diff options
Diffstat (limited to 'externals/g3dlite/G3D.lib/source/GCamera.cpp')
-rw-r--r-- | externals/g3dlite/G3D.lib/source/GCamera.cpp | 399 |
1 files changed, 399 insertions, 0 deletions
diff --git a/externals/g3dlite/G3D.lib/source/GCamera.cpp b/externals/g3dlite/G3D.lib/source/GCamera.cpp new file mode 100644 index 00000000000..e70188377e6 --- /dev/null +++ b/externals/g3dlite/G3D.lib/source/GCamera.cpp @@ -0,0 +1,399 @@ +/** + @file GCamera.cpp + + @author Morgan McGuire, matrix@graphics3d.com + @author Jeff Marsceill, 08jcm@williams.edu + + @created 2005-07-20 + @edited 2007-07-24 +*/ +#include "G3D/GCamera.h" +#include "G3D/platform.h" +#include "G3D/Rect2D.h" +#include "G3D/BinaryInput.h" +#include "G3D/BinaryOutput.h" +#include "G3D/Ray.h" +#include "G3D/Matrix4.h" + +namespace G3D { + +GCamera::GCamera() { + setNearPlaneZ(-0.1f); + setFarPlaneZ(-(float)inf()); + setFieldOfView((float)toRadians(55.0f), VERTICAL); +} + + +GCamera::~GCamera() { +} + +void GCamera::getCoordinateFrame(CoordinateFrame& c) const { + c = m_cframe; +} + +void GCamera::setCoordinateFrame(const CoordinateFrame& c) { + m_cframe = c; +} + +void GCamera::setFieldOfView(float angle, FOVDirection dir) { + debugAssert((angle < pi()) && (angle > 0)); + + m_fieldOfView = angle; + m_direction = dir; +} + +float GCamera::imagePlaneDepth() const{ + return -m_nearPlaneZ; +} + +float GCamera::viewportWidth(const Rect2D& viewport) const { + // Compute the side of a square at the near plane based on our field of view + float s = 2.0f * -m_nearPlaneZ * tan(m_fieldOfView * 0.5f); + + if (m_direction == VERTICAL) { + s *= viewport.width() / viewport.height(); + } + + return s; +} + +float GCamera::viewportHeight(const Rect2D& viewport) const { + // Compute the side of a square at the near plane based on our field of view + float s = 2.0f * -m_nearPlaneZ * tan(m_fieldOfView * 0.5f); + + if (m_direction == HORIZONTAL) { + s *= viewport.height() / viewport.width(); + } + + return s; +} + +Ray GCamera::worldRay(float x, float y, const Rect2D& viewport) const { + + int screenWidth = iFloor(viewport.width()); + int screenHeight = iFloor(viewport.height()); + + Ray out; + out.origin = m_cframe.translation; + + float cx = screenWidth / 2.0f; + float cy = screenHeight / 2.0f; + + out.direction = Vector3( (x - cx) * viewportWidth(viewport) / screenWidth, + -(y - cy) * viewportHeight(viewport) / screenHeight, + (m_nearPlaneZ) ); + + out.direction = m_cframe.vectorToWorldSpace(out.direction); + + // Normalize the direction (we didn't do it before) + out.direction = out.direction.direction(); + + return out; +} + +/** +This is the matrix that a RenderDevice (or OpenGL) uses as the projection matrix. +@sa RenderDevice::setProjectionAndCameraMatrix, RenderDevice::setProjectionMatrix, Matrix4::perspectiveProjection +*/ +void GCamera::getProjectUnitMatrix(const Rect2D& viewport, Matrix4& P) const{ + + float screenWidth = viewport.width(); + float screenHeight = viewport.height(); + + float r, l, t, b, n, f, x, y; + + if(m_direction == VERTICAL){ + y = -m_nearPlaneZ * tan(m_fieldOfView / 2); + x = y * (screenWidth / screenHeight); + } + else{ //m_direction == HORIZONTAL + x = -m_nearPlaneZ * tan(m_fieldOfView / 2); + y = x * (screenHeight / screenWidth); + } + + n = -m_nearPlaneZ; + f = -m_farPlaneZ; + r = x; + l = -x; + t = y; + b = -y; + + P = Matrix4::perspectiveProjection(l, r, b, t, n, f); +} + +Vector3 GCamera::projectUnit(const Vector3& point, const Rect2D& viewport) const { + Matrix4 M; + getProjectUnitMatrix(viewport, M); + + Vector4 cameraSpacePoint(coordinateFrame().pointToObjectSpace(point), 1.0f); + const Vector4& screenSpacePoint = M * cameraSpacePoint; + + return Vector3(screenSpacePoint.xyz() / screenSpacePoint.w); +} + +Vector3 GCamera::project(const Vector3& point, + const Rect2D& viewport) const { + + // Find the point in the homogeneous cube + const Vector3& cube = projectUnit(point, viewport); + + return convertFromUnitToNormal(cube, viewport); +} + +Vector3 GCamera::unprojectUnit(const Vector3& v, const Rect2D& viewport) const { + + const Vector3& projectedPoint = convertFromUnitToNormal(v, viewport); + + return unproject(projectedPoint, viewport); +} + + +Vector3 GCamera::unproject(const Vector3& v, const Rect2D& viewport) const { + + const float n = m_nearPlaneZ; + const float f = m_farPlaneZ; + + float z; + + if (-f >= inf()) { + // Infinite far plane + z = 1.0f / (((-1.0f / n) * v.z) + 1.0f / n); + } else { + z = 1.0f / ((((1.0f / f) - (1.0f / n)) * v.z) + 1.0f / n); + } + + const Ray& ray = worldRay(v.x, v.y, viewport); + + // Find out where the ray reaches the specified depth. + const Vector3& out = ray.origin + ray.direction * -z / (ray.direction.dot(m_cframe.lookVector())); + + return out; +} + +float GCamera::worldToScreenSpaceArea(float area, float z, const Rect2D& viewport) const { + if (z >= 0) { + return (float)inf(); + } + return area * (float)square(imagePlaneDepth() / z); +} + + +void GCamera::getClipPlanes( + const Rect2D& viewport, + Array<Plane>& clip) const { + + Frustum fr; + frustum(viewport, fr); + clip.resize(fr.faceArray.size(), DONT_SHRINK_UNDERLYING_ARRAY); + for (int f = 0; f < clip.size(); ++f) { + clip[f] = fr.faceArray[f].plane; + } +} + +GCamera::Frustum GCamera::frustum(const Rect2D& viewport) const { + Frustum f; + frustum(viewport, f); + return f; +} + +void GCamera::frustum(const Rect2D& viewport, Frustum& fr) const { + + // The volume is the convex hull of the vertices definining the view + // frustum and the light source point at infinity. + + const float x = viewportWidth(viewport) / 2; + const float y = viewportHeight(viewport) / 2; + const float z = m_nearPlaneZ; + const float w = z / -m_farPlaneZ; + float fovx; + + fovx = m_fieldOfView; + if (m_direction == VERTICAL) { + fovx *= x / y; + } + + // Near face (ccw from UR) + fr.vertexPos.append( + Vector4( x, y, z, 1), + Vector4(-x, y, z, 1), + Vector4(-x, -y, z, 1), + Vector4( x, -y, z, 1)); + + // Far face (ccw from UR, from origin) + fr.vertexPos.append( + Vector4( x, y, z, w), + Vector4(-x, y, z, w), + Vector4(-x, -y, z, w), + Vector4( x, -y, z, w)); + + Frustum::Face face; + + // Near plane (wind backwards so normal faces into frustum) + // Recall that nearPlane, farPlane are positive numbers, so + // we need to negate them to produce actual z values. + face.plane = Plane(Vector3(0,0,-1), Vector3(0,0,m_nearPlaneZ)); + face.vertexIndex[0] = 3; + face.vertexIndex[1] = 2; + face.vertexIndex[2] = 1; + face.vertexIndex[3] = 0; + fr.faceArray.append(face); + + // Right plane + face.plane = Plane(Vector3(-cosf(fovx/2), 0, -sinf(fovx/2)), Vector3::zero()); + face.vertexIndex[0] = 0; + face.vertexIndex[1] = 4; + face.vertexIndex[2] = 7; + face.vertexIndex[3] = 3; + fr.faceArray.append(face); + + // Left plane + face.plane = Plane(Vector3(-fr.faceArray.last().plane.normal().x, 0, fr.faceArray.last().plane.normal().z), Vector3::zero()); + face.vertexIndex[0] = 5; + face.vertexIndex[1] = 1; + face.vertexIndex[2] = 2; + face.vertexIndex[3] = 6; + fr.faceArray.append(face); + + // Top plane + face.plane = Plane(Vector3(0, -cosf(m_fieldOfView/2.0f), -sinf(m_fieldOfView/2.0f)), Vector3::zero()); + face.vertexIndex[0] = 1; + face.vertexIndex[1] = 5; + face.vertexIndex[2] = 4; + face.vertexIndex[3] = 0; + fr.faceArray.append(face); + + // Bottom plane + face.plane = Plane(Vector3(0, -fr.faceArray.last().plane.normal().y, fr.faceArray.last().plane.normal().z), Vector3::zero()); + face.vertexIndex[0] = 2; + face.vertexIndex[1] = 3; + face.vertexIndex[2] = 7; + face.vertexIndex[3] = 6; + fr.faceArray.append(face); + + // Far plane + if (-m_farPlaneZ < inf()) { + face.plane = Plane(Vector3(0, 0, 1), Vector3(0, 0, m_farPlaneZ)); + face.vertexIndex[0] = 4; + face.vertexIndex[1] = 5; + face.vertexIndex[2] = 6; + face.vertexIndex[3] = 7; + fr.faceArray.append(face); + } + + // Transform vertices to world space + for (int v = 0; v < fr.vertexPos.size(); ++v) { + fr.vertexPos[v] = m_cframe.toWorldSpace(fr.vertexPos[v]); + } + + // Transform planes to world space + for (int p = 0; p < fr.faceArray.size(); ++p) { + // Since there is no scale factor, we don't have to + // worry about the inverse transpose of the normal. + Vector3 normal; + float d; + + fr.faceArray[p].plane.getEquation(normal, d); + + Vector3 newNormal = m_cframe.rotation * normal; + + if (isFinite(d)) { + d = (newNormal * -d + m_cframe.translation).dot(newNormal); + fr.faceArray[p].plane = Plane(newNormal, newNormal * d); + } else { + // When d is infinite, we can't multiply 0's by it without + // generating NaNs. + fr.faceArray[p].plane = Plane::fromEquation(newNormal.x, newNormal.y, newNormal.z, d); + } + } +} + +void GCamera::getNearViewportCorners( + const Rect2D& viewport, + Vector3& outUR, + Vector3& outUL, + Vector3& outLL, + Vector3& outLR) const { + + // Must be kept in sync with getFrustum() + const float w = viewportWidth(viewport) / 2.0f; + const float h = viewportHeight(viewport) / 2.0f; + const float z = nearPlaneZ(); + + // Compute the points + outUR = Vector3( w, h, z); + outUL = Vector3(-w, h, z); + outLL = Vector3(-w, -h, z); + outLR = Vector3( w, -h, z); + + // Take to world space + outUR = m_cframe.pointToWorldSpace(outUR); + outUL = m_cframe.pointToWorldSpace(outUL); + outLR = m_cframe.pointToWorldSpace(outLR); + outLL = m_cframe.pointToWorldSpace(outLL); +} + +void GCamera::getFarViewportCorners( + const Rect2D& viewport, + Vector3& outUR, + Vector3& outUL, + Vector3& outLL, + Vector3& outLR) const { + + // Must be kept in sync with getFrustum() + const float w = viewportWidth(viewport) * m_farPlaneZ / m_nearPlaneZ; + const float h = viewportHeight(viewport) * m_farPlaneZ / m_nearPlaneZ; + const float z = m_farPlaneZ; + + // Compute the points + outUR = Vector3( w, h, z); + outUL = Vector3(-w, h, z); + outLL = Vector3(-w, -h, z); + outLR = Vector3( w, -h, z); + + // Take to world space + outUR = m_cframe.pointToWorldSpace(outUR); + outUL = m_cframe.pointToWorldSpace(outUL); + outLR = m_cframe.pointToWorldSpace(outLR); + outLL = m_cframe.pointToWorldSpace(outLL); +} + + + +void GCamera::setPosition(const Vector3& t) { + m_cframe.translation = t; +} + + +void GCamera::lookAt(const Vector3& position, const Vector3& up) { + m_cframe.lookAt(position, up); +} + + +void GCamera::serialize(BinaryOutput& bo) const { + bo.writeFloat32(m_fieldOfView); + bo.writeFloat32(imagePlaneDepth()); + debugAssert(nearPlaneZ() < 0.0f); + bo.writeFloat32(nearPlaneZ()); + debugAssert(farPlaneZ() < 0.0f); + bo.writeFloat32(farPlaneZ()); + m_cframe.serialize(bo); + bo.writeInt8(m_direction); +} + + +void GCamera::deserialize(BinaryInput& bi) { + m_fieldOfView = bi.readFloat32(); + m_nearPlaneZ = bi.readFloat32(); + debugAssert(m_nearPlaneZ < 0.0f); + m_farPlaneZ = bi.readFloat32(); + debugAssert(m_farPlaneZ < 0.0f); + m_cframe.deserialize(bi); + m_direction = (FOVDirection)bi.readInt8(); +} + + +Vector3 GCamera::convertFromUnitToNormal(const Vector3& in, const Rect2D& viewport) const{ + return (in + Vector3(1,1,1)) * 0.5 * Vector3(viewport.width(), -viewport.height(), 1) + + Vector3(viewport.x0(), viewport.y1(), 0); +} +} // namespace |