diff options
Diffstat (limited to 'externals/g3dlite/G3D/Matrix.h')
| -rw-r--r-- | externals/g3dlite/G3D/Matrix.h | 634 |
1 files changed, 0 insertions, 634 deletions
diff --git a/externals/g3dlite/G3D/Matrix.h b/externals/g3dlite/G3D/Matrix.h deleted file mode 100644 index 3c5394d9a76..00000000000 --- a/externals/g3dlite/G3D/Matrix.h +++ /dev/null @@ -1,634 +0,0 @@ -/** - @file Matrix.h - @author Morgan McGuire, http://graphics.cs.williams.edu - - @created 2005-10-23 - @edited 2007-07-18 - */ - -#ifndef G3D_MATRIX_H -#define G3D_MATRIX_H - -#include "G3D/g3dmath.h" -#include "G3D/Vector3.h" -#include "G3D/Vector4.h" -#include "G3D/Matrix3.h" -#include "G3D/Matrix4.h" -#include "G3D/ReferenceCount.h" - -namespace G3D { - -/** - N x M matrix. - - The actual data is tracked internally by a reference counted pointer; - it is efficient to pass and assign Matrix objects because no data is actually copied. - This avoids the headache of pointers and allows natural math notation: - - <PRE> - Matrix A, B, C; - // ... - - C = A * f(B); - C = C.inverse(); - - A = Matrix::identity(4); - C = A; - C.set(0, 0, 2.0); // Triggers a copy of the data so that A remains unchanged. - - // etc. - - </PRE> - - The Matrix::debugNumCopyOps and Matrix::debugNumAllocOps counters - increment every time an operation forces the copy and allocation of matrices. You - can use these to detect slow operations when efficiency is a major concern. - - Some methods accept an output argument instead of returning a value. For example, - <CODE>A = B.transpose()</CODE> can also be invoked as <CODE>B.transpose(A)</CODE>. - The latter may be more efficient, since Matrix may be able to re-use the storage of - A (if it has approximatly the right size and isn't currently shared with another matrix). - - @sa G3D::Matrix3, G3D::Matrix4, G3D::Vector2, G3D::Vector3, G3D::Vector4, G3D::CoordinateFrame - - @beta - */ -class Matrix { -public: - /** - Internal precision. Currently float, but this may become a templated class in the future - to allow operations like Matrix<double> and Matrix<ComplexFloat>. - - Not necessarily a plain-old-data type (e.g., could ComplexFloat), but must be something - with no constructor, that can be safely memcpyd, and that has a bit pattern of all zeros - when zero.*/ - typedef float T; - - /** Incremented every time the elements of a matrix are copied. Useful for profiling your - own code that uses Matrix to determine when it is slow due to copying.*/ - static int debugNumCopyOps; - - /** Incremented every time a new matrix object is allocated. Useful for profiling your - own code that uses Matrix to determine when it is slow due to allocation.*/ - static int debugNumAllocOps; - -private: -public: - - /** Used internally by Matrix. - - Does not throw exceptions-- assumes the caller has taken care of - argument checking. */ - class Impl : public ReferenceCountedObject { - public: - - static void* operator new(size_t size) { - return System::malloc(size); - } - - static void operator delete(void* p) { - System::free(p); - } - - ~Impl(); - - private: - friend class Matrix; - - /** elt[r][c] = the element. Pointers into data.*/ - T** elt; - - /** Row major data for the entire matrix. */ - T* data; - - /** The number of rows */ - int R; - - /** The number of columns */ - int C; - - int dataSize; - - /** If R*C is much larger or smaller than the current, deletes all previous data - and resets to random data. Otherwise re-uses existing memory and just resets - R, C, and the row pointers. */ - void setSize(int newRows, int newCols); - - inline Impl() : elt(NULL), data(NULL), R(0), C(0), dataSize(0) {} - - Impl(const Matrix3& M); - - Impl(const Matrix4& M); - - inline Impl(int r, int c) : elt(NULL), data(NULL), R(0), C(0), dataSize(0) { - setSize(r, c); - } - - Impl& operator=(const Impl& m); - - inline Impl(const Impl& B) : elt(NULL), data(NULL), R(0), C(0), dataSize(0) { - // Use the assignment operator - *this = B; - } - - void setZero(); - - inline void set(int r, int c, T v) { - debugAssert(r < R); - debugAssert(c < C); - elt[r][c] = v; - } - - inline const T& get(int r, int c) const { - debugAssert(r < R); - debugAssert(c < C); - return elt[r][c]; - } - - /** Multiplies this by B and puts the result in out. */ - void mul(const Impl& B, Impl& out) const; - - /** Ok if out == this or out == B */ - void add(const Impl& B, Impl& out) const; - - /** Ok if out == this or out == B */ - void add(T B, Impl& out) const; - - /** Ok if out == this or out == B */ - void sub(const Impl& B, Impl& out) const; - - /** Ok if out == this or out == B */ - void sub(T B, Impl& out) const; - - /** B - this */ - void lsub(T B, Impl& out) const; - - /** Ok if out == this or out == B */ - void arrayMul(const Impl& B, Impl& out) const; - - /** Ok if out == this or out == B */ - void mul(T B, Impl& out) const; - - /** Ok if out == this or out == B */ - void arrayDiv(const Impl& B, Impl& out) const; - - /** Ok if out == this or out == B */ - void div(T B, Impl& out) const; - - void negate(Impl& out) const; - - /** Slow way of computing an inverse; for reference */ - void inverseViaAdjoint(Impl& out) const; - - /** Use Gaussian elimination with pivots to solve for the inverse destructively in place. */ - void inverseInPlaceGaussJordan(); - - void adjoint(Impl& out) const; - - /** Matrix of all cofactors */ - void cofactor(Impl& out) const; - - /** - Cofactor [r][c] is defined as C[r][c] = -1 ^(r+c) * det(A[r][c]), - where A[r][c] is the (R-1)x(C-1) matrix formed by removing row r and - column c from the original matrix. - */ - T cofactor(int r, int c) const; - - /** Ok if out == this or out == B */ - void transpose(Impl& out) const; - - T determinant() const; - - /** Determinant computed without the given row and column */ - T determinant(int r, int c) const; - - void arrayLog(Impl& out) const; - - void arrayExp(Impl& out) const; - - void arraySqrt(Impl& out) const; - - void arrayCos(Impl& out) const; - - void arraySin(Impl& out) const; - - void swapRows(int r0, int r1); - - void swapAndNegateCols(int c0, int c1); - - void mulRow(int r, const T& v); - - void abs(Impl& out) const; - - /** Makes a (R-1)x(C-1) copy of this matrix */ - void withoutRowAndCol(int excludeRow, int excludeCol, Impl& out) const; - - bool anyNonZero() const; - - bool allNonZero() const; - - void setRow(int r, const T* vals); - - void setCol(int c, const T* vals); - }; -private: - - typedef ReferenceCountedPointer<Impl> ImplRef; - - ImplRef impl; - - inline Matrix(ImplRef i) : impl(i) {} - inline Matrix(Impl* i) : impl(ImplRef(i)) {} - - /** Used by SVD */ - class SortRank { - public: - T value; - int col; - - inline bool operator>(const SortRank& x) const { - return x.value > value; - } - - inline bool operator<(const SortRank& x) const { - return x.value < value; - } - - inline bool operator>=(const SortRank& x) const { - return x.value >= value; - } - - inline bool operator<=(const SortRank& x) const { - return x.value <= value; - } - - inline bool operator==(const SortRank& x) const { - return x.value == value; - } - - inline bool operator!=(const SortRank& x) const { - return x.value != value; - } - }; - - Matrix vectorPseudoInverse() const; - Matrix partitionPseudoInverse() const; - Matrix colPartPseudoInverse() const; - Matrix rowPartPseudoInverse() const; - - Matrix col2PseudoInverse(const Matrix& B) const; - Matrix col3PseudoInverse(const Matrix& B) const; - Matrix col4PseudoInverse(const Matrix& B) const; - Matrix row2PseudoInverse(const Matrix& B) const; - Matrix row3PseudoInverse(const Matrix& B) const; - Matrix row4PseudoInverse(const Matrix& B) const; - -public: - - Matrix() : impl(new Impl(0, 0)) {} - - Matrix(const Matrix3& M) : impl(new Impl(M)) {} - - Matrix(const Matrix4& M) : impl(new Impl(M)) {} - - template<class S> - static Matrix fromDiagonal(const Array<S>& d) { - Matrix D = zero(d.length(), d.length()); - for (int i = 0; i < d.length(); ++i) { - D.set(i, i, d[i]); - } - return D; - } - - static Matrix fromDiagonal(const Matrix& d); - - /** Returns a new matrix that is all zero. */ - Matrix(int R, int C) : impl(new Impl(R, C)) { - impl->setZero(); - } - - /** Returns a new matrix that is all zero. */ - static Matrix zero(int R, int C); - - /** Returns a new matrix that is all one. */ - static Matrix one(int R, int C); - - /** Returns a new identity matrix */ - static Matrix identity(int N); - - /** Uniformly distributed values between zero and one. */ - static Matrix random(int R, int C); - - /** The number of rows */ - inline int rows() const { - return impl->R; - } - - /** Number of columns */ - inline int cols() const { - return impl->C; - } - - /** Generally more efficient than A * B */ - Matrix& operator*=(const T& B); - - /** Generally more efficient than A / B */ - Matrix& operator/=(const T& B); - - /** Generally more efficient than A + B */ - Matrix& operator+=(const T& B); - - /** Generally more efficient than A - B */ - Matrix& operator-=(const T& B); - - /** No performance advantage over A * B because - matrix multiplication requires intermediate - storage. */ - Matrix& operator*=(const Matrix& B); - - /** Generally more efficient than A + B */ - Matrix& operator+=(const Matrix& B); - - /** Generally more efficient than A - B */ - Matrix& operator-=(const Matrix& B); - - /** Returns a new matrix that is a subset of this one, - from r1:r2 to c1:c2, inclusive.*/ - Matrix subMatrix(int r1, int r2, int c1, int c2) const; - - /** Matrix multiplication. To perform element-by-element multiplication, - see arrayMul. */ - inline Matrix operator*(const Matrix& B) const { - Matrix C(impl->R, B.impl->C); - impl->mul(*B.impl, *C.impl); - return C; - } - - /** See also A *= B, which is more efficient in many cases */ - inline Matrix operator*(const T& B) const { - Matrix C(impl->R, impl->C); - impl->mul(B, *C.impl); - return C; - } - - /** See also A += B, which is more efficient in many cases */ - inline Matrix operator+(const Matrix& B) const { - Matrix C(impl->R, impl->C); - impl->add(*B.impl, *C.impl); - return C; - } - - /** See also A -= B, which is more efficient in many cases */ - inline Matrix operator-(const Matrix& B) const { - Matrix C(impl->R, impl->C); - impl->sub(*B.impl, *C.impl); - return C; - } - - /** See also A += B, which is more efficient in many cases */ - inline Matrix operator+(const T& v) const { - Matrix C(impl->R, impl->C); - impl->add(v, *C.impl); - return C; - } - - /** See also A -= B, which is more efficient in many cases */ - inline Matrix operator-(const T& v) const { - Matrix C(impl->R, impl->C); - impl->sub(v, *C.impl); - return C; - } - - - Matrix operator>(const T& scalar) const; - - Matrix operator<(const T& scalar) const; - - Matrix operator>=(const T& scalar) const; - - Matrix operator<=(const T& scalar) const; - - Matrix operator==(const T& scalar) const; - - Matrix operator!=(const T& scalar) const; - - /** scalar B - this */ - inline Matrix lsub(const T& B) const { - Matrix C(impl->R, impl->C); - impl->lsub(B, *C.impl); - return C; - } - - inline Matrix arrayMul(const Matrix& B) const { - Matrix C(impl->R, impl->C); - impl->arrayMul(*B.impl, *C.impl); - return C; - } - - Matrix3 toMatrix3() const; - - Matrix4 toMatrix4() const; - - Vector2 toVector2() const; - - Vector3 toVector3() const; - - Vector4 toVector4() const; - - /** Mutates this */ - void arrayMulInPlace(const Matrix& B); - - /** Mutates this */ - void arrayDivInPlace(const Matrix& B); - - // Declares an array unary method and its explicit-argument counterpart -# define DECLARE_METHODS_1(method)\ - inline Matrix method() const {\ - Matrix C(impl->R, impl->C);\ - impl->method(*C.impl);\ - return C;\ - }\ - void method(Matrix& out) const; - - - DECLARE_METHODS_1(abs) - DECLARE_METHODS_1(arrayLog) - DECLARE_METHODS_1(arrayExp) - DECLARE_METHODS_1(arraySqrt) - DECLARE_METHODS_1(arrayCos) - DECLARE_METHODS_1(arraySin) - DECLARE_METHODS_1(negate) - -# undef DECLARE_METHODS_1 - - inline Matrix operator-() const { - return negate(); - } - - /** - A<SUP>-1</SUP> computed using the Gauss-Jordan algorithm, - for square matrices. - Run time is <I>O(R<sup>3</sup>)</I>, where <I>R</i> is the - number of rows. - */ - inline Matrix inverse() const { - Impl* A = new Impl(*impl); - A->inverseInPlaceGaussJordan(); - return Matrix(A); - } - - inline T determinant() const { - return impl->determinant(); - } - - /** - A<SUP>T</SUP> - */ - inline Matrix transpose() const { - Impl* A = new Impl(cols(), rows()); - impl->transpose(*A); - return Matrix(A); - } - - /** Transpose in place; more efficient than transpose */ - void transpose(Matrix& out) const; - - inline Matrix adjoint() const { - Impl* A = new Impl(cols(), rows()); - impl->adjoint(*A); - return Matrix(A); - } - - /** - (A<SUP>T</SUP>A)<SUP>-1</SUP>A<SUP>T</SUP>) computed - using SVD. - - @param tolerance Use -1 for automatic tolerance. - */ - Matrix pseudoInverse(float tolerance = -1) const; - - /** Called from pseudoInverse when the matrix has size > 4 along some dimension.*/ - Matrix svdPseudoInverse(float tolerance = -1) const; - - /** - (A<SUP>T</SUP>A)<SUP>-1</SUP>A<SUP>T</SUP>) computed - using Gauss-Jordan elimination. - */ - inline Matrix gaussJordanPseudoInverse() const { - Matrix trans = transpose(); - return (trans * (*this)).inverse() * trans; - } - - /** Singular value decomposition. Factors into three matrices - such that @a this = @a U * fromDiagonal(@a d) * @a V.transpose(). - - The matrix must have at least as many rows as columns. - - Run time is <I>O(C<sup>2</sup>*R)</I>. - - @param sort If true (default), the singular values - are arranged so that D is sorted from largest to smallest. - */ - void svd(Matrix& U, Array<T>& d, Matrix& V, bool sort = true) const; - - void set(int r, int c, T v); - - void setCol(int c, const Matrix& vec); - - void setRow(int r, const Matrix& vec); - - Matrix col(int c) const; - - Matrix row(int r) const; - - T get(int r, int c) const; - - Vector2int16 size() const { - return Vector2int16(rows(), cols()); - } - - int numElements() const { - return rows() * cols(); - } - - void swapRows(int r0, int r1); - - /** Swaps columns c0 and c1 and negates both */ - void swapAndNegateCols(int c0, int c1); - - void mulRow(int r, const T& v); - - /** Returns true if any element is non-zero */ - bool anyNonZero() const; - - /** Returns true if all elements are non-zero */ - bool allNonZero() const; - - inline bool allZero() const { - return !anyNonZero(); - } - - inline bool anyZero() const { - return !allNonZero(); - } - - /** Serializes in Matlab source format */ - void serialize(TextOutput& t) const; - - std::string toString(const std::string& name) const; - - std::string toString() const { - static const std::string name = ""; - return toString(name); - } - - /** 2-norm squared: sum(squares). (i.e., dot product with itself) */ - double normSquared() const; - - /** 2-norm (sqrt(sum(squares)) */ - double norm() const; - - /** - Low-level SVD functionality. Useful for applications that do not want - to construct a Matrix but need to perform the SVD operation. - - this = U * D * V' - - Assumes that rows >= cols - - @return NULL on success, a string describing the error on failure. - @param U rows x cols matrix to be decomposed, gets overwritten with U, a rows x cols matrix with orthogonal columns. - @param D vector of singular values of a (diagonal of the D matrix). Length cols. - @param V returns the right orthonormal transformation matrix, size cols x cols - - @cite Based on Dianne Cook's implementation, which is adapted from - svdecomp.c in XLISP-STAT 2.1, which is code from Numerical Recipes - adapted by Luke Tierney and David Betz. The Numerical Recipes code - is adapted from Forsythe et al, who based their code on Golub and - Reinsch's original implementation. - */ - static const char* svdCore(float** U, int rows, int cols, float* D, float** V); - -}; - -} - -inline G3D::Matrix operator-(const G3D::Matrix::T& v, const G3D::Matrix& M) { - return M.lsub(v); -} - -inline G3D::Matrix operator*(const G3D::Matrix::T& v, const G3D::Matrix& M) { - return M * v; -} - -inline G3D::Matrix operator+(const G3D::Matrix::T& v, const G3D::Matrix& M) { - return M + v; -} - -inline G3D::Matrix abs(const G3D::Matrix& M) { - return M.abs(); -} - -#endif - |
