStatusFailed(status)) + return status; + pt[1] = h; + + dtVcopy(randomPt, pt); + *randomRef = polyRef; + + return DT_SUCCESS; +} + +dtStatus dtNavMeshQuery::findRandomPointAroundCircle(dtPolyRef startRef, const float* centerPos, const float radius, + const dtQueryFilter* filter, float (*frand)(), + dtPolyRef* randomRef, float* randomPt) const +{ + dtAssert(m_nav); + dtAssert(m_nodePool); + dtAssert(m_openList); + + // Validate input + if (!startRef || !m_nav->isValidPolyRef(startRef)) + return DT_FAILURE | DT_INVALID_PARAM; + + const dtMeshTile* startTile = 0; + const dtPoly* startPoly = 0; + m_nav->getTileAndPolyByRefUnsafe(startRef, &startTile, &startPoly); + if (!filter->passFilter(startRef, startTile, startPoly)) + return DT_FAILURE | DT_INVALID_PARAM; + + m_nodePool->clear(); + m_openList->clear(); + + dtNode* startNode = m_nodePool->getNode(startRef); + dtVcopy(startNode->pos, centerPos); + startNode->pidx = 0; + startNode->cost = 0; + startNode->total = 0; + startNode->id = startRef; + startNode->flags = DT_NODE_OPEN; + m_openList->push(startNode); + + dtStatus status = DT_SUCCESS; + + const float radiusSqr = dtSqr(radius); + float areaSum = 0.0f; + + const dtMeshTile* randomTile = 0; + const dtPoly* randomPoly = 0; + dtPolyRef randomPolyRef = 0; + + while (!m_openList->empty()) + { + dtNode* bestNode = m_openList->pop(); + bestNode->flags &= ~DT_NODE_OPEN; + bestNode->flags |= DT_NODE_CLOSED; + + // Get poly and tile. + // The API input has been cheked already, skip checking internal data. + const dtPolyRef bestRef = bestNode->id; + const dtMeshTile* bestTile = 0; + const dtPoly* bestPoly = 0; + m_nav->getTileAndPolyByRefUnsafe(bestRef, &bestTile, &bestPoly); + + // Place random locations on on ground. + if (bestPoly->getType() == DT_POLYTYPE_GROUND) + { + // Calc area of the polygon. + float polyArea = 0.0f; + for (int j = 2; j < bestPoly->vertCount; ++j) + { + const float* va = &bestTile->verts[bestPoly->verts[0]*3]; + const float* vb = &bestTile->verts[bestPoly->verts[j-1]*3]; + const float* vc = &bestTile->verts[bestPoly->verts[j]*3]; + polyArea += dtTriArea2D(va,vb,vc); + } + // Choose random polygon weighted by area, using reservoi sampling. + areaSum += polyArea; + const float u = frand(); + if (u*areaSum <= polyArea) + { + randomTile = bestTile; + randomPoly = bestPoly; + randomPolyRef = bestRef; + } + } + + + // Get parent poly and tile. + dtPolyRef parentRef = 0; + const dtMeshTile* parentTile = 0; + const dtPoly* parentPoly = 0; + if (bestNode->pidx) + parentRef = m_nodePool->getNodeAtIdx(bestNode->pidx)->id; + if (parentRef) + m_nav->getTileAndPolyByRefUnsafe(parentRef, &parentTile, &parentPoly); + + for (unsigned int i = bestPoly->firstLink; i != DT_NULL_LINK; i = bestTile->links[i].next) + { + const dtLink* link = &bestTile->links[i]; + dtPolyRef neighbourRef = link->ref; + // Skip invalid neighbours and do not follow back to parent. + if (!neighbourRef || neighbourRef == parentRef) + continue; + + // Expand to neighbour + const dtMeshTile* neighbourTile = 0; + const dtPoly* neighbourPoly = 0; + m_nav->getTileAndPolyByRefUnsafe(neighbourRef, &neighbourTile, &neighbourPoly); + + // Do not advance if the polygon is excluded by the filter. + if (!filter->passFilter(neighbourRef, neighbourTile, neighbourPoly)) + continue; + + // Find edge and calc distance to the edge. + float va[3], vb[3]; + if (!getPortalPoints(bestRef, bestPoly, bestTile, neighbourRef, neighbourPoly, neighbourTile, va, vb)) + continue; + + // If the circle is not touching the next polygon, skip it. + float tseg; + float distSqr = dtDistancePtSegSqr2D(centerPos, va, vb, tseg); + if (distSqr > radiusSqr) + continue; + + dtNode* neighbourNode = m_nodePool->getNode(neighbourRef); + if (!neighbourNode) + { + status |= DT_OUT_OF_NODES; + continue; + } + + if (neighbourNode->flags & DT_NODE_CLOSED) + continue; + + // Cost + if (neighbourNode->flags == 0) + dtVlerp(neighbourNode->pos, va, vb, 0.5f); + + const float total = bestNode->total + dtVdist(bestNode->pos, neighbourNode->pos); + + // The node is already in open list and the new result is worse, skip. + if ((neighbourNode->flags & DT_NODE_OPEN) && total >= neighbourNode->total) + continue; + + neighbourNode->id = neighbourRef; + neighbourNode->flags = (neighbourNode->flags & ~DT_NODE_CLOSED); + neighbourNode->pidx = m_nodePool->getNodeIdx(bestNode); + neighbourNode->total = total; + + if (neighbourNode->flags & DT_NODE_OPEN) + { + m_openList->modify(neighbourNode); + } + else + { + neighbourNode->flags = DT_NODE_OPEN; + m_openList->push(neighbourNode); + } + } + } + + if (!randomPoly) + return DT_FAILURE; + + // Randomly pick point on polygon. + const float* v = &randomTile->verts[randomPoly->verts[0]*3]; + float verts[3*DT_VERTS_PER_POLYGON]; + float areas[DT_VERTS_PER_POLYGON]; + dtVcopy(&verts[0*3],v); + for (int j = 1; j < randomPoly->vertCount; ++j) + { + v = &randomTile->verts[randomPoly->verts[j]*3]; + dtVcopy(&verts[j*3],v); + } + + const float s = frand(); + const float t = frand(); + + float pt[3]; + dtRandomPointInConvexPoly(verts, randomPoly->vertCount, areas, s, t, pt); + + float h = 0.0f; + dtStatus stat = getPolyHeight(randomPolyRef, pt, &h); + if (dtStatusFailed(status)) + return stat; + pt[1] = h; + + dtVcopy(randomPt, pt); + *randomRef = randomPolyRef; + + return DT_SUCCESS; +} + + ////////////////////////////////////////////////////////////////////////////////////////// + +/// @par +/// +/// Uses the detail polygons to find the surface height. (Most accurate.) +/// +/// @p pos does not have to be within the bounds of the polygon or navigation mesh. +/// +/// See closestPointOnPolyBoundary() for a limited but faster option. +/// dtStatus dtNavMeshQuery::closestPointOnPoly(dtPolyRef ref, const float* pos, float* closest) const { dtAssert(m_nav); const dtMeshTile* tile = 0; const dtPoly* poly = 0; - if (m_nav->getTileAndPolyByRef(ref, &tile, &poly) != DT_SUCCESS) - return DT_FAILURE; - if (!tile) return DT_FAILURE; + if (dtStatusFailed(m_nav->getTileAndPolyByRef(ref, &tile, &poly))) + return DT_FAILURE | DT_INVALID_PARAM; + if (!tile) + return DT_FAILURE | DT_INVALID_PARAM; - if (poly->getType() == DT_POLYTYPE_OFFMESH_CONNECTION) + // Edited by TC + if (poly->getType() == DT_POLYTYPE_OFFMESH_CONNECTION) return DT_FAILURE; - if (closestPointOnPolyInTile(tile, poly, pos, closest) != DT_SUCCESS) - return DT_FAILURE; + closestPointOnPolyInTile(tile, poly, pos, closest); + return DT_SUCCESS; } -dtStatus dtNavMeshQuery::closestPointOnPolyInTile(const dtMeshTile* tile, const dtPoly* poly, - const float* pos, float* closest) const +void dtNavMeshQuery::closestPointOnPolyInTile(const dtMeshTile* tile, const dtPoly* poly, + const float* pos, float* closest) const { + // Off-mesh connections don't have detail polygons. + if (poly->getType() == DT_POLYTYPE_OFFMESH_CONNECTION) + { + const float* v0 = &tile->verts[poly->verts[0]*3]; + const float* v1 = &tile->verts[poly->verts[1]*3]; + const float d0 = dtVdist(pos, v0); + const float d1 = dtVdist(pos, v1); + const float u = d0 / (d0+d1); + dtVlerp(closest, v0, v1, u); + return; + } + const unsigned int ip = (unsigned int)(poly - tile->polys); const dtPolyDetail* pd = &tile->detailMeshes[ip]; - // TODO: The commented out version finds 'cylinder distance' instead of 'sphere distance' to the navmesh. - // Test and enable. -/* // Clamp point to be inside the polygon. float verts[DT_VERTS_PER_POLYGON*3]; float edged[DT_VERTS_PER_POLYGON]; @@ -233,8 +585,8 @@ dtStatus dtNavMeshQuery::closestPointOnPolyInTile(const dtMeshTile* tile, const break; } } -*/ - float closestDistSqr = FLT_MAX; + +/* float closestDistSqr = FLT_MAX; for (int j = 0; j < pd->triCount; ++j) { const unsigned char* t = &tile->detailTris[(pd->triBase+j)*4]; @@ -256,19 +608,28 @@ dtStatus dtNavMeshQuery::closestPointOnPolyInTile(const dtMeshTile* tile, const dtVcopy(closest, pt); closestDistSqr = d; } - } - - return DT_SUCCESS; + }*/ } +/// @par +/// +/// Much faster than closestPointOnPoly(). +/// +/// If the provided position lies within the polygon's xz-bounds (above or below), +/// then @p pos and @p closest will be equal. +/// +/// The height of @p closest will be the polygon boundary. The height detail is not used. +/// +/// @p pos does not have to be within the bounds of the polybon or the navigation mesh. +/// dtStatus dtNavMeshQuery::closestPointOnPolyBoundary(dtPolyRef ref, const float* pos, float* closest) const { dtAssert(m_nav); const dtMeshTile* tile = 0; const dtPoly* poly = 0; - if (m_nav->getTileAndPolyByRef(ref, &tile, &poly) != DT_SUCCESS) - return DT_FAILURE; + if (dtStatusFailed(m_nav->getTileAndPolyByRef(ref, &tile, &poly))) + return DT_FAILURE | DT_INVALID_PARAM; // Collect vertices. float verts[DT_VERTS_PER_POLYGON*3]; @@ -308,15 +669,19 @@ dtStatus dtNavMeshQuery::closestPointOnPolyBoundary(dtPolyRef ref, const float* return DT_SUCCESS; } - +/// @par +/// +/// Will return #DT_FAILURE if the provided position is outside the xz-bounds +/// of the polygon. +/// dtStatus dtNavMeshQuery::getPolyHeight(dtPolyRef ref, const float* pos, float* height) const { dtAssert(m_nav); const dtMeshTile* tile = 0; const dtPoly* poly = 0; - if (m_nav->getTileAndPolyByRef(ref, &tile, &poly) != DT_SUCCESS) - return DT_FAILURE; + if (dtStatusFailed(m_nav->getTileAndPolyByRef(ref, &tile, &poly))) + return DT_FAILURE | DT_INVALID_PARAM; if (poly->getType() == DT_POLYTYPE_OFFMESH_CONNECTION) { @@ -354,9 +719,18 @@ dtStatus dtNavMeshQuery::getPolyHeight(dtPolyRef ref, const float* pos, float* h } } - return DT_FAILURE; + return DT_FAILURE | DT_INVALID_PARAM; } +/// @par +/// +/// @note If the search box does not intersect any polygons the search will +/// return #DT_SUCCESS, but @p nearestRef will be zero. So if in doubt, check +/// @p nearestRef before using @p nearestPt. +/// +/// @warning This function is not suitable for large area searches. If the search +/// extents overlaps more than 128 polygons it may return an invalid result. +/// dtStatus dtNavMeshQuery::findNearestPoly(const float* center, const float* extents, const dtQueryFilter* filter, dtPolyRef* nearestRef, float* nearestPt) const @@ -368,8 +742,8 @@ dtStatus dtNavMeshQuery::findNearestPoly(const float* center, const float* exten // Get nearby polygons from proximity grid. dtPolyRef polys[128]; int polyCount = 0; - if (queryPolygons(center, extents, filter, polys, &polyCount, 128) != DT_SUCCESS) - return DT_FAILURE; + if (dtStatusFailed(queryPolygons(center, extents, filter, polys, &polyCount, 128))) + return DT_FAILURE | DT_INVALID_PARAM; // Find nearest polygon amongst the nearby polygons. dtPolyRef nearest = 0; @@ -378,8 +752,7 @@ dtStatus dtNavMeshQuery::findNearestPoly(const float* center, const float* exten { dtPolyRef ref = polys[i]; float closestPtPoly[3]; - if (closestPointOnPoly(ref, center, closestPtPoly) != DT_SUCCESS) - continue; + closestPointOnPoly(ref, center, closestPtPoly); float d = dtVdistSqr(center, closestPtPoly); if (d < nearestDistanceSqr) { @@ -417,8 +790,7 @@ dtPolyRef dtNavMeshQuery::findNearestPolyInTile(const dtMeshTile* tile, const fl dtPolyRef ref = polys[i]; const dtPoly* poly = &tile->polys[m_nav->decodePolyIdPoly(ref)]; float closestPtPoly[3]; - if (closestPointOnPolyInTile(tile, poly, center, closestPtPoly) != DT_SUCCESS) - continue; + closestPointOnPolyInTile(tile, poly, center, closestPtPoly); float d = dtVdistSqr(center, closestPtPoly); if (d < nearestDistanceSqr) @@ -500,8 +872,15 @@ int dtNavMeshQuery::queryPolygonsInTile(const dtMeshTile* tile, const float* qmi const dtPolyRef base = m_nav->getPolyRefBase(tile); for (int i = 0; i < tile->header->polyCount; ++i) { + const dtPoly* p = &tile->polys[i]; + // Do not return off-mesh connection polygons. + if (p->getType() == DT_POLYTYPE_OFFMESH_CONNECTION) + continue; + // Must pass filter + const dtPolyRef ref = base | (dtPolyRef)i; + if (!filter->passFilter(ref, tile, p)) + continue; // Calc polygon bounds. - dtPoly* p = &tile->polys[i]; const float* v = &tile->verts[p->verts[0]*3]; dtVcopy(bmin, v); dtVcopy(bmax, v); @@ -513,18 +892,23 @@ int dtNavMeshQuery::queryPolygonsInTile(const dtMeshTile* tile, const float* qmi } if (dtOverlapBounds(qmin,qmax, bmin,bmax)) { - const dtPolyRef ref = base | (dtPolyRef)i; - if (filter->passFilter(ref, tile, p)) - { - if (n < maxPolys) - polys[n++] = ref; - } + if (n < maxPolys) + polys[n++] = ref; } } return n; } } +/// @par +/// +/// If no polygons are found, the function will return #DT_SUCCESS with a +/// @p polyCount of zero. +/// +/// If @p polys is too small to hold the entire result set, then the array will +/// be filled to capacity. The method of choosing which polygons from the +/// full set are included in the partial result set is undefined. +/// dtStatus dtNavMeshQuery::queryPolygons(const float* center, const float* extents, const dtQueryFilter* filter, dtPolyRef* polys, int* polyCount, const int maxPolys) const @@ -540,18 +924,23 @@ dtStatus dtNavMeshQuery::queryPolygons(const float* center, const float* extents m_nav->calcTileLoc(bmin, &minx, &miny); m_nav->calcTileLoc(bmax, &maxx, &maxy); + static const int MAX_NEIS = 32; + const dtMeshTile* neis[MAX_NEIS]; + int n = 0; for (int y = miny; y <= maxy; ++y) { for (int x = minx; x <= maxx; ++x) { - const dtMeshTile* tile = m_nav->getTileAt(x,y); - if (!tile) continue; - n += queryPolygonsInTile(tile, bmin, bmax, filter, polys+n, maxPolys-n); - if (n >= maxPolys) + const int nneis = m_nav->getTilesAt(x,y,neis,MAX_NEIS); + for (int j = 0; j < nneis; ++j) { - *polyCount = n; - return DT_SUCCESS; + n += queryPolygonsInTile(neis[j], bmin, bmax, filter, polys+n, maxPolys-n); + if (n >= maxPolys) + { + *polyCount = n; + return DT_SUCCESS | DT_BUFFER_TOO_SMALL; + } } } } @@ -560,6 +949,17 @@ dtStatus dtNavMeshQuery::queryPolygons(const float* center, const float* extents return DT_SUCCESS; } +/// @par +/// +/// If the end polygon cannot be reached through the navigation graph, +/// the last polygon in the path will be the nearest the end polygon. +/// +/// If the path array is to small to hold the full result, it will be filled as +/// far as possible from the start polygon toward the end polygon. +/// +/// The start and end positions are used to calculate traversal costs. +/// (The y-values impact the result.) +/// dtStatus dtNavMeshQuery::findPath(dtPolyRef startRef, dtPolyRef endRef, const float* startPos, const float* endPos, const dtQueryFilter* filter, @@ -572,14 +972,14 @@ dtStatus dtNavMeshQuery::findPath(dtPolyRef startRef, dtPolyRef endRef, *pathCount = 0; if (!startRef || !endRef) - return DT_FAILURE; + return DT_FAILURE | DT_INVALID_PARAM; if (!maxPath) - return DT_FAILURE; + return DT_FAILURE | DT_INVALID_PARAM; // Validate input if (!m_nav->isValidPolyRef(startRef) || !m_nav->isValidPolyRef(endRef)) - return DT_FAILURE; + return DT_FAILURE | DT_INVALID_PARAM; if (startRef == endRef) { @@ -603,6 +1003,8 @@ dtStatus dtNavMeshQuery::findPath(dtPolyRef startRef, dtPolyRef endRef, dtNode* lastBestNode = startNode; float lastBestNodeCost = startNode->total; + dtStatus status = DT_SUCCESS; + while (!m_openList->empty()) { // Remove node from open list and put it in closed list. @@ -652,7 +1054,10 @@ dtStatus dtNavMeshQuery::findPath(dtPolyRef startRef, dtPolyRef endRef, dtNode* neighbourNode = m_nodePool->getNode(neighbourRef); if (!neighbourNode) + { + status |= DT_OUT_OF_NODES; continue; + } // If the node is visited the first time, calculate node position. if (neighbourNode->flags == 0) @@ -705,7 +1110,7 @@ dtStatus dtNavMeshQuery::findPath(dtPolyRef startRef, dtPolyRef endRef, // Add or update the node. neighbourNode->pidx = m_nodePool->getNodeIdx(bestNode); neighbourNode->id = neighbourRef; - neighbourNode->flags &= ~DT_NODE_CLOSED; + neighbourNode->flags = (neighbourNode->flags & ~DT_NODE_CLOSED); neighbourNode->cost = cost; neighbourNode->total = total; @@ -730,6 +1135,9 @@ dtStatus dtNavMeshQuery::findPath(dtPolyRef startRef, dtPolyRef endRef, } } + if (lastBestNode->id != endRef) + status |= DT_PARTIAL_RESULT; + // Reverse the path. dtNode* prev = 0; dtNode* node = lastBestNode; @@ -748,15 +1156,28 @@ dtStatus dtNavMeshQuery::findPath(dtPolyRef startRef, dtPolyRef endRef, do { path[n++] = node->id; + if (n >= maxPath) + { + status |= DT_BUFFER_TOO_SMALL; + break; + } node = m_nodePool->getNodeAtIdx(node->pidx); } - while (node && n < maxPath); + while (node); *pathCount = n; - return DT_SUCCESS; + return status; } +/// @par +/// +/// @warning Calling any non-slice methods before calling finalizeSlicedFindPath() +/// or finalizeSlicedFindPathPartial() may result in corrupted data! +/// +/// The @p filter pointer is stored and used for the duration of the sliced +/// path query. +/// dtStatus dtNavMeshQuery::initSlicedFindPath(dtPolyRef startRef, dtPolyRef endRef, const float* startPos, const float* endPos, const dtQueryFilter* filter) @@ -775,11 +1196,11 @@ dtStatus dtNavMeshQuery::initSlicedFindPath(dtPolyRef startRef, dtPolyRef endRef m_query.filter = filter; if (!startRef || !endRef) - return DT_FAILURE; + return DT_FAILURE | DT_INVALID_PARAM; // Validate input if (!m_nav->isValidPolyRef(startRef) || !m_nav->isValidPolyRef(endRef)) - return DT_FAILURE; + return DT_FAILURE | DT_INVALID_PARAM; if (startRef == endRef) { @@ -806,9 +1227,9 @@ dtStatus dtNavMeshQuery::initSlicedFindPath(dtPolyRef startRef, dtPolyRef endRef return m_query.status; } -dtStatus dtNavMeshQuery::updateSlicedFindPath(const int maxIter) +dtStatus dtNavMeshQuery::updateSlicedFindPath(const int maxIter, int* doneIters) { - if (m_query.status!= DT_IN_PROGRESS) + if (!dtStatusInProgress(m_query.status)) return m_query.status; // Make sure the request is still valid. @@ -832,7 +1253,10 @@ dtStatus dtNavMeshQuery::updateSlicedFindPath(const int maxIter) if (bestNode->id == m_query.endRef) { m_query.lastBestNode = bestNode; - m_query.status = DT_SUCCESS; + const dtStatus details = m_query.status & DT_STATUS_DETAIL_MASK; + m_query.status = DT_SUCCESS | details; + if (doneIters) + *doneIters = iter; return m_query.status; } @@ -841,10 +1265,12 @@ dtStatus dtNavMeshQuery::updateSlicedFindPath(const int maxIter) const dtPolyRef bestRef = bestNode->id; const dtMeshTile* bestTile = 0; const dtPoly* bestPoly = 0; - if (m_nav->getTileAndPolyByRef(bestRef, &bestTile, &bestPoly) != DT_SUCCESS) + if (dtStatusFailed(m_nav->getTileAndPolyByRef(bestRef, &bestTile, &bestPoly))) { // The polygon has disappeared during the sliced query, fail. m_query.status = DT_FAILURE; + if (doneIters) + *doneIters = iter; return m_query.status; } @@ -856,10 +1282,12 @@ dtStatus dtNavMeshQuery::updateSlicedFindPath(const int maxIter) parentRef = m_nodePool->getNodeAtIdx(bestNode->pidx)->id; if (parentRef) { - if (m_nav->getTileAndPolyByRef(parentRef, &parentTile, &parentPoly) != DT_SUCCESS) + if (dtStatusFailed(m_nav->getTileAndPolyByRef(parentRef, &parentTile, &parentPoly))) { // The polygon has disappeared during the sliced query, fail. m_query.status = DT_FAILURE; + if (doneIters) + *doneIters = iter; return m_query.status; } } @@ -883,7 +1311,10 @@ dtStatus dtNavMeshQuery::updateSlicedFindPath(const int maxIter) dtNode* neighbourNode = m_nodePool->getNode(neighbourRef); if (!neighbourNode) + { + m_query.status |= DT_OUT_OF_NODES; continue; + } // If the node is visited the first time, calculate node position. if (neighbourNode->flags == 0) @@ -936,7 +1367,7 @@ dtStatus dtNavMeshQuery::updateSlicedFindPath(const int maxIter) // Add or update the node. neighbourNode->pidx = m_nodePool->getNodeIdx(bestNode); neighbourNode->id = neighbourRef; - neighbourNode->flags &= ~DT_NODE_CLOSED; + neighbourNode->flags = (neighbourNode->flags & ~DT_NODE_CLOSED); neighbourNode->cost = cost; neighbourNode->total = total; @@ -963,7 +1394,13 @@ dtStatus dtNavMeshQuery::updateSlicedFindPath(const int maxIter) // Exhausted all nodes, but could not find path. if (m_openList->empty()) - m_query.status = DT_SUCCESS; + { + const dtStatus details = m_query.status & DT_STATUS_DETAIL_MASK; + m_query.status = DT_SUCCESS | details; + } + + if (doneIters) + *doneIters = iter; return m_query.status; } @@ -972,7 +1409,7 @@ dtStatus dtNavMeshQuery::finalizeSlicedFindPath(dtPolyRef* path, int* pathCount, { *pathCount = 0; - if (m_query.status != DT_SUCCESS) + if (dtStatusFailed(m_query.status)) { // Reset query. memset(&m_query, 0, sizeof(dtQueryData)); @@ -990,6 +1427,10 @@ dtStatus dtNavMeshQuery::finalizeSlicedFindPath(dtPolyRef* path, int* pathCount, { // Reverse the path. dtAssert(m_query.lastBestNode); + + if (m_query.lastBestNode->id != m_query.endRef) + m_query.status |= DT_PARTIAL_RESULT; + dtNode* prev = 0; dtNode* node = m_query.lastBestNode; do @@ -1006,17 +1447,24 @@ dtStatus dtNavMeshQuery::finalizeSlicedFindPath(dtPolyRef* path, int* pathCount, do { path[n++] = node->id; + if (n >= maxPath) + { + m_query.status |= DT_BUFFER_TOO_SMALL; + break; + } node = m_nodePool->getNodeAtIdx(node->pidx); } - while (node && n < maxPath); + while (node); } + const dtStatus details = m_query.status & DT_STATUS_DETAIL_MASK; + // Reset query. memset(&m_query, 0, sizeof(dtQueryData)); *pathCount = n; - return DT_SUCCESS; + return DT_SUCCESS | details; } dtStatus dtNavMeshQuery::finalizeSlicedFindPathPartial(const dtPolyRef* existing, const int existingSize, @@ -1029,7 +1477,7 @@ dtStatus dtNavMeshQuery::finalizeSlicedFindPathPartial(const dtPolyRef* existing return DT_FAILURE; } - if (m_query.status != DT_SUCCESS && m_query.status != DT_IN_PROGRESS) + if (dtStatusFailed(m_query.status)) { // Reset query. memset(&m_query, 0, sizeof(dtQueryData)); @@ -1057,7 +1505,9 @@ dtStatus dtNavMeshQuery::finalizeSlicedFindPathPartial(const dtPolyRef* existing if (!node) { - return DT_FAILURE; + m_query.status |= DT_PARTIAL_RESULT; + dtAssert(m_query.lastBestNode); + node = m_query.lastBestNode; } // Reverse the path. @@ -1075,58 +1525,156 @@ dtStatus dtNavMeshQuery::finalizeSlicedFindPathPartial(const dtPolyRef* existing do { path[n++] = node->id; + if (n >= maxPath) + { + m_query.status |= DT_BUFFER_TOO_SMALL; + break; + } node = m_nodePool->getNodeAtIdx(node->pidx); } - while (node && n < maxPath); + while (node); } + const dtStatus details = m_query.status & DT_STATUS_DETAIL_MASK; + // Reset query. memset(&m_query, 0, sizeof(dtQueryData)); *pathCount = n; - return DT_SUCCESS; + return DT_SUCCESS | details; } +dtStatus dtNavMeshQuery::appendVertex(const float* pos, const unsigned char flags, const dtPolyRef ref, + float* straightPath, unsigned char* straightPathFlags, dtPolyRef* straightPathRefs, + int* straightPathCount, const int maxStraightPath) const +{ + if ((*straightPathCount) > 0 && dtVequal(&straightPath[((*straightPathCount)-1)*3], pos)) + { + // The vertices are equal, update flags and poly. + if (straightPathFlags) + straightPathFlags[(*straightPathCount)-1] = flags; + if (straightPathRefs) + straightPathRefs[(*straightPathCount)-1] = ref; + } + else + { + // Append new vertex. + dtVcopy(&straightPath[(*straightPathCount)*3], pos); + if (straightPathFlags) + straightPathFlags[(*straightPathCount)] = flags; + if (straightPathRefs) + straightPathRefs[(*straightPathCount)] = ref; + (*straightPathCount)++; + // If reached end of path or there is no space to append more vertices, return. + if (flags == DT_STRAIGHTPATH_END || (*straightPathCount) >= maxStraightPath) + { + return DT_SUCCESS | (((*straightPathCount) >= maxStraightPath) ? DT_BUFFER_TOO_SMALL : 0); + } + } + return DT_IN_PROGRESS; +} + +dtStatus dtNavMeshQuery::appendPortals(const int startIdx, const int endIdx, const float* endPos, const dtPolyRef* path, + float* straightPath, unsigned char* straightPathFlags, dtPolyRef* straightPathRefs, + int* straightPathCount, const int maxStraightPath, const int options) const +{ + const float* startPos = &straightPath[(*straightPathCount-1)*3]; + // Append or update last vertex + dtStatus stat = 0; + for (int i = startIdx; i < endIdx; i++) + { + // Calculate portal + const dtPolyRef from = path[i]; + const dtMeshTile* fromTile = 0; + const dtPoly* fromPoly = 0; + if (dtStatusFailed(m_nav->getTileAndPolyByRef(from, &fromTile, &fromPoly))) + return DT_FAILURE | DT_INVALID_PARAM; + + const dtPolyRef to = path[i+1]; + const dtMeshTile* toTile = 0; + const dtPoly* toPoly = 0; + if (dtStatusFailed(m_nav->getTileAndPolyByRef(to, &toTile, &toPoly))) + return DT_FAILURE | DT_INVALID_PARAM; + + float left[3], right[3]; + if (dtStatusFailed(getPortalPoints(from, fromPoly, fromTile, to, toPoly, toTile, left, right))) + break; + + if (options & DT_STRAIGHTPATH_AREA_CROSSINGS) + { + // Skip intersection if only area crossings are requested. + if (fromPoly->getArea() == toPoly->getArea()) + continue; + } + + // Append intersection + float s,t; + if (dtIntersectSegSeg2D(startPos, endPos, left, right, s, t)) + { + float pt[3]; + dtVlerp(pt, left,right, t); + + stat = appendVertex(pt, 0, path[i+1], + straightPath, straightPathFlags, straightPathRefs, + straightPathCount, maxStraightPath); + if (stat != DT_IN_PROGRESS) + return stat; + } + } + return DT_IN_PROGRESS; +} + +/// @par +/// +/// This method peforms what is often called 'string pulling'. +/// +/// The start position is clamped to the first polygon in the path, and the +/// end position is clamped to the last. So the start and end positions should +/// normally be within or very near the first and last polygons respectively. +/// +/// The returned polygon references represent the reference id of the polygon +/// that is entered at the associated path position. The reference id associated +/// with the end point will always be zero. This allows, for example, matching +/// off-mesh link points to their representative polygons. +/// +/// If the provided result buffers are too small for the entire result set, +/// they will be filled as far as possible from the start toward the end +/// position. +/// dtStatus dtNavMeshQuery::findStraightPath(const float* startPos, const float* endPos, const dtPolyRef* path, const int pathSize, float* straightPath, unsigned char* straightPathFlags, dtPolyRef* straightPathRefs, - int* straightPathCount, const int maxStraightPath) const + int* straightPathCount, const int maxStraightPath, const int options) const { dtAssert(m_nav); *straightPathCount = 0; if (!maxStraightPath) - return DT_FAILURE; + return DT_FAILURE | DT_INVALID_PARAM; if (!path[0]) - return DT_FAILURE; + return DT_FAILURE | DT_INVALID_PARAM; - int n = 0; + dtStatus stat = 0; // TODO: Should this be callers responsibility? float closestStartPos[3]; - if (closestPointOnPolyBoundary(path[0], startPos, closestStartPos) != DT_SUCCESS) - return DT_FAILURE; + if (dtStatusFailed(closestPointOnPolyBoundary(path[0], startPos, closestStartPos))) + return DT_FAILURE | DT_INVALID_PARAM; + + float closestEndPos[3]; + if (dtStatusFailed(closestPointOnPolyBoundary(path[pathSize-1], endPos, closestEndPos))) + return DT_FAILURE | DT_INVALID_PARAM; // Add start point. - dtVcopy(&straightPath[n*3], closestStartPos); - if (straightPathFlags) - straightPathFlags[n] = DT_STRAIGHTPATH_START; - if (straightPathRefs) - straightPathRefs[n] = path[0]; - n++; - if (n >= maxStraightPath) - { - *straightPathCount = n; - return DT_SUCCESS; - } - - float closestEndPos[3]; - if (closestPointOnPolyBoundary(path[pathSize-1], endPos, closestEndPos) != DT_SUCCESS) - return DT_FAILURE; + stat = appendVertex(closestStartPos, DT_STRAIGHTPATH_START, path[0], + straightPath, straightPathFlags, straightPathRefs, + straightPathCount, maxStraightPath); + if (stat != DT_IN_PROGRESS) + return stat; if (pathSize > 1) { @@ -1152,19 +1700,30 @@ dtStatus dtNavMeshQuery::findStraightPath(const float* startPos, const float* en if (i+1 < pathSize) { // Next portal. - if (getPortalPoints(path[i], path[i+1], left, right, fromType, toType) != DT_SUCCESS) + if (dtStatusFailed(getPortalPoints(path[i], path[i+1], left, right, fromType, toType))) { - if (closestPointOnPolyBoundary(path[i], endPos, closestEndPos) != DT_SUCCESS) - return DT_FAILURE; + // Failed to get portal points, in practice this means that path[i+1] is invalid polygon. + // Clamp the end point to path[i], and return the path so far. - dtVcopy(&straightPath[n*3], closestEndPos); - if (straightPathFlags) - straightPathFlags[n] = 0; - if (straightPathRefs) - straightPathRefs[n] = path[i]; - n++; + if (dtStatusFailed(closestPointOnPolyBoundary(path[i], endPos, closestEndPos))) + { + // This should only happen when the first polygon is invalid. + return DT_FAILURE | DT_INVALID_PARAM; + } + + // Apeend portals along the current straight path segment. + if (options & (DT_STRAIGHTPATH_AREA_CROSSINGS | DT_STRAIGHTPATH_ALL_CROSSINGS)) + { + stat = appendPortals(apexIndex, i, closestEndPos, path, + straightPath, straightPathFlags, straightPathRefs, + straightPathCount, maxStraightPath, options); + } + + stat = appendVertex(closestEndPos, 0, path[i], + straightPath, straightPathFlags, straightPathRefs, + straightPathCount, maxStraightPath); - return DT_SUCCESS; + return DT_SUCCESS | DT_PARTIAL_RESULT | ((*straightPathCount >= maxStraightPath) ? DT_BUFFER_TOO_SMALL : 0); } // If starting really close the portal, advance. @@ -1196,6 +1755,16 @@ dtStatus dtNavMeshQuery::findStraightPath(const float* startPos, const float* en } else { + // Append portals along the current straight path segment. + if (options & (DT_STRAIGHTPATH_AREA_CROSSINGS | DT_STRAIGHTPATH_ALL_CROSSINGS)) + { + stat = appendPortals(apexIndex, leftIndex, portalLeft, path, + straightPath, straightPathFlags, straightPathRefs, + straightPathCount, maxStraightPath, options); + if (stat != DT_IN_PROGRESS) + return stat; + } + dtVcopy(portalApex, portalLeft); apexIndex = leftIndex; @@ -1206,30 +1775,12 @@ dtStatus dtNavMeshQuery::findStraightPath(const float* startPos, const float* en flags = DT_STRAIGHTPATH_OFFMESH_CONNECTION; dtPolyRef ref = leftPolyRef; - if (!dtVequal(&straightPath[(n-1)*3], portalApex)) - { - // Append new vertex. - dtVcopy(&straightPath[n*3], portalApex); - if (straightPathFlags) - straightPathFlags[n] = flags; - if (straightPathRefs) - straightPathRefs[n] = ref; - n++; - // If reached end of path or there is no space to append more vertices, return. - if (flags == DT_STRAIGHTPATH_END || n >= maxStraightPath) - { - *straightPathCount = n; - return DT_SUCCESS; - } - } - else - { - // The vertices are equal, update flags and poly. - if (straightPathFlags) - straightPathFlags[n-1] = flags; - if (straightPathRefs) - straightPathRefs[n-1] = ref; - } + // Append or update vertex + stat = appendVertex(portalApex, flags, ref, + straightPath, straightPathFlags, straightPathRefs, + straightPathCount, maxStraightPath); + if (stat != DT_IN_PROGRESS) + return stat; dtVcopy(portalLeft, portalApex); dtVcopy(portalRight, portalApex); @@ -1255,6 +1806,16 @@ dtStatus dtNavMeshQuery::findStraightPath(const float* startPos, const float* en } else { + // Append portals along the current straight path segment. + if (options & (DT_STRAIGHTPATH_AREA_CROSSINGS | DT_STRAIGHTPATH_ALL_CROSSINGS)) + { + stat = appendPortals(apexIndex, rightIndex, portalRight, path, + straightPath, straightPathFlags, straightPathRefs, + straightPathCount, maxStraightPath, options); + if (stat != DT_IN_PROGRESS) + return stat; + } + dtVcopy(portalApex, portalRight); apexIndex = rightIndex; @@ -1264,31 +1825,13 @@ dtStatus dtNavMeshQuery::findStraightPath(const float* startPos, const float* en else if (rightPolyType == DT_POLYTYPE_OFFMESH_CONNECTION) flags = DT_STRAIGHTPATH_OFFMESH_CONNECTION; dtPolyRef ref = rightPolyRef; - - if (!dtVequal(&straightPath[(n-1)*3], portalApex)) - { - // Append new vertex. - dtVcopy(&straightPath[n*3], portalApex); - if (straightPathFlags) - straightPathFlags[n] = flags; - if (straightPathRefs) - straightPathRefs[n] = ref; - n++; - // If reached end of path or there is no space to append more vertices, return. - if (flags == DT_STRAIGHTPATH_END || n >= maxStraightPath) - { - *straightPathCount = n; - return DT_SUCCESS; - } - } - else - { - // The vertices are equal, update flags and poly. - if (straightPathFlags) - straightPathFlags[n-1] = flags; - if (straightPathRefs) - straightPathRefs[n-1] = ref; - } + + // Append or update vertex + stat = appendVertex(portalApex, flags, ref, + straightPath, straightPathFlags, straightPathRefs, + straightPathCount, maxStraightPath); + if (stat != DT_IN_PROGRESS) + return stat; dtVcopy(portalLeft, portalApex); dtVcopy(portalRight, portalApex); @@ -1302,27 +1845,45 @@ dtStatus dtNavMeshQuery::findStraightPath(const float* startPos, const float* en } } } + + // Append portals along the current straight path segment. + if (options & (DT_STRAIGHTPATH_AREA_CROSSINGS | DT_STRAIGHTPATH_ALL_CROSSINGS)) + { + stat = appendPortals(apexIndex, pathSize-1, closestEndPos, path, + straightPath, straightPathFlags, straightPathRefs, + straightPathCount, maxStraightPath, options); + if (stat != DT_IN_PROGRESS) + return stat; + } } + + stat = appendVertex(closestEndPos, DT_STRAIGHTPATH_END, 0, + straightPath, straightPathFlags, straightPathRefs, + straightPathCount, maxStraightPath); - // If the point already exists, remove it and add reappend the actual end location. - if (n > 0 && dtVequal(&straightPath[(n-1)*3], closestEndPos)) - n--; - - // Add end point. - if (n < maxStraightPath) - { - dtVcopy(&straightPath[n*3], closestEndPos); - if (straightPathFlags) - straightPathFlags[n] = DT_STRAIGHTPATH_END; - if (straightPathRefs) - straightPathRefs[n] = 0; - n++; - } - - *straightPathCount = n; - return DT_SUCCESS; + return DT_SUCCESS | ((*straightPathCount >= maxStraightPath) ? DT_BUFFER_TOO_SMALL : 0); } +/// @par +/// +/// This method is optimized for small delta movement and a small number of +/// polygons. If used for too great a distance, the result set will form an +/// incomplete path. +/// +/// @p resultPos will equal the @p endPos if the end is reached. +/// Otherwise the closest reachable position will be returned. +/// +/// @p resultPos is not projected onto the surface of the navigation +/// mesh. Use #getPolyHeight if this is needed. +/// +/// This method treats the end position in the same manner as +/// the #raycast method. (As a 2D point.) See that method's documentation +/// for details. +/// +/// If the @p visited array is too small to hold the entire result set, it will +/// be filled as far as possible from the start position toward the end +/// position. +/// dtStatus dtNavMeshQuery::moveAlongSurface(dtPolyRef startRef, const float* startPos, const float* endPos, const dtQueryFilter* filter, float* resultPos, dtPolyRef* visited, int* visitedCount, const int maxVisitedSize) const @@ -1333,8 +1894,12 @@ dtStatus dtNavMeshQuery::moveAlongSurface(dtPolyRef startRef, const float* start *visitedCount = 0; // Validate input - if (!startRef) return DT_FAILURE; - if (!m_nav->isValidPolyRef(startRef)) return DT_FAILURE; + if (!startRef) + return DT_FAILURE | DT_INVALID_PARAM; + if (!m_nav->isValidPolyRef(startRef)) + return DT_FAILURE | DT_INVALID_PARAM; + + dtStatus status = DT_SUCCESS; static const int MAX_STACK = 48; dtNode* stack[MAX_STACK]; @@ -1499,16 +2064,21 @@ dtStatus dtNavMeshQuery::moveAlongSurface(dtPolyRef startRef, const float* start do { visited[n++] = node->id; + if (n >= maxVisitedSize) + { + status |= DT_BUFFER_TOO_SMALL; + break; + } node = m_tinyNodePool->getNodeAtIdx(node->pidx); } - while (node && n < maxVisitedSize); + while (node); } dtVcopy(resultPos, bestPos); *visitedCount = n; - return DT_SUCCESS; + return status; } @@ -1519,14 +2089,14 @@ dtStatus dtNavMeshQuery::getPortalPoints(dtPolyRef from, dtPolyRef to, float* le const dtMeshTile* fromTile = 0; const dtPoly* fromPoly = 0; - if (m_nav->getTileAndPolyByRef(from, &fromTile, &fromPoly) != DT_SUCCESS) - return DT_FAILURE; + if (dtStatusFailed(m_nav->getTileAndPolyByRef(from, &fromTile, &fromPoly))) + return DT_FAILURE | DT_INVALID_PARAM; fromType = fromPoly->getType(); const dtMeshTile* toTile = 0; const dtPoly* toPoly = 0; - if (m_nav->getTileAndPolyByRef(to, &toTile, &toPoly) != DT_SUCCESS) - return DT_FAILURE; + if (dtStatusFailed(m_nav->getTileAndPolyByRef(to, &toTile, &toPoly))) + return DT_FAILURE | DT_INVALID_PARAM; toType = toPoly->getType(); return getPortalPoints(from, fromPoly, fromTile, to, toPoly, toTile, left, right); @@ -1548,7 +2118,7 @@ dtStatus dtNavMeshQuery::getPortalPoints(dtPolyRef from, const dtPoly* fromPoly, } } if (!link) - return DT_FAILURE; + return DT_FAILURE | DT_INVALID_PARAM; // Handle off-mesh connections. if (fromPoly->getType() == DT_POLYTYPE_OFFMESH_CONNECTION) @@ -1564,7 +2134,7 @@ dtStatus dtNavMeshQuery::getPortalPoints(dtPolyRef from, const dtPoly* fromPoly, return DT_SUCCESS; } } - return DT_FAILURE; + return DT_FAILURE | DT_INVALID_PARAM; } if (toPoly->getType() == DT_POLYTYPE_OFFMESH_CONNECTION) @@ -1579,7 +2149,7 @@ dtStatus dtNavMeshQuery::getPortalPoints(dtPolyRef from, const dtPoly* fromPoly, return DT_SUCCESS; } } - return DT_FAILURE; + return DT_FAILURE | DT_INVALID_PARAM; } // Find portal vertices. @@ -1611,7 +2181,8 @@ dtStatus dtNavMeshQuery::getEdgeMidPoint(dtPolyRef from, dtPolyRef to, float* mi { float left[3], right[3]; unsigned char fromType, toType; - if (!getPortalPoints(from, to, left,right, fromType, toType)) return DT_FAILURE; + if (dtStatusFailed(getPortalPoints(from, to, left,right, fromType, toType))) + return DT_FAILURE | DT_INVALID_PARAM; mid[0] = (left[0]+right[0])*0.5f; mid[1] = (left[1]+right[1])*0.5f; mid[2] = (left[2]+right[2])*0.5f; @@ -1623,14 +2194,52 @@ dtStatus dtNavMeshQuery::getEdgeMidPoint(dtPolyRef from, const dtPoly* fromPoly, float* mid) const { float left[3], right[3]; - if (getPortalPoints(from, fromPoly, fromTile, to, toPoly, toTile, left, right) != DT_SUCCESS) - return DT_FAILURE; + if (dtStatusFailed(getPortalPoints(from, fromPoly, fromTile, to, toPoly, toTile, left, right))) + return DT_FAILURE | DT_INVALID_PARAM; mid[0] = (left[0]+right[0])*0.5f; mid[1] = (left[1]+right[1])*0.5f; mid[2] = (left[2]+right[2])*0.5f; return DT_SUCCESS; } +/// @par +/// +/// This method is meant to be used for quick, short distance checks. +/// +/// If the path array is too small to hold the result, it will be filled as +/// far as possible from the start postion toward the end position. +/// +/// <b>Using the Hit Parameter (t)</b> +/// +/// If the hit parameter is a very high value (FLT_MAX), then the ray has hit +/// the end position. In this case the path represents a valid corridor to the +/// end position and the value of @p hitNormal is undefined. +/// +/// If the hit parameter is zero, then the start position is on the wall that +/// was hit and the value of @p hitNormal is undefined. +/// +/// If 0 < t < 1.0 then the following applies: +/// +/// @code +/// distanceToHitBorder = distanceToEndPosition * t +/// hitPoint = startPos + (endPos - startPos) * t +/// @endcode +/// +/// <b>Use Case Restriction</b> +/// +/// The raycast ignores the y-value of the end position. (2D check.) This +/// places significant limits on how it can be used. For example: +/// +/// Consider a scene where there is a main floor with a second floor balcony +/// that hangs over the main floor. So the first floor mesh extends below the +/// balcony mesh. The start position is somewhere on the first floor. The end +/// position is on the balcony. +/// +/// The raycast will search toward the end position along the first floor mesh. +/// If it reaches the end position's xz-coordinates it will indicate FLT_MAX +/// (no wall hit), meaning it reached the end position. This is one example of why +/// this method is meant for short distance checks. +/// dtStatus dtNavMeshQuery::raycast(dtPolyRef startRef, const float* startPos, const float* endPos, const dtQueryFilter* filter, float* t, float* hitNormal, dtPolyRef* path, int* pathCount, const int maxPath) const @@ -1643,7 +2252,7 @@ dtStatus dtNavMeshQuery::raycast(dtPolyRef startRef, const float* startPos, cons // Validate input if (!startRef || !m_nav->isValidPolyRef(startRef)) - return DT_FAILURE; + return DT_FAILURE | DT_INVALID_PARAM; dtPolyRef curRef = startRef; float verts[DT_VERTS_PER_POLYGON*3]; @@ -1653,6 +2262,8 @@ dtStatus dtNavMeshQuery::raycast(dtPolyRef startRef, const float* startPos, cons hitNormal[1] = 0; hitNormal[2] = 0; + dtStatus status = DT_SUCCESS; + while (curRef) { // Cast ray against current polygon. @@ -1677,7 +2288,7 @@ dtStatus dtNavMeshQuery::raycast(dtPolyRef startRef, const float* startPos, cons // Could not hit the polygon, keep the old t and report hit. if (pathCount) *pathCount = n; - return DT_SUCCESS; + return status; } // Keep track of furthest t so far. if (tmax > *t) @@ -1686,6 +2297,8 @@ dtStatus dtNavMeshQuery::raycast(dtPolyRef startRef, const float* startPos, cons // Store visited polygons. if (n < maxPath) path[n++] = curRef; + else + status |= DT_BUFFER_TOO_SMALL; // Ray end is completely inside the polygon. if (segMax == -1) @@ -1693,7 +2306,7 @@ dtStatus dtNavMeshQuery::raycast(dtPolyRef startRef, const float* startPos, cons *t = FLT_MAX; if (pathCount) *pathCount = n; - return DT_SUCCESS; + return status; } // Follow neighbours. @@ -1795,7 +2408,7 @@ dtStatus dtNavMeshQuery::raycast(dtPolyRef startRef, const float* startPos, cons if (pathCount) *pathCount = n; - return DT_SUCCESS; + return status; } // No hit, advance to neighbour polygon. @@ -1805,9 +2418,38 @@ dtStatus dtNavMeshQuery::raycast(dtPolyRef startRef, const float* startPos, cons if (pathCount) *pathCount = n; - return DT_SUCCESS; + return status; } +/// @par +/// +/// At least one result array must be provided. +/// +/// The order of the result set is from least to highest cost to reach the polygon. +/// +/// A common use case for this method is to perform Dijkstra searches. +/// Candidate polygons are found by searching the graph beginning at the start polygon. +/// +/// If a polygon is not found via the graph search, even if it intersects the +/// search circle, it will not be included in the result set. For example: +/// +/// polyA is the start polygon. +/// polyB shares an edge with polyA. (Is adjacent.) +/// polyC shares an edge with polyB, but not with polyA +/// Even if the search circle overlaps polyC, it will not be included in the +/// result set unless polyB is also in the set. +/// +/// The value of the center point is used as the start position for cost +/// calculations. It is not projected onto the surface of the mesh, so its +/// y-value will effect the costs. +/// +/// Intersection tests occur in 2D. All polygons and the search circle are +/// projected onto the xz-plane. So the y-value of the center point does not +/// effect intersection tests. +/// +/// If the result arrays are to small to hold the entire result set, they will be +/// filled to capacity. +/// dtStatus dtNavMeshQuery::findPolysAroundCircle(dtPolyRef startRef, const float* centerPos, const float radius, const dtQueryFilter* filter, dtPolyRef* resultRef, dtPolyRef* resultParent, float* resultCost, @@ -1820,8 +2462,8 @@ dtStatus dtNavMeshQuery::findPolysAroundCircle(dtPolyRef startRef, const float* *resultCount = 0; // Validate input - if (!startRef) return DT_FAILURE; - if (!m_nav->isValidPolyRef(startRef)) return DT_FAILURE; + if (!startRef || !m_nav->isValidPolyRef(startRef)) + return DT_FAILURE | DT_INVALID_PARAM; m_nodePool->clear(); m_openList->clear(); @@ -1835,6 +2477,8 @@ dtStatus dtNavMeshQuery::findPolysAroundCircle(dtPolyRef startRef, const float* startNode->flags = DT_NODE_OPEN; m_openList->push(startNode); + dtStatus status = DT_SUCCESS; + int n = 0; if (n < maxResult) { @@ -1846,6 +2490,10 @@ dtStatus dtNavMeshQuery::findPolysAroundCircle(dtPolyRef startRef, const float* resultCost[n] = 0; ++n; } + else + { + status |= DT_BUFFER_TOO_SMALL; + } const float radiusSqr = dtSqr(radius); @@ -1901,7 +2549,10 @@ dtStatus dtNavMeshQuery::findPolysAroundCircle(dtPolyRef startRef, const float* dtNode* neighbourNode = m_nodePool->getNode(neighbourRef); if (!neighbourNode) + { + status |= DT_OUT_OF_NODES; continue; + } if (neighbourNode->flags & DT_NODE_CLOSED) continue; @@ -1917,7 +2568,7 @@ dtStatus dtNavMeshQuery::findPolysAroundCircle(dtPolyRef startRef, const float* continue; neighbourNode->id = neighbourRef; - neighbourNode->flags &= ~DT_NODE_CLOSED; + neighbourNode->flags = (neighbourNode->flags & ~DT_NODE_CLOSED); neighbourNode->pidx = m_nodePool->getNodeIdx(bestNode); neighbourNode->total = total; @@ -1937,6 +2588,10 @@ dtStatus dtNavMeshQuery::findPolysAroundCircle(dtPolyRef startRef, const float* resultCost[n] = neighbourNode->total; ++n; } + else + { + status |= DT_BUFFER_TOO_SMALL; + } neighbourNode->flags = DT_NODE_OPEN; m_openList->push(neighbourNode); } @@ -1945,9 +2600,31 @@ dtStatus dtNavMeshQuery::findPolysAroundCircle(dtPolyRef startRef, const float* *resultCount = n; - return DT_SUCCESS; + return status; } +/// @par +/// +/// The order of the result set is from least to highest cost. +/// +/// At least one result array must be provided. +/// +/// A common use case for this method is to perform Dijkstra searches. +/// Candidate polygons are found by searching the graph beginning at the start +/// polygon. +/// +/// The same intersection test restrictions that apply to findPolysAroundCircle() +/// method apply to this method. +/// +/// The 3D centroid of the search polygon is used as the start position for cost +/// calculations. +/// +/// Intersection tests occur in 2D. All polygons are projected onto the +/// xz-plane. So the y-values of the vertices do not effect intersection tests. +/// +/// If the result arrays are is too small to hold the entire result set, they will +/// be filled to capacity. +/// dtStatus dtNavMeshQuery::findPolysAroundShape(dtPolyRef startRef, const float* verts, const int nverts, const dtQueryFilter* filter, dtPolyRef* resultRef, dtPolyRef* resultParent, float* resultCost, @@ -1960,8 +2637,8 @@ dtStatus dtNavMeshQuery::findPolysAroundShape(dtPolyRef startRef, const float* v *resultCount = 0; // Validate input - if (!startRef) return DT_FAILURE; - if (!m_nav->isValidPolyRef(startRef)) return DT_FAILURE; + if (!startRef || !m_nav->isValidPolyRef(startRef)) + return DT_FAILURE | DT_INVALID_PARAM; m_nodePool->clear(); m_openList->clear(); @@ -1980,6 +2657,8 @@ dtStatus dtNavMeshQuery::findPolysAroundShape(dtPolyRef startRef, const float* v startNode->flags = DT_NODE_OPEN; m_openList->push(startNode); + dtStatus status = DT_SUCCESS; + int n = 0; if (n < maxResult) { @@ -1991,6 +2670,10 @@ dtStatus dtNavMeshQuery::findPolysAroundShape(dtPolyRef startRef, const float* v resultCost[n] = 0; ++n; } + else + { + status |= DT_BUFFER_TOO_SMALL; + } while (!m_openList->empty()) { @@ -2046,7 +2729,10 @@ dtStatus dtNavMeshQuery::findPolysAroundShape(dtPolyRef startRef, const float* v dtNode* neighbourNode = m_nodePool->getNode(neighbourRef); if (!neighbourNode) + { + status |= DT_OUT_OF_NODES; continue; + } if (neighbourNode->flags & DT_NODE_CLOSED) continue; @@ -2062,7 +2748,7 @@ dtStatus dtNavMeshQuery::findPolysAroundShape(dtPolyRef startRef, const float* v continue; neighbourNode->id = neighbourRef; - neighbourNode->flags &= ~DT_NODE_CLOSED; + neighbourNode->flags = (neighbourNode->flags & ~DT_NODE_CLOSED); neighbourNode->pidx = m_nodePool->getNodeIdx(bestNode); neighbourNode->total = total; @@ -2082,6 +2768,10 @@ dtStatus dtNavMeshQuery::findPolysAroundShape(dtPolyRef startRef, const float* v resultCost[n] = neighbourNode->total; ++n; } + else + { + status |= DT_BUFFER_TOO_SMALL; + } neighbourNode->flags = DT_NODE_OPEN; m_openList->push(neighbourNode); } @@ -2090,9 +2780,31 @@ dtStatus dtNavMeshQuery::findPolysAroundShape(dtPolyRef startRef, const float* v *resultCount = n; - return DT_SUCCESS; + return status; } +/// @par +/// +/// This method is optimized for a small search radius and small number of result +/// polygons. +/// +/// Candidate polygons are found by searching the navigation graph beginning at +/// the start polygon. +/// +/// The same intersection test restrictions that apply to the findPolysAroundCircle +/// mehtod applies to this method. +/// +/// The value of the center point is used as the start point for cost calculations. +/// It is not projected onto the surface of the mesh, so its y-value will effect +/// the costs. +/// +/// Intersection tests occur in 2D. All polygons and the search circle are +/// projected onto the xz-plane. So the y-value of the center point does not +/// effect intersection tests. +/// +/// If the result arrays are is too small to hold the entire result set, they will +/// be filled to capacity. +/// dtStatus dtNavMeshQuery::findLocalNeighbourhood(dtPolyRef startRef, const float* centerPos, const float radius, const dtQueryFilter* filter, dtPolyRef* resultRef, dtPolyRef* resultParent, @@ -2104,8 +2816,8 @@ dtStatus dtNavMeshQuery::findLocalNeighbourhood(dtPolyRef startRef, const float* *resultCount = 0; // Validate input - if (!startRef) return DT_FAILURE; - if (!m_nav->isValidPolyRef(startRef)) return DT_FAILURE; + if (!startRef || !m_nav->isValidPolyRef(startRef)) + return DT_FAILURE | DT_INVALID_PARAM; static const int MAX_STACK = 48; dtNode* stack[MAX_STACK]; @@ -2124,6 +2836,8 @@ dtStatus dtNavMeshQuery::findLocalNeighbourhood(dtPolyRef startRef, const float* float pa[DT_VERTS_PER_POLYGON*3]; float pb[DT_VERTS_PER_POLYGON*3]; + dtStatus status = DT_SUCCESS; + int n = 0; if (n < maxResult) { @@ -2132,6 +2846,10 @@ dtStatus dtNavMeshQuery::findLocalNeighbourhood(dtPolyRef startRef, const float* resultParent[n] = 0; ++n; } + else + { + status |= DT_BUFFER_TOO_SMALL; + } while (nstack) { @@ -2245,6 +2963,10 @@ dtStatus dtNavMeshQuery::findLocalNeighbourhood(dtPolyRef startRef, const float* resultParent[n] = curRef; ++n; } + else + { + status |= DT_BUFFER_TOO_SMALL; + } if (nstack < MAX_STACK) { @@ -2255,17 +2977,18 @@ dtStatus dtNavMeshQuery::findLocalNeighbourhood(dtPolyRef startRef, const float* *resultCount = n; - return DT_SUCCESS; + return status; } struct dtSegInterval { + dtPolyRef ref; short tmin, tmax; }; static void insertInterval(dtSegInterval* ints, int& nints, const int maxInts, - const short tmin, const short tmax) + const short tmin, const short tmax, const dtPolyRef ref) { if (nints+1 > maxInts) return; // Find insertion point. @@ -2280,13 +3003,26 @@ static void insertInterval(dtSegInterval* ints, int& nints, const int maxInts, if (nints-idx) memmove(ints+idx+1, ints+idx, sizeof(dtSegInterval)*(nints-idx)); // Store + ints[idx].ref = ref; ints[idx].tmin = tmin; ints[idx].tmax = tmax; nints++; } +/// @par +/// +/// If the @p segmentRefs parameter is provided, then all polygon segments will be returned. +/// Otherwise only the wall segments are returned. +/// +/// A segment that is normally a portal will be included in the result set as a +/// wall if the @p filter results in the neighbor polygon becoomming impassable. +/// +/// The @p segmentVerts and @p segmentRefs buffers should normally be sized for the +/// maximum segments per polygon of the source navigation mesh. +/// dtStatus dtNavMeshQuery::getPolyWallSegments(dtPolyRef ref, const dtQueryFilter* filter, - float* segments, int* segmentCount, const int maxSegments) const + float* segmentVerts, dtPolyRef* segmentRefs, int* segmentCount, + const int maxSegments) const { dtAssert(m_nav); @@ -2294,14 +3030,18 @@ dtStatus dtNavMeshQuery::getPolyWallSegments(dtPolyRef ref, const dtQueryFilter* const dtMeshTile* tile = 0; const dtPoly* poly = 0; - if (m_nav->getTileAndPolyByRef(ref, &tile, &poly) != DT_SUCCESS) - return DT_FAILURE; + if (dtStatusFailed(m_nav->getTileAndPolyByRef(ref, &tile, &poly))) + return DT_FAILURE | DT_INVALID_PARAM; int n = 0; static const int MAX_INTERVAL = 16; dtSegInterval ints[MAX_INTERVAL]; int nints; + const bool storePortals = segmentRefs != 0; + + dtStatus status = DT_SUCCESS; + for (int i = 0, j = (int)poly->vertCount-1; i < (int)poly->vertCount; j = i++) { // Skip non-solid edges. @@ -2321,54 +3061,95 @@ dtStatus dtNavMeshQuery::getPolyWallSegments(dtPolyRef ref, const dtQueryFilter* m_nav->getTileAndPolyByRefUnsafe(link->ref, &neiTile, &neiPoly); if (filter->passFilter(link->ref, neiTile, neiPoly)) { - insertInterval(ints, nints, MAX_INTERVAL, link->bmin, link->bmax); + insertInterval(ints, nints, MAX_INTERVAL, link->bmin, link->bmax, link->ref); } } } } } - else if (poly->neis[j]) + else { // Internal edge - const unsigned int idx = (unsigned int)(poly->neis[j]-1); - const dtPolyRef ref = m_nav->getPolyRefBase(tile) | idx; - if (filter->passFilter(ref, tile, &tile->polys[idx])) + dtPolyRef neiRef = 0; + if (poly->neis[j]) + { + const unsigned int idx = (unsigned int)(poly->neis[j]-1); + neiRef = m_nav->getPolyRefBase(tile) | idx; + if (!filter->passFilter(neiRef, tile, &tile->polys[idx])) + neiRef = 0; + } + + // If the edge leads to another polygon and portals are not stored, skip. + if (neiRef != 0 && !storePortals) continue; + + if (n < maxSegments) + { + const float* vj = &tile->verts[poly->verts[j]*3]; + const float* vi = &tile->verts[poly->verts[i]*3]; + float* seg = &segmentVerts[n*6]; + dtVcopy(seg+0, vj); + dtVcopy(seg+3, vi); + if (segmentRefs) + segmentRefs[n] = neiRef; + n++; + } + else + { + status |= DT_BUFFER_TOO_SMALL; + } + + continue; } // Add sentinels - insertInterval(ints, nints, MAX_INTERVAL, -1, 0); - insertInterval(ints, nints, MAX_INTERVAL, 255, 256); + insertInterval(ints, nints, MAX_INTERVAL, -1, 0, 0); + insertInterval(ints, nints, MAX_INTERVAL, 255, 256, 0); - // Store segment. + // Store segments. const float* vj = &tile->verts[poly->verts[j]*3]; const float* vi = &tile->verts[poly->verts[i]*3]; for (int k = 1; k < nints; ++k) { - // Find the space inbetween the opening areas. - const int imin = ints[k-1].tmax; - const int imax = ints[k].tmin; - if (imin == imax) continue; - if (imin == 0 && imax == 255) + // Portal segment. + if (storePortals && ints[k].ref) { + const float tmin = ints[k].tmin/255.0f; + const float tmax = ints[k].tmax/255.0f; if (n < maxSegments) { - float* seg = &segments[n*6]; + float* seg = &segmentVerts[n*6]; + dtVlerp(seg+0, vj,vi, tmin); + dtVlerp(seg+3, vj,vi, tmax); + if (segmentRefs) + segmentRefs[n] = ints[k].ref; n++; - dtVcopy(seg+0, vj); - dtVcopy(seg+3, vi); + } + else + { + status |= DT_BUFFER_TOO_SMALL; } } - else + + // Wall segment. + const int imin = ints[k-1].tmax; + const int imax = ints[k].tmin; + if (imin != imax) { const float tmin = imin/255.0f; const float tmax = imax/255.0f; if (n < maxSegments) { - float* seg = &segments[n*6]; - n++; + float* seg = &segmentVerts[n*6]; dtVlerp(seg+0, vj,vi, tmin); dtVlerp(seg+3, vj,vi, tmax); + if (segmentRefs) + segmentRefs[n] = 0; + n++; + } + else + { + status |= DT_BUFFER_TOO_SMALL; } } } @@ -2376,9 +3157,19 @@ dtStatus dtNavMeshQuery::getPolyWallSegments(dtPolyRef ref, const dtQueryFilter* *segmentCount = n; - return DT_SUCCESS; + return status; } +/// @par +/// +/// @p hitPos is not adjusted using the height detail data. +/// +/// @p hitDist will equal the search radius if there is no wall within the +/// radius. In this case the values of @p hitPos and @p hitNormal are +/// undefined. +/// +/// The normal will become unpredicable if @p hitDist is a very small number. +/// dtStatus dtNavMeshQuery::findDistanceToWall(dtPolyRef startRef, const float* centerPos, const float maxRadius, const dtQueryFilter* filter, float* hitDist, float* hitPos, float* hitNormal) const @@ -2388,8 +3179,8 @@ dtStatus dtNavMeshQuery::findDistanceToWall(dtPolyRef startRef, const float* cen dtAssert(m_openList); // Validate input - if (!startRef) return DT_FAILURE; - if (!m_nav->isValidPolyRef(startRef)) return DT_FAILURE; + if (!startRef || !m_nav->isValidPolyRef(startRef)) + return DT_FAILURE | DT_INVALID_PARAM; m_nodePool->clear(); m_openList->clear(); @@ -2405,6 +3196,8 @@ dtStatus dtNavMeshQuery::findDistanceToWall(dtPolyRef startRef, const float* cen float radiusSqr = dtSqr(maxRadius); + dtStatus status = DT_SUCCESS; + while (!m_openList->empty()) { dtNode* bestNode = m_openList->pop(); @@ -2512,7 +3305,10 @@ dtStatus dtNavMeshQuery::findDistanceToWall(dtPolyRef startRef, const float* cen dtNode* neighbourNode = m_nodePool->getNode(neighbourRef); if (!neighbourNode) + { + status |= DT_OUT_OF_NODES; continue; + } if (neighbourNode->flags & DT_NODE_CLOSED) continue; @@ -2531,7 +3327,7 @@ dtStatus dtNavMeshQuery::findDistanceToWall(dtPolyRef startRef, const float* cen continue; neighbourNode->id = neighbourRef; - neighbourNode->flags &= ~DT_NODE_CLOSED; + neighbourNode->flags = (neighbourNode->flags & ~DT_NODE_CLOSED); neighbourNode->pidx = m_nodePool->getNodeIdx(bestNode); neighbourNode->total = total; @@ -2551,11 +3347,30 @@ dtStatus dtNavMeshQuery::findDistanceToWall(dtPolyRef startRef, const float* cen dtVsub(hitNormal, centerPos, hitPos); dtVnormalize(hitNormal); - *hitDist = sqrtf(radiusSqr); + *hitDist = dtSqrt(radiusSqr); - return DT_SUCCESS; + return status; +} + +bool dtNavMeshQuery::isValidPolyRef(dtPolyRef ref, const dtQueryFilter* filter) const +{ + const dtMeshTile* tile = 0; + const dtPoly* poly = 0; + dtStatus status = m_nav->getTileAndPolyByRef(ref, &tile, &poly); + // If cannot get polygon, assume it does not exists and boundary is invalid. + if (dtStatusFailed(status)) + return false; + // If cannot pass filter, assume flags has changed and boundary is invalid. + if (!filter->passFilter(ref, tile, poly)) + return false; + return true; } +/// @par +/// +/// The closed list is the list of polygons that were fully evaluated during +/// the last navigation graph search. (A* or Dijkstra) +/// bool dtNavMeshQuery::isInClosedList(dtPolyRef ref) const { if (!m_nodePool) return false; |