diff options
Diffstat (limited to 'dep/src/g3dlite/Matrix3.cpp')
-rw-r--r-- | dep/src/g3dlite/Matrix3.cpp | 295 |
1 files changed, 295 insertions, 0 deletions
diff --git a/dep/src/g3dlite/Matrix3.cpp b/dep/src/g3dlite/Matrix3.cpp index 717939c8809..630c1883c0b 100644 --- a/dep/src/g3dlite/Matrix3.cpp +++ b/dep/src/g3dlite/Matrix3.cpp @@ -1,10 +1,14 @@ /** @file Matrix3.cpp + 3x3 matrix class + @author Morgan McGuire, graphics3d.com + @created 2001-06-02 @edited 2006-04-06 */ + #include "G3D/platform.h" #include "G3D/format.h" #include <memory.h> @@ -12,21 +16,28 @@ #include "G3D/Matrix3.h" #include "G3D/g3dmath.h" #include "G3D/Quat.h" + namespace G3D { + const float Matrix3::EPSILON = 1e-06f; + const Matrix3& Matrix3::zero() { static Matrix3 m(0, 0, 0, 0, 0, 0, 0, 0, 0); return m; } + const Matrix3& Matrix3::identity() { static Matrix3 m(1, 0, 0, 0, 1, 0, 0, 0, 1); return m; } + // Deprecated. const Matrix3 Matrix3::ZERO(0, 0, 0, 0, 0, 0, 0, 0, 0); const Matrix3 Matrix3::IDENTITY(1, 0, 0, 0, 1, 0, 0, 0, 1); + const float Matrix3::ms_fSvdEpsilon = 1e-04f; const int Matrix3::ms_iSvdMaxIterations = 32; + bool Matrix3::fuzzyEq(const Matrix3& b) const { for (int r = 0; r < 3; ++r) { for (int c = 0; c < 3; ++c) { @@ -38,10 +49,12 @@ bool Matrix3::fuzzyEq(const Matrix3& b) const { return true; } + bool Matrix3::isOrthonormal() const { Vector3 X = getColumn(0); Vector3 Y = getColumn(1); Vector3 Z = getColumn(2); + return (G3D::fuzzyEq(X.dot(Y), 0.0f) && G3D::fuzzyEq(Y.dot(Z), 0.0f) && @@ -50,6 +63,7 @@ bool Matrix3::isOrthonormal() const { G3D::fuzzyEq(Y.squaredMagnitude(), 1.0f) && G3D::fuzzyEq(Z.squaredMagnitude(), 1.0f)); } + //---------------------------------------------------------------------------- Matrix3::Matrix3(const Quat& _q) { // Implementation from Watt and Watt, pg 362 @@ -59,23 +73,30 @@ Matrix3::Matrix3(const Quat& _q) { float xy = 2.0f * q.x * q.y; float xz = 2.0f * q.x * q.z; float xw = 2.0f * q.x * q.w; + float yy = 2.0f * q.y * q.y; float yz = 2.0f * q.y * q.z; float yw = 2.0f * q.y * q.w; + float zz = 2.0f * q.z * q.z; float zw = 2.0f * q.z * q.w; + set(1.0f - yy - zz, xy - zw, xz + yw, xy + zw, 1.0f - xx - zz, yz - xw, xz - yw, yz + xw, 1.0f - xx - yy); } + //---------------------------------------------------------------------------- + Matrix3::Matrix3 (const float aafEntry[3][3]) { memcpy(elt, aafEntry, 9*sizeof(float)); } + //---------------------------------------------------------------------------- Matrix3::Matrix3 (const Matrix3& rkMatrix) { memcpy(elt, rkMatrix.elt, 9*sizeof(float)); } + //---------------------------------------------------------------------------- Matrix3::Matrix3( float fEntry00, float fEntry01, float fEntry02, @@ -85,10 +106,12 @@ Matrix3::Matrix3( fEntry10, fEntry11, fEntry12, fEntry20, fEntry21, fEntry22); } + void Matrix3::set( float fEntry00, float fEntry01, float fEntry02, float fEntry10, float fEntry11, float fEntry12, float fEntry20, float fEntry21, float fEntry22) { + elt[0][0] = fEntry00; elt[0][1] = fEntry01; elt[0][2] = fEntry02; @@ -100,15 +123,18 @@ void Matrix3::set( elt[2][2] = fEntry22; } + //---------------------------------------------------------------------------- Vector3 Matrix3::getColumn (int iCol) const { assert((0 <= iCol) && (iCol < 3)); return Vector3(elt[0][iCol], elt[1][iCol], elt[2][iCol]); } + Vector3 Matrix3::getRow (int iRow) const { return Vector3(elt[iRow][0], elt[iRow][1], elt[iRow][2]); } + void Matrix3::setColumn(int iCol, const Vector3 &vector) { debugAssert((iCol >= 0) && (iCol < 3)); elt[0][iCol] = vector.x; @@ -116,6 +142,7 @@ void Matrix3::setColumn(int iCol, const Vector3 &vector) { elt[2][iCol] = vector.z; } + void Matrix3::setRow(int iRow, const Vector3 &vector) { debugAssert((iRow >= 0) && (iRow < 3)); elt[iRow][0] = vector.x; @@ -123,6 +150,7 @@ void Matrix3::setRow(int iRow, const Vector3 &vector) { elt[iRow][2] = vector.z; } + //---------------------------------------------------------------------------- bool Matrix3::operator== (const Matrix3& rkMatrix) const { for (int iRow = 0; iRow < 3; iRow++) { @@ -131,37 +159,47 @@ bool Matrix3::operator== (const Matrix3& rkMatrix) const { return false; } } + return true; } + //---------------------------------------------------------------------------- bool Matrix3::operator!= (const Matrix3& rkMatrix) const { return !operator==(rkMatrix); } + //---------------------------------------------------------------------------- Matrix3 Matrix3::operator+ (const Matrix3& rkMatrix) const { Matrix3 kSum; + for (int iRow = 0; iRow < 3; iRow++) { for (int iCol = 0; iCol < 3; iCol++) { kSum.elt[iRow][iCol] = elt[iRow][iCol] + rkMatrix.elt[iRow][iCol]; } } + return kSum; } + //---------------------------------------------------------------------------- Matrix3 Matrix3::operator- (const Matrix3& rkMatrix) const { Matrix3 kDiff; + for (int iRow = 0; iRow < 3; iRow++) { for (int iCol = 0; iCol < 3; iCol++) { kDiff.elt[iRow][iCol] = elt[iRow][iCol] - rkMatrix.elt[iRow][iCol]; } } + return kDiff; } + //---------------------------------------------------------------------------- Matrix3 Matrix3::operator* (const Matrix3& rkMatrix) const { Matrix3 kProd; + for (int iRow = 0; iRow < 3; iRow++) { for (int iCol = 0; iCol < 3; iCol++) { kProd.elt[iRow][iCol] = @@ -170,24 +208,30 @@ Matrix3 Matrix3::operator* (const Matrix3& rkMatrix) const { elt[iRow][2] * rkMatrix.elt[2][iCol]; } } + return kProd; } + Matrix3& Matrix3::operator+= (const Matrix3& rkMatrix) { for (int iRow = 0; iRow < 3; iRow++) { for (int iCol = 0; iCol < 3; iCol++) { elt[iRow][iCol] = elt[iRow][iCol] + rkMatrix.elt[iRow][iCol]; } } + return *this; } + Matrix3& Matrix3::operator-= (const Matrix3& rkMatrix) { for (int iRow = 0; iRow < 3; iRow++) { for (int iCol = 0; iCol < 3; iCol++) { elt[iRow][iCol] = elt[iRow][iCol] - rkMatrix.elt[iRow][iCol]; } } + return *this; } + Matrix3& Matrix3::operator*= (const Matrix3& rkMatrix) { Matrix3 mulMat; for (int iRow = 0; iRow < 3; iRow++) { @@ -198,60 +242,76 @@ Matrix3& Matrix3::operator*= (const Matrix3& rkMatrix) { elt[iRow][2] * rkMatrix.elt[2][iCol]; } } + *this = mulMat; return *this; } + //---------------------------------------------------------------------------- Matrix3 Matrix3::operator- () const { Matrix3 kNeg; + for (int iRow = 0; iRow < 3; iRow++) { for (int iCol = 0; iCol < 3; iCol++) { kNeg[iRow][iCol] = -elt[iRow][iCol]; } } + return kNeg; } + //---------------------------------------------------------------------------- Matrix3 Matrix3::operator* (float fScalar) const { Matrix3 kProd; + for (int iRow = 0; iRow < 3; iRow++) { for (int iCol = 0; iCol < 3; iCol++) { kProd[iRow][iCol] = fScalar * elt[iRow][iCol]; } } + return kProd; } + //---------------------------------------------------------------------------- Matrix3 operator* (double fScalar, const Matrix3& rkMatrix) { Matrix3 kProd; + for (int iRow = 0; iRow < 3; iRow++) { for (int iCol = 0; iCol < 3; iCol++) { kProd[iRow][iCol] = fScalar * rkMatrix.elt[iRow][iCol]; } } + return kProd; } + Matrix3 operator* (float fScalar, const Matrix3& rkMatrix) { return (double)fScalar * rkMatrix; } + Matrix3 operator* (int fScalar, const Matrix3& rkMatrix) { return (double)fScalar * rkMatrix; } //---------------------------------------------------------------------------- Matrix3 Matrix3::transpose () const { Matrix3 kTranspose; + for (int iRow = 0; iRow < 3; iRow++) { for (int iCol = 0; iCol < 3; iCol++) { kTranspose[iRow][iCol] = elt[iCol][iRow]; } } + return kTranspose; } + //---------------------------------------------------------------------------- bool Matrix3::inverse (Matrix3& rkInverse, float fTolerance) const { // Invert a 3x3 using cofactors. This is about 8 times faster than // the Numerical Recipes code which uses Gaussian elimination. + rkInverse[0][0] = elt[1][1] * elt[2][2] - elt[1][2] * elt[2][1]; rkInverse[0][1] = elt[0][2] * elt[2][1] - @@ -270,25 +330,32 @@ bool Matrix3::inverse (Matrix3& rkInverse, float fTolerance) const { elt[0][0] * elt[2][1]; rkInverse[2][2] = elt[0][0] * elt[1][1] - elt[0][1] * elt[1][0]; + float fDet = elt[0][0] * rkInverse[0][0] + elt[0][1] * rkInverse[1][0] + elt[0][2] * rkInverse[2][0]; + if ( G3D::abs(fDet) <= fTolerance ) return false; + float fInvDet = 1.0 / fDet; + for (int iRow = 0; iRow < 3; iRow++) { for (int iCol = 0; iCol < 3; iCol++) rkInverse[iRow][iCol] *= fInvDet; } + return true; } + //---------------------------------------------------------------------------- Matrix3 Matrix3::inverse (float fTolerance) const { Matrix3 kInverse = Matrix3::zero(); inverse(kInverse, fTolerance); return kInverse; } + //---------------------------------------------------------------------------- float Matrix3::determinant () const { float fCofactor00 = elt[1][1] * elt[2][2] - @@ -297,27 +364,33 @@ float Matrix3::determinant () const { elt[1][0] * elt[2][2]; float fCofactor20 = elt[1][0] * elt[2][1] - elt[1][1] * elt[2][0]; + float fDet = elt[0][0] * fCofactor00 + elt[0][1] * fCofactor10 + elt[0][2] * fCofactor20; + return fDet; } + //---------------------------------------------------------------------------- void Matrix3::bidiagonalize (Matrix3& kA, Matrix3& kL, Matrix3& kR) { float afV[3], afW[3]; float fLength, fSign, fT1, fInvT1, fT2; bool bIdentity; + // map first column to (*,0,0) fLength = sqrt(kA[0][0] * kA[0][0] + kA[1][0] * kA[1][0] + kA[2][0] * kA[2][0]); + if ( fLength > 0.0 ) { fSign = (kA[0][0] > 0.0 ? 1.0 : -1.0); fT1 = kA[0][0] + fSign * fLength; fInvT1 = 1.0 / fT1; afV[1] = kA[1][0] * fInvT1; afV[2] = kA[2][0] * fInvT1; + fT2 = -2.0 / (1.0 + afV[1] * afV[1] + afV[2] * afV[2]); afW[0] = fT2 * (kA[0][0] + kA[1][0] * afV[1] + kA[2][0] * afV[2]); afW[1] = fT2 * (kA[0][1] + kA[1][1] * afV[1] + kA[2][1] * afV[2]); @@ -329,6 +402,7 @@ void Matrix3::bidiagonalize (Matrix3& kA, Matrix3& kL, kA[1][2] += afV[1] * afW[2]; kA[2][1] += afV[2] * afW[1]; kA[2][2] += afV[2] * afW[2]; + kL[0][0] = 1.0 + fT2; kL[0][1] = kL[1][0] = fT2 * afV[1]; kL[0][2] = kL[2][0] = fT2 * afV[2]; @@ -340,12 +414,15 @@ void Matrix3::bidiagonalize (Matrix3& kA, Matrix3& kL, kL = Matrix3::identity(); bIdentity = true; } + // map first row to (*,*,0) fLength = sqrt(kA[0][1] * kA[0][1] + kA[0][2] * kA[0][2]); + if ( fLength > 0.0 ) { fSign = (kA[0][1] > 0.0 ? 1.0 : -1.0); fT1 = kA[0][1] + fSign * fLength; afV[2] = kA[0][2] / fT1; + fT2 = -2.0 / (1.0 + afV[2] * afV[2]); afW[0] = fT2 * (kA[0][1] + kA[0][2] * afV[2]); afW[1] = fT2 * (kA[1][1] + kA[1][2] * afV[2]); @@ -355,6 +432,7 @@ void Matrix3::bidiagonalize (Matrix3& kA, Matrix3& kL, kA[1][2] += afW[1] * afV[2]; kA[2][1] += afW[2]; kA[2][2] += afW[2] * afV[2]; + kR[0][0] = 1.0; kR[0][1] = kR[1][0] = 0.0; kR[0][2] = kR[2][0] = 0.0; @@ -364,21 +442,26 @@ void Matrix3::bidiagonalize (Matrix3& kA, Matrix3& kL, } else { kR = Matrix3::identity(); } + // map second column to (*,*,0) fLength = sqrt(kA[1][1] * kA[1][1] + kA[2][1] * kA[2][1]); + if ( fLength > 0.0 ) { fSign = (kA[1][1] > 0.0 ? 1.0 : -1.0); fT1 = kA[1][1] + fSign * fLength; afV[2] = kA[2][1] / fT1; + fT2 = -2.0 / (1.0 + afV[2] * afV[2]); afW[1] = fT2 * (kA[1][1] + kA[2][1] * afV[2]); afW[2] = fT2 * (kA[1][2] + kA[2][2] * afV[2]); kA[1][1] += afW[1]; kA[1][2] += afW[2]; kA[2][2] += afV[2] * afW[2]; + float fA = 1.0 + fT2; float fB = fT2 * afV[2]; float fC = 1.0 + fB * afV[2]; + if ( bIdentity ) { kL[0][0] = 1.0; kL[0][1] = kL[1][0] = 0.0; @@ -396,6 +479,7 @@ void Matrix3::bidiagonalize (Matrix3& kA, Matrix3& kL, } } } + //---------------------------------------------------------------------------- void Matrix3::golubKahanStep (Matrix3& kA, Matrix3& kL, Matrix3& kR) { @@ -407,6 +491,7 @@ void Matrix3::golubKahanStep (Matrix3& kA, Matrix3& kL, float fDiscr = sqrt(fDiff * fDiff + 4.0 * fT12 * fT12); float fRoot1 = 0.5 * (fTrace + fDiscr); float fRoot2 = 0.5 * (fTrace - fDiscr); + // adjust right float fY = kA[0][0] - (G3D::abs(fRoot1 - fT22) <= G3D::abs(fRoot2 - fT22) ? fRoot1 : fRoot2); @@ -414,69 +499,110 @@ void Matrix3::golubKahanStep (Matrix3& kA, Matrix3& kL, float fInvLength = 1.0 / sqrt(fY * fY + fZ * fZ); float fSin = fZ * fInvLength; float fCos = -fY * fInvLength; + float fTmp0 = kA[0][0]; float fTmp1 = kA[0][1]; kA[0][0] = fCos * fTmp0 - fSin * fTmp1; kA[0][1] = fSin * fTmp0 + fCos * fTmp1; kA[1][0] = -fSin * kA[1][1]; kA[1][1] *= fCos; + int iRow; + for (iRow = 0; iRow < 3; iRow++) { fTmp0 = kR[0][iRow]; fTmp1 = kR[1][iRow]; kR[0][iRow] = fCos * fTmp0 - fSin * fTmp1; kR[1][iRow] = fSin * fTmp0 + fCos * fTmp1; } + // adjust left fY = kA[0][0]; + fZ = kA[1][0]; + fInvLength = 1.0 / sqrt(fY * fY + fZ * fZ); + fSin = fZ * fInvLength; + fCos = -fY * fInvLength; + kA[0][0] = fCos * kA[0][0] - fSin * kA[1][0]; + fTmp0 = kA[0][1]; + fTmp1 = kA[1][1]; + kA[0][1] = fCos * fTmp0 - fSin * fTmp1; + kA[1][1] = fSin * fTmp0 + fCos * fTmp1; + kA[0][2] = -fSin * kA[1][2]; + kA[1][2] *= fCos; + int iCol; + for (iCol = 0; iCol < 3; iCol++) { fTmp0 = kL[iCol][0]; fTmp1 = kL[iCol][1]; kL[iCol][0] = fCos * fTmp0 - fSin * fTmp1; kL[iCol][1] = fSin * fTmp0 + fCos * fTmp1; } + // adjust right fY = kA[0][1]; + fZ = kA[0][2]; + fInvLength = 1.0 / sqrt(fY * fY + fZ * fZ); + fSin = fZ * fInvLength; + fCos = -fY * fInvLength; + kA[0][1] = fCos * kA[0][1] - fSin * kA[0][2]; + fTmp0 = kA[1][1]; + fTmp1 = kA[1][2]; + kA[1][1] = fCos * fTmp0 - fSin * fTmp1; + kA[1][2] = fSin * fTmp0 + fCos * fTmp1; + kA[2][1] = -fSin * kA[2][2]; + kA[2][2] *= fCos; + for (iRow = 0; iRow < 3; iRow++) { fTmp0 = kR[1][iRow]; fTmp1 = kR[2][iRow]; kR[1][iRow] = fCos * fTmp0 - fSin * fTmp1; kR[2][iRow] = fSin * fTmp0 + fCos * fTmp1; } + // adjust left fY = kA[1][1]; + fZ = kA[2][1]; + fInvLength = 1.0 / sqrt(fY * fY + fZ * fZ); + fSin = fZ * fInvLength; + fCos = -fY * fInvLength; + kA[1][1] = fCos * kA[1][1] - fSin * kA[2][1]; + fTmp0 = kA[1][2]; + fTmp1 = kA[2][2]; + kA[1][2] = fCos * fTmp0 - fSin * fTmp1; + kA[2][2] = fSin * fTmp0 + fCos * fTmp1; + for (iCol = 0; iCol < 3; iCol++) { fTmp0 = kL[iCol][1]; fTmp1 = kL[iCol][2]; @@ -484,20 +610,25 @@ void Matrix3::golubKahanStep (Matrix3& kA, Matrix3& kL, kL[iCol][2] = fSin * fTmp0 + fCos * fTmp1; } } + //---------------------------------------------------------------------------- void Matrix3::singularValueDecomposition (Matrix3& kL, Vector3& kS, Matrix3& kR) const { int iRow, iCol; + Matrix3 kA = *this; bidiagonalize(kA, kL, kR); + for (int i = 0; i < ms_iSvdMaxIterations; i++) { float fTmp, fTmp0, fTmp1; float fSin0, fCos0, fTan0; float fSin1, fCos1, fTan1; + bool bTest1 = (G3D::abs(kA[0][1]) <= ms_fSvdEpsilon * (G3D::abs(kA[0][0]) + G3D::abs(kA[1][1]))); bool bTest2 = (G3D::abs(kA[1][2]) <= ms_fSvdEpsilon * (G3D::abs(kA[1][1]) + G3D::abs(kA[2][2]))); + if ( bTest1 ) { if ( bTest2 ) { kS[0] = kA[0][0]; @@ -511,21 +642,25 @@ void Matrix3::singularValueDecomposition (Matrix3& kL, Vector3& kS, fTan0 = 0.5 * (fTmp + sqrt(fTmp * fTmp + 4.0)); fCos0 = 1.0 / sqrt(1.0 + fTan0 * fTan0); fSin0 = fTan0 * fCos0; + for (iCol = 0; iCol < 3; iCol++) { fTmp0 = kL[iCol][1]; fTmp1 = kL[iCol][2]; kL[iCol][1] = fCos0 * fTmp0 - fSin0 * fTmp1; kL[iCol][2] = fSin0 * fTmp0 + fCos0 * fTmp1; } + fTan1 = (kA[1][2] - kA[2][2] * fTan0) / kA[1][1]; fCos1 = 1.0 / sqrt(1.0 + fTan1 * fTan1); fSin1 = -fTan1 * fCos1; + for (iRow = 0; iRow < 3; iRow++) { fTmp0 = kR[1][iRow]; fTmp1 = kR[2][iRow]; kR[1][iRow] = fCos1 * fTmp0 - fSin1 * fTmp1; kR[2][iRow] = fSin1 * fTmp0 + fCos1 * fTmp1; } + kS[0] = kA[0][0]; kS[1] = fCos0 * fCos1 * kA[1][1] - fSin1 * (fCos0 * kA[1][2] - fSin0 * kA[2][2]); @@ -541,21 +676,25 @@ void Matrix3::singularValueDecomposition (Matrix3& kL, Vector3& kS, fTan0 = 0.5 * ( -fTmp + sqrt(fTmp * fTmp + 4.0)); fCos0 = 1.0 / sqrt(1.0 + fTan0 * fTan0); fSin0 = fTan0 * fCos0; + for (iCol = 0; iCol < 3; iCol++) { fTmp0 = kL[iCol][0]; fTmp1 = kL[iCol][1]; kL[iCol][0] = fCos0 * fTmp0 - fSin0 * fTmp1; kL[iCol][1] = fSin0 * fTmp0 + fCos0 * fTmp1; } + fTan1 = (kA[0][1] - kA[1][1] * fTan0) / kA[0][0]; fCos1 = 1.0 / sqrt(1.0 + fTan1 * fTan1); fSin1 = -fTan1 * fCos1; + for (iRow = 0; iRow < 3; iRow++) { fTmp0 = kR[0][iRow]; fTmp1 = kR[1][iRow]; kR[0][iRow] = fCos1 * fTmp0 - fSin1 * fTmp1; kR[1][iRow] = fSin1 * fTmp0 + fCos1 * fTmp1; } + kS[0] = fCos0 * fCos1 * kA[0][0] - fSin1 * (fCos0 * kA[0][1] - fSin0 * kA[1][1]); kS[1] = fSin0 * fSin1 * kA[0][0] + @@ -567,34 +706,41 @@ void Matrix3::singularValueDecomposition (Matrix3& kL, Vector3& kS, } } } + // positize diagonal for (iRow = 0; iRow < 3; iRow++) { if ( kS[iRow] < 0.0 ) { kS[iRow] = -kS[iRow]; + for (iCol = 0; iCol < 3; iCol++) kR[iRow][iCol] = -kR[iRow][iCol]; } } } + //---------------------------------------------------------------------------- void Matrix3::singularValueComposition (const Matrix3& kL, const Vector3& kS, const Matrix3& kR) { int iRow, iCol; Matrix3 kTmp; + // product S*R for (iRow = 0; iRow < 3; iRow++) { for (iCol = 0; iCol < 3; iCol++) kTmp[iRow][iCol] = kS[iRow] * kR[iRow][iCol]; } + // product L*S*R for (iRow = 0; iRow < 3; iRow++) { for (iCol = 0; iCol < 3; iCol++) { elt[iRow][iCol] = 0.0; + for (int iMid = 0; iMid < 3; iMid++) elt[iRow][iCol] += kL[iRow][iMid] * kTmp[iMid][iCol]; } } } + //---------------------------------------------------------------------------- void Matrix3::orthonormalize () { // Algorithm uses Gram-Schmidt orthogonalization. If 'this' matrix is @@ -606,46 +752,58 @@ void Matrix3::orthonormalize () { // // where |V| indicates length of vector V and A*B indicates dot // product of vectors A and B. + // compute q0 float fInvLength = 1.0 / sqrt(elt[0][0] * elt[0][0] + elt[1][0] * elt[1][0] + elt[2][0] * elt[2][0]); + elt[0][0] *= fInvLength; elt[1][0] *= fInvLength; elt[2][0] *= fInvLength; + // compute q1 float fDot0 = elt[0][0] * elt[0][1] + elt[1][0] * elt[1][1] + elt[2][0] * elt[2][1]; + elt[0][1] -= fDot0 * elt[0][0]; elt[1][1] -= fDot0 * elt[1][0]; elt[2][1] -= fDot0 * elt[2][0]; + fInvLength = 1.0 / sqrt(elt[0][1] * elt[0][1] + elt[1][1] * elt[1][1] + elt[2][1] * elt[2][1]); + elt[0][1] *= fInvLength; elt[1][1] *= fInvLength; elt[2][1] *= fInvLength; + // compute q2 float fDot1 = elt[0][1] * elt[0][2] + elt[1][1] * elt[1][2] + elt[2][1] * elt[2][2]; + fDot0 = elt[0][0] * elt[0][2] + elt[1][0] * elt[1][2] + elt[2][0] * elt[2][2]; + elt[0][2] -= fDot0 * elt[0][0] + fDot1 * elt[0][1]; elt[1][2] -= fDot0 * elt[1][0] + fDot1 * elt[1][1]; elt[2][2] -= fDot0 * elt[2][0] + fDot1 * elt[2][1]; + fInvLength = 1.0 / sqrt(elt[0][2] * elt[0][2] + elt[1][2] * elt[1][2] + elt[2][2] * elt[2][2]); + elt[0][2] *= fInvLength; elt[1][2] *= fInvLength; elt[2][2] *= fInvLength; } + //---------------------------------------------------------------------------- void Matrix3::qDUDecomposition (Matrix3& kQ, Vector3& kD, Vector3& kU) const { @@ -668,11 +826,14 @@ void Matrix3::qDUDecomposition (Matrix3& kQ, // // so D = diag(r00,r11,r22) and U has entries u01 = r01/r00, // u02 = r02/r00, and u12 = r12/r11. + // Q = rotation // D = scaling // U = shear + // D stores the three diagonal entries r00, r11, r22 // U stores the entries U[0] = u01, U[1] = u02, U[2] = u12 + // build orthogonal matrix Q float fInvLength = 1.0 / sqrt(elt[0][0] * elt[0][0] + elt[1][0] * elt[1][0] + @@ -680,6 +841,7 @@ void Matrix3::qDUDecomposition (Matrix3& kQ, kQ[0][0] = elt[0][0] * fInvLength; kQ[1][0] = elt[1][0] * fInvLength; kQ[2][0] = elt[2][0] * fInvLength; + float fDot = kQ[0][0] * elt[0][1] + kQ[1][0] * elt[1][1] + kQ[2][0] * elt[2][1]; kQ[0][1] = elt[0][1] - fDot * kQ[0][0]; @@ -690,6 +852,7 @@ void Matrix3::qDUDecomposition (Matrix3& kQ, kQ[0][1] *= fInvLength; kQ[1][1] *= fInvLength; kQ[2][1] *= fInvLength; + fDot = kQ[0][0] * elt[0][2] + kQ[1][0] * elt[1][2] + kQ[2][0] * elt[2][2]; kQ[0][2] = elt[0][2] - fDot * kQ[0][0]; @@ -705,96 +868,134 @@ void Matrix3::qDUDecomposition (Matrix3& kQ, kQ[0][2] *= fInvLength; kQ[1][2] *= fInvLength; kQ[2][2] *= fInvLength; + // guarantee that orthogonal matrix has determinant 1 (no reflections) float fDet = kQ[0][0] * kQ[1][1] * kQ[2][2] + kQ[0][1] * kQ[1][2] * kQ[2][0] + kQ[0][2] * kQ[1][0] * kQ[2][1] - kQ[0][2] * kQ[1][1] * kQ[2][0] - kQ[0][1] * kQ[1][0] * kQ[2][2] - kQ[0][0] * kQ[1][2] * kQ[2][1]; + if ( fDet < 0.0 ) { for (int iRow = 0; iRow < 3; iRow++) for (int iCol = 0; iCol < 3; iCol++) kQ[iRow][iCol] = -kQ[iRow][iCol]; } + // build "right" matrix R Matrix3 kR; + kR[0][0] = kQ[0][0] * elt[0][0] + kQ[1][0] * elt[1][0] + kQ[2][0] * elt[2][0]; + kR[0][1] = kQ[0][0] * elt[0][1] + kQ[1][0] * elt[1][1] + kQ[2][0] * elt[2][1]; + kR[1][1] = kQ[0][1] * elt[0][1] + kQ[1][1] * elt[1][1] + kQ[2][1] * elt[2][1]; + kR[0][2] = kQ[0][0] * elt[0][2] + kQ[1][0] * elt[1][2] + kQ[2][0] * elt[2][2]; + kR[1][2] = kQ[0][1] * elt[0][2] + kQ[1][1] * elt[1][2] + kQ[2][1] * elt[2][2]; + kR[2][2] = kQ[0][2] * elt[0][2] + kQ[1][2] * elt[1][2] + kQ[2][2] * elt[2][2]; + // the scaling component kD[0] = kR[0][0]; + kD[1] = kR[1][1]; + kD[2] = kR[2][2]; + // the shear component float fInvD0 = 1.0 / kD[0]; + kU[0] = kR[0][1] * fInvD0; + kU[1] = kR[0][2] * fInvD0; + kU[2] = kR[1][2] / kD[1]; } + //---------------------------------------------------------------------------- float Matrix3::maxCubicRoot (float afCoeff[3]) { // Spectral norm is for A^T*A, so characteristic polynomial // P(x) = c[0]+c[1]*x+c[2]*x^2+x^3 has three positive float roots. // This yields the assertions c[0] < 0 and c[2]*c[2] >= 3*c[1]. + // quick out for uniform scale (triple root) const float fOneThird = 1.0f / 3.0f; const float fEpsilon = 1e-06f; float fDiscr = afCoeff[2] * afCoeff[2] - 3.0f * afCoeff[1]; + if ( fDiscr <= fEpsilon ) return -fOneThird*afCoeff[2]; + // Compute an upper bound on roots of P(x). This assumes that A^T*A // has been scaled by its largest entry. float fX = 1.0f; + float fPoly = afCoeff[0] + fX * (afCoeff[1] + fX * (afCoeff[2] + fX)); + if ( fPoly < 0.0f ) { // uses a matrix norm to find an upper bound on maximum root fX = G3D::abs(afCoeff[0]); float fTmp = 1.0 + G3D::abs(afCoeff[1]); + if ( fTmp > fX ) fX = fTmp; + fTmp = 1.0 + G3D::abs(afCoeff[2]); + if ( fTmp > fX ) fX = fTmp; } + // Newton's method to find root float fTwoC2 = 2.0f * afCoeff[2]; + for (int i = 0; i < 16; i++) { fPoly = afCoeff[0] + fX * (afCoeff[1] + fX * (afCoeff[2] + fX)); + if ( G3D::abs(fPoly) <= fEpsilon ) return fX; + float fDeriv = afCoeff[1] + fX * (fTwoC2 + 3.0f * fX); + fX -= fPoly / fDeriv; } + return fX; } + //---------------------------------------------------------------------------- float Matrix3::spectralNorm () const { Matrix3 kP; int iRow, iCol; float fPmax = 0.0; + for (iRow = 0; iRow < 3; iRow++) { for (iCol = 0; iCol < 3; iCol++) { kP[iRow][iCol] = 0.0; + for (int iMid = 0; iMid < 3; iMid++) { kP[iRow][iCol] += elt[iMid][iRow] * elt[iMid][iCol]; } + if ( kP[iRow][iCol] > fPmax ) fPmax = kP[iRow][iCol]; } } + float fInvPmax = 1.0 / fPmax; + for (iRow = 0; iRow < 3; iRow++) { for (iCol = 0; iCol < 3; iCol++) kP[iRow][iCol] *= fInvPmax; } + float afCoeff[3]; afCoeff[0] = -(kP[0][0] * (kP[1][1] * kP[2][2] - kP[1][2] * kP[2][1]) + kP[0][1] * (kP[2][0] * kP[1][2] - kP[1][0] * kP[2][2]) + @@ -803,10 +1004,12 @@ float Matrix3::spectralNorm () const { kP[0][0] * kP[2][2] - kP[0][2] * kP[2][0] + kP[1][1] * kP[2][2] - kP[1][2] * kP[2][1]; afCoeff[2] = -(kP[0][0] + kP[1][1] + kP[2][2]); + float fRoot = maxCubicRoot(afCoeff); float fNorm = sqrt(fPmax * fRoot); return fNorm; } + //---------------------------------------------------------------------------- void Matrix3::toAxisAngle (Vector3& rkAxis, float& rfRadians) const { // Let (x,y,z) be the unit-length axis and let A be an angle of rotation. @@ -830,9 +1033,11 @@ void Matrix3::toAxisAngle (Vector3& rkAxis, float& rfRadians) const { // P^2 = (R-I)/2. The diagonal entries of P^2 are x^2-1, y^2-1, and // z^2-1. We can solve these for axis (x,y,z). Because the angle is pi, // it does not matter which sign you choose on the square roots. + float fTrace = elt[0][0] + elt[1][1] + elt[2][2]; float fCos = 0.5 * (fTrace - 1.0); rfRadians = G3D::aCos(fCos); // in [0,PI] + if ( rfRadians > 0.0 ) { if ( rfRadians < G3D_PI ) { rkAxis.x = elt[2][1] - elt[1][2]; @@ -842,6 +1047,7 @@ void Matrix3::toAxisAngle (Vector3& rkAxis, float& rfRadians) const { } else { // angle is PI float fHalfInverse; + if ( elt[0][0] >= elt[1][1] ) { // r00 >= r11 if ( elt[0][0] >= elt[2][2] ) { @@ -886,9 +1092,11 @@ void Matrix3::toAxisAngle (Vector3& rkAxis, float& rfRadians) const { rkAxis.z = 0.0; } } + //---------------------------------------------------------------------------- Matrix3 Matrix3::fromAxisAngle (const Vector3& rkAxis, float fRadians) { Matrix3 m; + float fCos = cos(fRadians); float fSin = sin(fRadians); float fOneMinusCos = 1.0 - fCos; @@ -901,6 +1109,7 @@ Matrix3 Matrix3::fromAxisAngle (const Vector3& rkAxis, float fRadians) { float fXSin = rkAxis.x * fSin; float fYSin = rkAxis.y * fSin; float fZSin = rkAxis.z * fSin; + m.elt[0][0] = fX2 * fOneMinusCos + fCos; m.elt[0][1] = fXYM - fZSin; m.elt[0][2] = fXZM + fYSin; @@ -910,14 +1119,17 @@ Matrix3 Matrix3::fromAxisAngle (const Vector3& rkAxis, float fRadians) { m.elt[2][0] = fXZM - fYSin; m.elt[2][1] = fYZM + fXSin; m.elt[2][2] = fZ2 * fOneMinusCos + fCos; + return m; } + //---------------------------------------------------------------------------- bool Matrix3::toEulerAnglesXYZ (float& rfXAngle, float& rfYAngle, float& rfZAngle) const { // rot = cy*cz -cy*sz sy // cz*sx*sy+cx*sz cx*cz-sx*sy*sz -cy*sx // -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy + if ( elt[0][2] < 1.0f ) { if ( elt[0][2] > -1.0f ) { rfXAngle = G3D::aTan2( -elt[1][2], elt[2][2]); @@ -939,12 +1151,14 @@ bool Matrix3::toEulerAnglesXYZ (float& rfXAngle, float& rfYAngle, return false; } } + //---------------------------------------------------------------------------- bool Matrix3::toEulerAnglesXZY (float& rfXAngle, float& rfZAngle, float& rfYAngle) const { // rot = cy*cz -sz cz*sy // sx*sy+cx*cy*sz cx*cz -cy*sx+cx*sy*sz // -cx*sy+cy*sx*sz cz*sx cx*cy+sx*sy*sz + if ( elt[0][1] < 1.0f ) { if ( elt[0][1] > -1.0f ) { rfXAngle = G3D::aTan2(elt[2][1], elt[1][1]); @@ -966,12 +1180,14 @@ bool Matrix3::toEulerAnglesXZY (float& rfXAngle, float& rfZAngle, return false; } } + //---------------------------------------------------------------------------- bool Matrix3::toEulerAnglesYXZ (float& rfYAngle, float& rfXAngle, float& rfZAngle) const { // rot = cy*cz+sx*sy*sz cz*sx*sy-cy*sz cx*sy // cx*sz cx*cz -sx // -cz*sy+cy*sx*sz cy*cz*sx+sy*sz cx*cy + if ( elt[1][2] < 1.0 ) { if ( elt[1][2] > -1.0 ) { rfYAngle = G3D::aTan2(elt[0][2], elt[2][2]); @@ -993,12 +1209,14 @@ bool Matrix3::toEulerAnglesYXZ (float& rfYAngle, float& rfXAngle, return false; } } + //---------------------------------------------------------------------------- bool Matrix3::toEulerAnglesYZX (float& rfYAngle, float& rfZAngle, float& rfXAngle) const { // rot = cy*cz sx*sy-cx*cy*sz cx*sy+cy*sx*sz // sz cx*cz -cz*sx // -cz*sy cy*sx+cx*sy*sz cx*cy-sx*sy*sz + if ( elt[1][0] < 1.0 ) { if ( elt[1][0] > -1.0 ) { rfYAngle = G3D::aTan2( -elt[2][0], elt[0][0]); @@ -1020,12 +1238,14 @@ bool Matrix3::toEulerAnglesYZX (float& rfYAngle, float& rfZAngle, return false; } } + //---------------------------------------------------------------------------- bool Matrix3::toEulerAnglesZXY (float& rfZAngle, float& rfXAngle, float& rfYAngle) const { // rot = cy*cz-sx*sy*sz -cx*sz cz*sy+cy*sx*sz // cz*sx*sy+cy*sz cx*cz -cy*cz*sx+sy*sz // -cx*sy sx cx*cy + if ( elt[2][1] < 1.0 ) { if ( elt[2][1] > -1.0 ) { rfZAngle = G3D::aTan2( -elt[0][1], elt[1][1]); @@ -1047,12 +1267,14 @@ bool Matrix3::toEulerAnglesZXY (float& rfZAngle, float& rfXAngle, return false; } } + //---------------------------------------------------------------------------- bool Matrix3::toEulerAnglesZYX (float& rfZAngle, float& rfYAngle, float& rfXAngle) const { // rot = cy*cz cz*sx*sy-cx*sz cx*cz*sy+sx*sz // cy*sz cx*cz+sx*sy*sz -cz*sx+cx*sy*sz // -sy cy*sx cx*cy + if ( elt[2][0] < 1.0 ) { if ( elt[2][0] > -1.0 ) { rfZAngle = atan2f(elt[1][0], elt[0][0]); @@ -1074,100 +1296,134 @@ bool Matrix3::toEulerAnglesZYX (float& rfZAngle, float& rfYAngle, return false; } } + //---------------------------------------------------------------------------- Matrix3 Matrix3::fromEulerAnglesXYZ (float fYAngle, float fPAngle, float fRAngle) { float fCos, fSin; + fCos = cosf(fYAngle); fSin = sinf(fYAngle); Matrix3 kXMat(1.0f, 0.0f, 0.0f, 0.0f, fCos, -fSin, 0.0, fSin, fCos); + fCos = cosf(fPAngle); fSin = sinf(fPAngle); Matrix3 kYMat(fCos, 0.0f, fSin, 0.0f, 1.0f, 0.0f, -fSin, 0.0f, fCos); + fCos = cosf(fRAngle); fSin = sinf(fRAngle); Matrix3 kZMat(fCos, -fSin, 0.0f, fSin, fCos, 0.0f, 0.0f, 0.0f, 1.0f); + return kXMat * (kYMat * kZMat); } + //---------------------------------------------------------------------------- Matrix3 Matrix3::fromEulerAnglesXZY (float fYAngle, float fPAngle, float fRAngle) { + float fCos, fSin; + fCos = cosf(fYAngle); fSin = sinf(fYAngle); Matrix3 kXMat(1.0, 0.0, 0.0, 0.0, fCos, -fSin, 0.0, fSin, fCos); + fCos = cosf(fPAngle); fSin = sinf(fPAngle); Matrix3 kZMat(fCos, -fSin, 0.0, fSin, fCos, 0.0, 0.0, 0.0, 1.0); + fCos = cosf(fRAngle); fSin = sinf(fRAngle); Matrix3 kYMat(fCos, 0.0, fSin, 0.0, 1.0, 0.0, -fSin, 0.0, fCos); + return kXMat * (kZMat * kYMat); } + //---------------------------------------------------------------------------- Matrix3 Matrix3::fromEulerAnglesYXZ( float fYAngle, float fPAngle, float fRAngle) { + float fCos, fSin; + fCos = cos(fYAngle); fSin = sin(fYAngle); Matrix3 kYMat(fCos, 0.0f, fSin, 0.0f, 1.0f, 0.0f, -fSin, 0.0f, fCos); + fCos = cos(fPAngle); fSin = sin(fPAngle); Matrix3 kXMat(1.0f, 0.0f, 0.0f, 0.0f, fCos, -fSin, 0.0f, fSin, fCos); + fCos = cos(fRAngle); fSin = sin(fRAngle); Matrix3 kZMat(fCos, -fSin, 0.0f, fSin, fCos, 0.0f, 0.0f, 0.0f, 1.0f); + return kYMat * (kXMat * kZMat); } + //---------------------------------------------------------------------------- Matrix3 Matrix3::fromEulerAnglesYZX( float fYAngle, float fPAngle, float fRAngle) { + float fCos, fSin; + fCos = cos(fYAngle); fSin = sin(fYAngle); Matrix3 kYMat(fCos, 0.0f, fSin, 0.0f, 1.0f, 0.0f, -fSin, 0.0f, fCos); + fCos = cos(fPAngle); fSin = sin(fPAngle); Matrix3 kZMat(fCos, -fSin, 0.0f, fSin, fCos, 0.0f, 0.0f, 0.0f, 1.0f); + fCos = cos(fRAngle); fSin = sin(fRAngle); Matrix3 kXMat(1.0f, 0.0f, 0.0f, 0.0f, fCos, -fSin, 0.0f, fSin, fCos); + return kYMat * (kZMat * kXMat); } + //---------------------------------------------------------------------------- Matrix3 Matrix3::fromEulerAnglesZXY (float fYAngle, float fPAngle, float fRAngle) { float fCos, fSin; + fCos = cos(fYAngle); fSin = sin(fYAngle); Matrix3 kZMat(fCos, -fSin, 0.0, fSin, fCos, 0.0, 0.0, 0.0, 1.0); + fCos = cos(fPAngle); fSin = sin(fPAngle); Matrix3 kXMat(1.0, 0.0, 0.0, 0.0, fCos, -fSin, 0.0, fSin, fCos); + fCos = cos(fRAngle); fSin = sin(fRAngle); Matrix3 kYMat(fCos, 0.0, fSin, 0.0, 1.0, 0.0, -fSin, 0.0, fCos); + return kZMat * (kXMat * kYMat); } + //---------------------------------------------------------------------------- Matrix3 Matrix3::fromEulerAnglesZYX (float fYAngle, float fPAngle, float fRAngle) { float fCos, fSin; + fCos = cos(fYAngle); fSin = sin(fYAngle); Matrix3 kZMat(fCos, -fSin, 0.0, fSin, fCos, 0.0, 0.0, 0.0, 1.0); + fCos = cos(fPAngle); fSin = sin(fPAngle); Matrix3 kYMat(fCos, 0.0, fSin, 0.0, 1.0, 0.0, -fSin, 0.0, fCos); + fCos = cos(fRAngle); fSin = sin(fRAngle); Matrix3 kXMat(1.0, 0.0, 0.0, 0.0, fCos, -fSin, 0.0, fSin, fCos); + return kZMat * (kYMat * kXMat); } + //---------------------------------------------------------------------------- void Matrix3::tridiagonal (float afDiag[3], float afSubDiag[3]) { // Householder reduction T = Q^t M Q @@ -1177,14 +1433,17 @@ void Matrix3::tridiagonal (float afDiag[3], float afSubDiag[3]) { // mat, orthogonal matrix Q // diag, diagonal entries of T // subd, subdiagonal entries of T (T is symmetric) + float fA = elt[0][0]; float fB = elt[0][1]; float fC = elt[0][2]; float fD = elt[1][1]; float fE = elt[1][2]; float fF = elt[2][2]; + afDiag[0] = fA; afSubDiag[2] = 0.0; + if ( G3D::abs(fC) >= EPSILON ) { float fLength = sqrt(fB * fB + fC * fC); float fInvLength = 1.0 / fLength; @@ -1220,35 +1479,49 @@ void Matrix3::tridiagonal (float afDiag[3], float afSubDiag[3]) { elt[2][2] = 1.0; } } + //---------------------------------------------------------------------------- bool Matrix3::qLAlgorithm (float afDiag[3], float afSubDiag[3]) { // QL iteration with implicit shifting to reduce matrix from tridiagonal // to diagonal + for (int i0 = 0; i0 < 3; i0++) { const int iMaxIter = 32; int iIter; + for (iIter = 0; iIter < iMaxIter; iIter++) { int i1; + for (i1 = i0; i1 <= 1; i1++) { float fSum = G3D::abs(afDiag[i1]) + G3D::abs(afDiag[i1 + 1]); + if ( G3D::abs(afSubDiag[i1]) + fSum == fSum ) break; } + if ( i1 == i0 ) break; + float fTmp0 = (afDiag[i0 + 1] - afDiag[i0]) / (2.0 * afSubDiag[i0]); + float fTmp1 = sqrt(fTmp0 * fTmp0 + 1.0); + if ( fTmp0 < 0.0 ) fTmp0 = afDiag[i1] - afDiag[i0] + afSubDiag[i0] / (fTmp0 - fTmp1); else fTmp0 = afDiag[i1] - afDiag[i0] + afSubDiag[i0] / (fTmp0 + fTmp1); + float fSin = 1.0; + float fCos = 1.0; + float fTmp2 = 0.0; + for (int i2 = i1 - 1; i2 >= i0; i2--) { float fTmp3 = fSin * afSubDiag[i2]; float fTmp4 = fCos * afSubDiag[i2]; + if (G3D::abs(fTmp3) >= G3D::abs(fTmp0)) { fCos = fTmp0 / fTmp3; fTmp1 = sqrt(fCos * fCos + 1.0); @@ -1262,11 +1535,13 @@ bool Matrix3::qLAlgorithm (float afDiag[3], float afSubDiag[3]) { fCos = 1.0 / fTmp1; fSin *= fCos; } + fTmp0 = afDiag[i2 + 1] - fTmp2; fTmp1 = (afDiag[i2] - fTmp0) * fSin + 2.0 * fTmp4 * fCos; fTmp2 = fSin * fTmp1; afDiag[i2 + 1] = fTmp0 + fTmp2; fTmp0 = fCos * fTmp1 - fTmp4; + for (int iRow = 0; iRow < 3; iRow++) { fTmp3 = elt[iRow][i2 + 1]; elt[iRow][i2 + 1] = fSin * elt[iRow][i2] + @@ -1275,17 +1550,21 @@ bool Matrix3::qLAlgorithm (float afDiag[3], float afSubDiag[3]) { fSin * fTmp3; } } + afDiag[i0] -= fTmp2; afSubDiag[i0] = fTmp0; afSubDiag[i1] = 0.0; } + if ( iIter == iMaxIter ) { // should not get here under normal circumstances return false; } } + return true; } + //---------------------------------------------------------------------------- void Matrix3::eigenSolveSymmetric (float afEigenvalue[3], Vector3 akEigenvector[3]) const { @@ -1293,20 +1572,25 @@ void Matrix3::eigenSolveSymmetric (float afEigenvalue[3], float afSubDiag[3]; kMatrix.tridiagonal(afEigenvalue, afSubDiag); kMatrix.qLAlgorithm(afEigenvalue, afSubDiag); + for (int i = 0; i < 3; i++) { akEigenvector[i][0] = kMatrix[0][i]; akEigenvector[i][1] = kMatrix[1][i]; akEigenvector[i][2] = kMatrix[2][i]; } + // make eigenvectors form a right--handed system Vector3 kCross = akEigenvector[1].cross(akEigenvector[2]); + float fDet = akEigenvector[0].dot(kCross); + if ( fDet < 0.0 ) { akEigenvector[2][0] = - akEigenvector[2][0]; akEigenvector[2][1] = - akEigenvector[2][1]; akEigenvector[2][2] = - akEigenvector[2][2]; } } + //---------------------------------------------------------------------------- void Matrix3::tensorProduct (const Vector3& rkU, const Vector3& rkV, Matrix3& rkProduct) { @@ -1316,7 +1600,9 @@ void Matrix3::tensorProduct (const Vector3& rkU, const Vector3& rkV, } } } + //---------------------------------------------------------------------------- + // Runs in 52 cycles on AMD, 76 cycles on Intel Centrino // // The loop unrolling is necessary for performance. @@ -1339,8 +1625,10 @@ void Matrix3::_mul(const Matrix3& A, const Matrix3& B, Matrix3& out) { ARowPtr[0] * B.elt[0][2] + ARowPtr[1] * B.elt[1][2] + ARowPtr[2] * B.elt[2][2]; + ARowPtr = A.elt[1]; outRowPtr = out.elt[1]; + outRowPtr[0] = ARowPtr[0] * B.elt[0][0] + ARowPtr[1] * B.elt[1][0] + @@ -1353,8 +1641,10 @@ void Matrix3::_mul(const Matrix3& A, const Matrix3& B, Matrix3& out) { ARowPtr[0] * B.elt[0][2] + ARowPtr[1] * B.elt[1][2] + ARowPtr[2] * B.elt[2][2]; + ARowPtr = A.elt[2]; outRowPtr = out.elt[2]; + outRowPtr[0] = ARowPtr[0] * B.elt[0][0] + ARowPtr[1] * B.elt[1][0] + @@ -1368,6 +1658,7 @@ void Matrix3::_mul(const Matrix3& A, const Matrix3& B, Matrix3& out) { ARowPtr[1] * B.elt[1][2] + ARowPtr[2] * B.elt[2][2]; } + //---------------------------------------------------------------------------- void Matrix3::_transpose(const Matrix3& A, Matrix3& out) { out[0][0] = A.elt[0][0]; @@ -1380,6 +1671,7 @@ void Matrix3::_transpose(const Matrix3& A, Matrix3& out) { out[2][1] = A.elt[1][2]; out[2][2] = A.elt[2][2]; } + //----------------------------------------------------------------------------- std::string Matrix3::toString() const { return G3D::format("[%g, %g, %g; %g, %g, %g; %g, %g, %g]", @@ -1388,5 +1680,8 @@ std::string Matrix3::toString() const { elt[2][0], elt[2][1], elt[2][2]); } + + } // namespace + |