diff options
Diffstat (limited to 'src/shared/vmap/AABSPTree.h')
-rw-r--r-- | src/shared/vmap/AABSPTree.h | 1620 |
1 files changed, 1620 insertions, 0 deletions
diff --git a/src/shared/vmap/AABSPTree.h b/src/shared/vmap/AABSPTree.h new file mode 100644 index 00000000000..9b44470e7d9 --- /dev/null +++ b/src/shared/vmap/AABSPTree.h @@ -0,0 +1,1620 @@ +/** + @file AABSPTree.h + + @maintainer Morgan McGuire, matrix@graphics3d.com + + @created 2004-01-11 + @edited 2007-02-16 + + Copyright 2000-2007, Morgan McGuire. + All rights reserved. + + */ + +#ifndef G3D_AABSPTREE_H +#define G3D_AABSPTREE_H + +#include "VMapTools.h" + +#include "G3D/platform.h" +#include "G3D/Array.h" +#include "G3D/Table.h" +#include "G3D/Vector3.h" +#include "G3D/AABox.h" +#include "G3D/Sphere.h" +#include "G3D/Box.h" +#include "G3D/Triangle.h" +#include "G3D/Ray.h" +#include "G3D/GCamera.h" +#if 0 +#include "G3D/BinaryInput.h" +#include "G3D/BinaryOutput.h" +#endif +#include "G3D/CollisionDetection.h" +#include "G3D/GCamera.h" +#include <algorithm> + +// If defined, in debug mode the tree is checked for consistency +// as a way of detecting corruption due to implementation bugs +// #define VERIFY_TREE + +inline void getBounds(const G3D::Vector3& v, G3D::AABox& out) { + out = G3D::AABox(v); +} + + +inline void getBounds(const G3D::AABox& a, G3D::AABox& out) { + out = a; +} + +inline void getBounds(const G3D::Sphere& s, G3D::AABox& out) { + s.getBounds(out); +} + + +inline void getBounds(const G3D::Box& b, G3D::AABox& out) { + b.getBounds(out); +} + + +inline void getBounds(const G3D::Triangle& t, G3D::AABox& out) { + t.getBounds(out); +} + + + +inline void getBounds(const G3D::Vector3* v, G3D::AABox& out) { + out = G3D::AABox(*v); +} + + +inline void getBounds(const G3D::AABox* a, G3D::AABox& out) { + getBounds(*a, out); +} + +inline void getBounds(const G3D::Sphere* s, G3D::AABox& out) { + s->getBounds(out); +} + + +inline void getBounds(const G3D::Box* b, G3D::AABox& out) { + b->getBounds(out); +} + +inline void getBounds(const G3D::Triangle* t, G3D::AABox& out) { + t->getBounds(out); +} +namespace G3D { + namespace _internal { + + /** + Wraps a pointer value so that it can be treated as the instance itself; + convenient for inserting pointers into a Table but using the + object equality instead of pointer equality. + */ + template<class Type> + class Indirector { + public: + Type* handle; + + inline Indirector(Type* h) : handle(h) {} + + inline Indirector() : handle(NULL) {} + + /** Returns true iff the values referenced by the handles are equivalent. */ + inline bool operator==(const Indirector& m) { + return *handle == *(m.handle); + } + + inline bool operator==(const Type& m) { + return *handle == m; + } + + inline size_t hashCode() const { + return handle->hashCode(); + } + }; + } // namespace internal +} // namespace G3D + +template <class Handle> +struct GHashCode< G3D::_internal::Indirector<Handle> > +{ + size_t operator()(const G3D::_internal::Indirector<Handle>& key) const { return key.hashCode(); } +}; + +namespace G3D { + +/** + A set that supports spatial queries using an axis-aligned + BSP tree for speed. + + AABSPTree allows you to quickly find objects in 3D that lie within + a box or along a ray. For large sets of objects it is much faster + than testing each object for a collision. + + AABSPTree is as powerful as but more general than a Quad Tree, Oct + Tree, or KD Tree, but less general than an unconstrained BSP tree + (which is much slower to create). + + Internally, objects + are arranged into an axis-aligned BSP-tree according to their + axis-aligned bounds. This increases the cost of insertion to + O(log n) but allows fast overlap queries. + + <B>Template Parameters</B> + <DT>The template parameter <I>T</I> must be one for which + the following functions are all overloaded: + + <P><CODE>void ::getBounds(const T&, G3D::AABox&);</CODE> + <DT><CODE>bool ::operator==(const T&, const T&);</CODE> + <DT><CODE>unsigned int ::hashCode(const T&);</CODE> + <DT><CODE>T::T();</CODE> <I>(public constructor of no arguments)</I> + + G3D provides these for common classes like G3D::Vector3 and G3D::Sphere. + If you use a custom class, or a pointer to a custom class, you will need + to define those functions. + + <B>Moving %Set Members</B> + <DT>It is important that objects do not move without updating the + AABSPTree. If the axis-aligned bounds of an object are about + to change, AABSPTree::remove it before they change and + AABSPTree::insert it again afterward. For objects + where the hashCode and == operator are invariant with respect + to the 3D position, + you can use the AABSPTree::update method as a shortcut to + insert/remove an object in one step after it has moved. + + + Note: Do not mutate any value once it has been inserted into AABSPTree. Values + are copied interally. All AABSPTree iterators convert to pointers to constant + values to reinforce this. + + If you want to mutate the objects you intend to store in a AABSPTree + simply insert <I>pointers</I> to your objects instead of the objects + themselves, and ensure that the above operations are defined. (And + actually, because values are copied, if your values are large you may + want to insert pointers anyway, to save space and make the balance + operation faster.) + + <B>Dimensions</B> + Although designed as a 3D-data structure, you can use the AABSPTree + for data distributed along 2 or 1 axes by simply returning bounds + that are always zero along one or more dimensions. + +*/ +namespace _AABSPTree { + + /** Wrapper for a value that includes a cache of its bounds. + Except for the test value used in a set-query operation, there + is only ever one instance of the handle associated with any + value and the memberTable and Nodes maintain pointers to that + heap-allocated value. + */ + template<class TValue> + class Handle { + public: + /** The bounds of each object are constrained to AABox::maxFinite */ + AABox bounds; + + /** Center of bounds. We cache this value to avoid recomputing it + during the median sort, and because MSVC 6 std::sort goes into + an infinite loop if we compute the midpoint on the fly (possibly + a floating point roundoff issue, where B<A and A<B both are true).*/ + Vector3 center; + + TValue value; + + Handle<TValue>() {} + + inline Handle<TValue>(const TValue& v) : value(v) { + getBounds(v, bounds); + bounds = bounds.intersect(AABox::maxFinite()); + center = bounds.center(); + } + + inline bool operator==(const Handle<TValue>& other) const { + return (*value).operator==(*other.value); + } + + inline size_t hashCode() const { + return value->hashCode(); + } + }; + + template<> + class Handle<Triangle> { + public: + /** The bounds of each object are constrained to AABox::maxFinite */ + AABox bounds; + + /** Center of bounds. We cache this value to avoid recomputing it + during the median sort, and because MSVC 6 std::sort goes into + an infinite loop if we compute the midpoint on the fly (possibly + a floating point roundoff issue, where B<A and A<B both are true).*/ + Vector3 center; + + Triangle value; + + Handle<Triangle>() {} + + inline Handle<Triangle>(const Triangle& v) : value(v) { + getBounds(v, bounds); + bounds = bounds.intersect(AABox::maxFinite()); + center = bounds.center(); + } + + inline bool operator==(const Handle<Triangle>& other) const { + return value.operator==(other.value); + } + + inline size_t hashCode() const { + return value.hashCode(); + } + }; +} + +template<class T> class AABSPTree { +protected: +public: + + + /** Returns the bounds of the sub array. Used by makeNode. */ + static AABox computeBounds( + const Array<_AABSPTree::Handle<T>*>& point, + int beginIndex, + int endIndex) { + + Vector3 lo = Vector3::inf(); + Vector3 hi = -lo; + + for (int p = beginIndex; p <= endIndex; ++p) { + lo = lo.min(point[p]->bounds.low()); + hi = hi.max(point[p]->bounds.high()); + } + + return AABox(lo, hi); + } + + /** Compares centers */ + class CenterComparator { + public: + Vector3::Axis sortAxis; + + CenterComparator(Vector3::Axis a) : sortAxis(a) {} + + inline int operator()(_AABSPTree::Handle<T>* A, const _AABSPTree::Handle<T>* B) const { + float a = A->center[sortAxis]; + float b = B->center[sortAxis]; + + if (a < b) { + return 1; + } else if (a > b) { + return -1; + } else { + return 0; + } + } + }; + + + /** Compares bounds for strict >, <, or overlap*/ + class BoundsComparator { + public: + Vector3::Axis sortAxis; + + BoundsComparator(Vector3::Axis a) : sortAxis(a) {} + + inline int operator()(_AABSPTree::Handle<T>* A, const _AABSPTree::Handle<T>* B) const { + const AABox& a = A->bounds; + const AABox& b = B->bounds; + + if (a.high()[sortAxis] < b.low()[sortAxis]) { + return 1; + } else if (a.low()[sortAxis] > b.high()[sortAxis]) { + return -1; + } else { + return 0; + } + } + }; + + + /** Compares bounds to the sort location */ + class Comparator { + public: + Vector3::Axis sortAxis; + float sortLocation; + + Comparator(Vector3::Axis a, float l) : sortAxis(a), sortLocation(l) {} + + inline int operator()(_AABSPTree::Handle<T>* /*ignore*/, const _AABSPTree::Handle<T>* handle) const { + const AABox& box = handle->bounds; + debugAssert(ignore == NULL); + + if (box.high()[sortAxis] < sortLocation) { + // Box is strictly below the sort location + return -1; + } else if (box.low()[sortAxis] > sortLocation) { + // Box is strictly above the sort location + return 1; + } else { + // Box overlaps the sort location + return 0; + } + } + }; + + // Using System::malloc with this class provided no speed improvement. + class Node { + public: + + /** Spatial bounds on all values at this node and its children, based purely on + the parent's splitting planes. May be infinite. */ + AABox splitBounds; + + Vector3::Axis splitAxis; + + /** Location along the specified axis */ + float splitLocation; + + /** child[0] contains all values strictly + smaller than splitLocation along splitAxis. + + child[1] contains all values strictly + larger. + + Both may be NULL if there are not enough + values to bother recursing. + */ + Node* child[2]; + + /** Array of values at this node (i.e., values + straddling the split plane + all values if + this is a leaf node). + + This is an array of pointers because that minimizes + data movement during tree building, which accounts + for about 15% of the time cost of tree building. + */ + Array<_AABSPTree::Handle<T> * > valueArray; + + /** For each object in the value array, a copy of its bounds. + Packing these into an array at the node level + instead putting them in the valueArray improves + cache coherence, which is about a 3x performance + increase when performing intersection computations. + */ + Array<AABox> boundsArray; + + /** Creates node with NULL children */ + Node() { + splitAxis = Vector3::X_AXIS; + splitLocation = 0; + splitBounds = AABox(-Vector3::inf(), Vector3::inf()); + for (int i = 0; i < 2; ++i) { + child[i] = NULL; + } + } + + /** + Doesn't clone children. + */ + Node(const Node& other) : valueArray(other.valueArray), boundsArray(other.boundsArray) { + splitAxis = other.splitAxis; + splitLocation = other.splitLocation; + splitBounds = other.splitBounds; + for (int i = 0; i < 2; ++i) { + child[i] = NULL; + } + } + + /** Copies the specified subarray of pt into point, NULLs the children. + Assumes a second pass will set splitBounds. */ + Node(const Array<_AABSPTree::Handle<T> * >& pt) : valueArray(pt) { + splitAxis = Vector3::X_AXIS; + splitLocation = 0; + for (int i = 0; i < 2; ++i) { + child[i] = NULL; + } + + boundsArray.resize(valueArray.size()); + for (int i = 0; i < valueArray.size(); ++i) { + boundsArray[i] = valueArray[i]->bounds; + } + } + + /** Deletes the children (but not the values) */ + ~Node() { + for (int i = 0; i < 2; ++i) { + delete child[i]; + } + } + + /** Returns true if this node is a leaf (no children) */ + inline bool isLeaf() const { + return (child[0] == NULL) && (child[1] == NULL); + } + + + /** + Recursively appends all handles and children's handles + to the array. + */ + void getHandles(Array<_AABSPTree::Handle<T> * >& handleArray) const { + handleArray.append(valueArray); + for (int i = 0; i < 2; ++i) { + if (child[i] != NULL) { + child[i]->getHandles(handleArray); + } + } + } + + void verifyNode(const Vector3& lo, const Vector3& hi) { + // debugPrintf("Verifying: split %d @ %f [%f, %f, %f], [%f, %f, %f]\n", + // splitAxis, splitLocation, lo.x, lo.y, lo.z, hi.x, hi.y, hi.z); + + debugAssert(lo == splitBounds.low()); + debugAssert(hi == splitBounds.high()); + + for (int i = 0; i < valueArray.length(); ++i) { + const AABox& b = valueArray[i]->bounds; + debugAssert(b == boundsArray[i]); + + for(int axis = 0; axis < 3; ++axis) { + debugAssert(b.low()[axis] <= b.high()[axis]); + debugAssert(b.low()[axis] >= lo[axis]); + debugAssert(b.high()[axis] <= hi[axis]); + } + } + + if (child[0] || child[1]) { + debugAssert(lo[splitAxis] < splitLocation); + debugAssert(hi[splitAxis] > splitLocation); + } + + Vector3 newLo = lo; + newLo[splitAxis] = splitLocation; + Vector3 newHi = hi; + newHi[splitAxis] = splitLocation; + + if (child[0] != NULL) { + child[0]->verifyNode(lo, newHi); + } + + if (child[1] != NULL) { + child[1]->verifyNode(newLo, hi); + } + } + +#if 0 + /** + Stores the locations of the splitting planes (the structure but not the content) + so that the tree can be quickly rebuilt from a previous configuration without + calling balance. + */ + static void serializeStructure(const Node* n, BinaryOutput& bo) { + if (n == NULL) { + bo.writeUInt8(0); + } else { + bo.writeUInt8(1); + n->splitBounds.serialize(bo); + serialize(n->splitAxis, bo); + bo.writeFloat32(n->splitLocation); + for (int c = 0; c < 2; ++c) { + serializeStructure(n->child[c], bo); + } + } + } + + /** Clears the member table */ + static Node* deserializeStructure(BinaryInput& bi) { + if (bi.readUInt8() == 0) { + return NULL; + } else { + Node* n = new Node(); + n->splitBounds.deserialize(bi); + deserialize(n->splitAxis, bi); + n->splitLocation = bi.readFloat32(); + for (int c = 0; c < 2; ++c) { + n->child[c] = deserializeStructure(bi); + } + } + } +#endif + /** Returns the deepest node that completely contains bounds. */ + Node* findDeepestContainingNode(const AABox& bounds) { + + // See which side of the splitting plane the bounds are on + if (bounds.high()[splitAxis] < splitLocation) { + // Bounds are on the low side. Recurse into the child + // if it exists. + if (child[0] != NULL) { + return child[0]->findDeepestContainingNode(bounds); + } + } else if (bounds.low()[splitAxis] > splitLocation) { + // Bounds are on the high side, recurse into the child + // if it exists. + if (child[1] != NULL) { + return child[1]->findDeepestContainingNode(bounds); + } + } + + // There was no containing child, so this node is the + // deepest containing node. + return this; + } + + + /** Appends all members that intersect the box. + If useSphere is true, members that pass the box test + face a second test against the sphere. */ + void getIntersectingMembers( + const AABox& box, + const Sphere& sphere, + Array<T>& members, + bool useSphere) const { + + // Test all values at this node + for (int v = 0; v < boundsArray.size(); ++v) { + const AABox& bounds = boundsArray[v]; + if (bounds.intersects(box) && + (! useSphere || bounds.intersects(sphere))) { + members.append(valueArray[v]->value); + } + } + + // If the left child overlaps the box, recurse into it + if ((child[0] != NULL) && (box.low()[splitAxis] < splitLocation)) { + child[0]->getIntersectingMembers(box, sphere, members, useSphere); + } + + // If the right child overlaps the box, recurse into it + if ((child[1] != NULL) && (box.high()[splitAxis] > splitLocation)) { + child[1]->getIntersectingMembers(box, sphere, members, useSphere); + } + } + + /** + Recurse through the tree, assigning splitBounds fields. + */ + void assignSplitBounds(const AABox& myBounds) { + splitBounds = myBounds; + + AABox childBounds[2]; + myBounds.split(splitAxis, splitLocation, childBounds[0], childBounds[1]); + +# if defined(G3D_DEBUG) && defined(VERIFY_TREE) + // Verify the split + for (int v = 0; v < boundsArray.size(); ++v) { + const AABox& bounds = boundsArray[v]; + debugAssert(myBounds.contains(bounds)); + } +# endif + + for (int c = 0; c < 2; ++c) { + if (child[c]) { + child[c]->assignSplitBounds(childBounds[c]); + } + } + } + + /** Returns true if the ray intersects this node */ + bool intersects(const Ray& ray, float distance) const { + // See if the ray will ever hit this node or its children + Vector3 location; + bool alreadyInsideBounds = false; + bool rayWillHitBounds = + VMAP::MyCollisionDetection::collisionLocationForMovingPointFixedAABox( + ray.origin, ray.direction, splitBounds, location, alreadyInsideBounds); + + bool canHitThisNode = (alreadyInsideBounds || + (rayWillHitBounds && ((location - ray.origin).squaredLength() < square(distance)))); + + return canHitThisNode; + } + + template<typename RayCallback> + void intersectRay( + const Ray& ray, + RayCallback& intersectCallback, + float& distance, + bool pStopAtFirstHit, + bool intersectCallbackIsFast) const { + float enterDistance = distance; + + if (! intersects(ray, distance)) { + // The ray doesn't hit this node, so it can't hit the children of the node. + return; + } + + // Test for intersection against every object at this node. + for (int v = 0; v < valueArray.size(); ++v) { + bool canHitThisObject = true; + + if (! intersectCallbackIsFast) { + // See if + Vector3 location; + const AABox& bounds = boundsArray[v]; + bool alreadyInsideBounds = false; + bool rayWillHitBounds = + VMAP::MyCollisionDetection::collisionLocationForMovingPointFixedAABox( + ray.origin, ray.direction, bounds, location, alreadyInsideBounds); + + canHitThisObject = (alreadyInsideBounds || + (rayWillHitBounds && ((location - ray.origin).squaredLength() < square(distance)))); + } + + if (canHitThisObject) { + // It is possible that this ray hits this object. Look for the intersection using the + // callback. + const T& value = valueArray[v]->value; + intersectCallback(ray, value, pStopAtFirstHit, distance); + } + if(pStopAtFirstHit && distance < enterDistance) + return; + } + + // There are three cases to consider next: + // + // 1. the ray can start on one side of the splitting plane and never enter the other, + // 2. the ray can start on one side and enter the other, and + // 3. the ray can travel exactly down the splitting plane + + enum {NONE = -1}; + int firstChild = NONE; + int secondChild = NONE; + + if (ray.origin[splitAxis] < splitLocation) { + + // The ray starts on the small side + firstChild = 0; + + if (ray.direction[splitAxis] > 0) { + // The ray will eventually reach the other side + secondChild = 1; + } + + } else if (ray.origin[splitAxis] > splitLocation) { + + // The ray starts on the large side + firstChild = 1; + + if (ray.direction[splitAxis] < 0) { + secondChild = 0; + } + } else { + // The ray starts on the splitting plane + if (ray.direction[splitAxis] < 0) { + // ...and goes to the small side + firstChild = 0; + } else if (ray.direction[splitAxis] > 0) { + // ...and goes to the large side + firstChild = 1; + } + } + + // Test on the side closer to the ray origin. + if ((firstChild != NONE) && child[firstChild]) { + child[firstChild]->intersectRay(ray, intersectCallback, distance, pStopAtFirstHit, intersectCallbackIsFast); + if(pStopAtFirstHit && distance < enterDistance) + return; + } + + if (ray.direction[splitAxis] != 0) { + // See if there was an intersection before hitting the splitting plane. + // If so, there is no need to look on the far side and recursion terminates. + float distanceToSplittingPlane = (splitLocation - ray.origin[splitAxis]) / ray.direction[splitAxis]; + if (distanceToSplittingPlane > distance) { + // We aren't going to hit anything else before hitting the splitting plane, + // so don't bother looking on the far side of the splitting plane at the other + // child. + return; + } + } + + // Test on the side farther from the ray origin. + if ((secondChild != NONE) && child[secondChild]) { + child[secondChild]->intersectRay(ray, intersectCallback, distance, pStopAtFirstHit, intersectCallbackIsFast); + } + + } + }; + + + /** + Recursively subdivides the subarray. + + Clears the source array as soon as it is no longer needed. + + Call assignSplitBounds() on the root node after making a tree. + */ + Node* makeNode( + Array<_AABSPTree::Handle<T> * >& source, + int valuesPerNode, + int numMeanSplits, + Array<_AABSPTree::Handle<T> * >& temp) { + + Node* node = NULL; + + if (source.size() <= valuesPerNode) { + // Make a new leaf node + node = new Node(source); + + // Set the pointers in the memberTable + for (int i = 0; i < source.size(); ++i) { + memberTable.set(Member(source[i]), node); + } + source.clear(); + + } else { + // Make a new internal node + node = new Node(); + + const AABox bounds = computeBounds(source, 0, source.size() - 1); + const Vector3 extent = bounds.high() - bounds.low(); + + Vector3::Axis splitAxis = extent.primaryAxis(); + + float splitLocation; + + // Arrays for holding the children + Array<_AABSPTree::Handle<T> * > lt, gt; + + if (numMeanSplits <= 0) { + + source.medianPartition(lt, node->valueArray, gt, temp, CenterComparator(splitAxis)); + + // Choose the split location to be the center of whatever fell in the center + splitLocation = node->valueArray[0]->center[splitAxis]; + + // Some of the elements in the lt or gt array might really overlap the split location. + // Move them as needed. + for (int i = 0; i < lt.size(); ++i) { + const AABox& bounds = lt[i]->bounds; + if ((bounds.low()[splitAxis] <= splitLocation) && (bounds.high()[splitAxis] >= splitLocation)) { + node->valueArray.append(lt[i]); + // Remove this element and process the new one that + // is swapped in in its place. + lt.fastRemove(i); --i; + } + } + + for (int i = 0; i < gt.size(); ++i) { + const AABox& bounds = gt[i]->bounds; + if ((bounds.low()[splitAxis] <= splitLocation) && (bounds.high()[splitAxis] >= splitLocation)) { + node->valueArray.append(gt[i]); + // Remove this element and process the new one that + // is swapped in in its place. + gt.fastRemove(i); --i; + } + } + + if ((node->valueArray.size() > (source.size() / 2)) && + (source.size() > 6)) { + // This was a bad partition; we ended up putting the splitting plane right in the middle of most of the + // objects. We could try to split on a different axis, or use a different partition (e.g., the extents mean, + // or geometric mean). This implementation falls back on the extents mean, since that case is already handled + // below. + numMeanSplits = 1; + } + } + + // Note: numMeanSplits may have been increased by the code in the previous case above in order to + // force a re-partition. + + if (numMeanSplits > 0) { + // Split along the mean + splitLocation = (bounds.high()[splitAxis] + + bounds.low()[splitAxis]) / 2.0; + + source.partition(NULL, lt, node->valueArray, gt, Comparator(splitAxis, splitLocation)); + + // The Comparator ensures that elements are strictly on the correct side of the split + } + + +# if defined(G3D_DEBUG) && defined(VERIFY_TREE) + debugAssert(lt.size() + node->valueArray.size() + gt.size() == source.size()); + // Verify that all objects ended up on the correct side of the split. + // (i.e., make sure that the Array partition was correct) + for (int i = 0; i < lt.size(); ++i) { + const AABox& bounds = lt[i]->bounds; + debugAssert(bounds.high()[splitAxis] < splitLocation); + } + + for (int i = 0; i < gt.size(); ++i) { + const AABox& bounds = gt[i]->bounds; + debugAssert(bounds.low()[splitAxis] > splitLocation); + } + + for (int i = 0; i < node->valueArray.size(); ++i) { + const AABox& bounds = node->valueArray[i]->bounds; + debugAssert(bounds.high()[splitAxis] >= splitLocation); + debugAssert(bounds.low()[splitAxis] <= splitLocation); + } +# endif + + // The source array is no longer needed + source.clear(); + + node->splitAxis = splitAxis; + node->splitLocation = splitLocation; + + // Update the bounds array and member table + node->boundsArray.resize(node->valueArray.size()); + for (int i = 0; i < node->valueArray.size(); ++i) { + _AABSPTree::Handle<T> * v = node->valueArray[i]; + node->boundsArray[i] = v->bounds; + memberTable.set(Member(v), node); + } + + if (lt.size() > 0) { + node->child[0] = makeNode(lt, valuesPerNode, numMeanSplits - 1, temp); + } + + if (gt.size() > 0) { + node->child[1] = makeNode(gt, valuesPerNode, numMeanSplits - 1, temp); + } + + } + + return node; + } + + /** + Recursively clone the passed in node tree, setting + pointers for members in the memberTable as appropriate. + called by the assignment operator. + */ + Node* cloneTree(Node* src) { + Node* dst = new Node(*src); + + // Make back pointers + for (int i = 0; i < dst->valueArray.size(); ++i) { + memberTable.set(Member(dst->valueArray[i]), dst); + } + + // Clone children + for (int i = 0; i < 2; ++i) { + if (src->child[i] != NULL) { + dst->child[i] = cloneTree(src->child[i]); + } + } + + return dst; + } + + /** + Wrapper for a Handle; used to create a memberTable that acts like Table<Handle, Node*> but + stores only Handle* internally to avoid memory copies. + */ + typedef _internal::Indirector<_AABSPTree::Handle<T> > Member; + + typedef Table<Member, Node*> MemberTable; + + /** Maps members to the node containing them */ + MemberTable memberTable; + + Node* root; + +public: + + /** To construct a balanced tree, insert the elements and then call + AABSPTree::balance(). */ + AABSPTree() : root(NULL) {} + + + AABSPTree(const AABSPTree& src) : root(NULL) { + *this = src; + } + + + AABSPTree& operator=(const AABSPTree& src) { + delete root; + // Clone tree takes care of filling out the memberTable. + root = cloneTree(src.root); + return *this; + } + + + ~AABSPTree() { + clear(); + } + + /** + Throws out all elements of the set. + */ + void clear() { + typedef typename Table<_internal::Indirector<_AABSPTree::Handle<T> >, Node* >::Iterator It; + + // Delete all handles stored in the member table + It cur = memberTable.begin(); + It end = memberTable.end(); + while (cur != end) { + delete cur->key.handle; + cur->key.handle = NULL; + ++cur; + } + memberTable.clear(); + + // Delete the tree structure itself + delete root; + root = NULL; + } + + size_t size() const { + return memberTable.size(); + } + + /** + Inserts an object into the set if it is not + already present. O(log n) time. Does not + cause the tree to be balanced. + */ + void insert(const T& value) { + if (contains(value)) { + // Already in the set + return; + } + + _AABSPTree::Handle<T>* h = new _AABSPTree::Handle<T>(value); + + if (root == NULL) { + // This is the first node; create a root node + root = new Node(); + } + + Node* node = root->findDeepestContainingNode(h->bounds); + + // Insert into the node + node->valueArray.append(h); + node->boundsArray.append(h->bounds); + + // Insert into the node table + Member m(h); + memberTable.set(m, node); + } + + /** Inserts each elements in the array in turn. If the tree + begins empty (no structure and no elements), this is faster + than inserting each element in turn. You still need to balance + the tree at the end.*/ + void insert(const Array<T>& valueArray) { + if (root == NULL) { + // Optimized case for an empty tree; don't bother + // searching or reallocating the root node's valueArray + // as we incrementally insert. + root = new Node(); + root->valueArray.resize(valueArray.size()); + root->boundsArray.resize(root->valueArray.size()); + for (int i = 0; i < valueArray.size(); ++i) { + // Insert in opposite order so that we have the exact same + // data structure as if we inserted each (i.e., order is reversed + // from array). + _AABSPTree::Handle<T>* h = new _AABSPTree::Handle<T>(valueArray[i]); + int j = valueArray.size() - i - 1; + root->valueArray[j] = h; + root->boundsArray[j] = h->bounds; + memberTable.set(Member(h), root); + } + + } else { + // Insert at appropriate tree depth. + for (int i = 0; i < valueArray.size(); ++i) { + insert(valueArray[i]); + } + } + } + + + /** + Returns true if this object is in the set, otherwise + returns false. O(1) time. + */ + bool contains(const T& value) { + // Temporarily create a handle and member + _AABSPTree::Handle<T> h(value); + return memberTable.containsKey(Member(&h)); + } + + + /** + Removes an object from the set in O(1) time. + It is an error to remove members that are not already + present. May unbalance the tree. + + Removing an element never causes a node (split plane) to be removed... + nodes are only changed when the tree is rebalanced. This behavior + is desirable because it allows the split planes to be serialized, + and then deserialized into an empty tree which can be repopulated. + */ + void remove(const T& value) { + debugAssertM(contains(value), + "Tried to remove an element from a " + "AABSPTree that was not present"); + + // Get the list of elements at the node + _AABSPTree::Handle<T> h(value); + Member m(&h); + + Array<_AABSPTree::Handle<T> * >& list = memberTable[m]->valueArray; + + _AABSPTree::Handle<T>* ptr = NULL; + + // Find the element and remove it + for (int i = list.length() - 1; i >= 0; --i) { + if (list[i]->value == value) { + // This was the element. Grab the pointer so that + // we can delete it below + ptr = list[i]; + + // Remove the handle from the node + list.fastRemove(i); + + // Remove the corresponding bounds + memberTable[m]->boundsArray.fastRemove(i); + break; + } + } + + // Remove the member + memberTable.remove(m); + + // Delete the handle data structure + delete ptr; + ptr = NULL; + } + + + /** + If the element is in the set, it is removed. + The element is then inserted. + + This is useful when the == and hashCode methods + on <I>T</I> are independent of the bounds. In + that case, you may call update(v) to insert an + element for the first time and call update(v) + again every time it moves to keep the tree + up to date. + */ + void update(const T& value) { + if (contains(value)) { + remove(value); + } + insert(value); + } + + + /** + Rebalances the tree (slow). Call when objects + have moved substantially from their original positions + (which unbalances the tree and causes the spatial + queries to be slow). + + @param valuesPerNode Maximum number of elements to put at + a node. + + @param numMeanSplits numMeanSplits = 0 gives a + fully axis aligned BSP-tree, where the balance operation attempts to balance + the tree so that every splitting plane has an equal number of left + and right children (i.e. it is a <B>median</B> split along that axis). + This tends to maximize average performance. + + You can override this behavior by + setting a number of <B>mean</B> (average) splits. numMeanSplits = MAX_INT + creates a full oct-tree, which tends to optimize peak performance at the expense of + average performance. It tends to have better clustering behavior when + members are not uniformly distributed. + */ + void balance(int valuesPerNode = 5, int numMeanSplits = 3) { + if (root == NULL) { + // Tree is empty + return; + } + + // Get all handles and delete the old tree structure + Node* oldRoot = root; + for (int c = 0; c < 2; ++c) { + if (root->child[c] != NULL) { + root->child[c]->getHandles(root->valueArray); + + // Delete the child; this will delete all structure below it + delete root->child[c]; + root->child[c] = NULL; + } + } + + Array<_AABSPTree::Handle<T> * > temp; + // Make a new root. Work with a copy of the value array because + // makeNode clears the source array as it progresses + Array<_AABSPTree::Handle<T> * > copy(oldRoot->valueArray); + root = makeNode(copy, valuesPerNode, numMeanSplits, temp); + + // Throw away the old root node + delete oldRoot; + oldRoot = NULL; + + // Walk the tree, assigning splitBounds. We start with unbounded + // space. This will override the current member table. + root->assignSplitBounds(AABox::maxFinite()); + +# ifdef _DEBUG + // Ensure that the balanced tree is till correct + root->verifyNode(Vector3::minFinite(), Vector3::maxFinite()); +# endif + } + +protected: + + /** + @param parentMask The mask that this node returned from culledBy. + */ + static void getIntersectingMembers( + const Array<Plane>& plane, + Array<T>& members, + Node* node, + uint32 parentMask) { + + int dummy; + + if (parentMask == 0) { + // None of these planes can cull anything + for (int v = node->valueArray.size() - 1; v >= 0; --v) { + members.append(node->valueArray[v]->value); + } + + // Iterate through child nodes + for (int c = 0; c < 2; ++c) { + if (node->child[c]) { + getIntersectingMembers(plane, members, node->child[c], 0); + } + } + } else { + + // Test values at this node against remaining planes + for (int v = node->boundsArray.size() - 1; v >= 0; --v) { + if (! node->boundsArray[v].culledBy(plane, dummy, parentMask)) { + members.append(node->valueArray[v]->value); + } + } + + uint32 childMask = 0xFFFFFF; + + // Iterate through child nodes + for (int c = 0; c < 2; ++c) { + if (node->child[c] && + ! node->child[c]->splitBounds.culledBy(plane, dummy, parentMask, childMask)) { + // This node was not culled + getIntersectingMembers(plane, members, node->child[c], childMask); + } + } + } + } + +public: + + /** + Returns all members inside the set of planes. + @param members The results are appended to this array. + */ + void getIntersectingMembers(const Array<Plane>& plane, Array<T>& members) const { + if (root == NULL) { + return; + } + + getIntersectingMembers(plane, members, root, 0xFFFFFF); + } + + /** + Typically used to find all visible + objects inside the view frustum (see also GCamera::getClipPlanes)... i.e. all objects + <B>not<B> culled by frustum. + + Example: + <PRE> + Array<Object*> visible; + tree.getIntersectingMembers(camera.frustum(), visible); + // ... Draw all objects in the visible array. + </PRE> + @param members The results are appended to this array. + */ + void getIntersectingMembers(const GCamera::Frustum& frustum, Array<T>& members) const { + Array<Plane> plane; + + for (int i = 0; i < frustum.faceArray.size(); ++i) { + plane.append(frustum.faceArray[i].plane); + } + + getIntersectingMembers(plane, members); + } + + /** + C++ STL style iterator variable. See beginBoxIntersection(). + The iterator overloads the -> (dereference) operator, so this + acts like a pointer to the current member. + */ + // This iterator turns Node::getIntersectingMembers into a + // coroutine. It first translates that method from recursive to + // stack based, then captures the system state (analogous to a Scheme + // continuation) after each element is appended to the member array, + // and allowing the computation to be restarted. + class BoxIntersectionIterator { + private: + friend class AABSPTree<T>; + + /** True if this is the "end" iterator instance */ + bool isEnd; + + /** The box that we're testing against. */ + AABox box; + + /** Node that we're currently looking at. Undefined if isEnd + is true. */ + Node* node; + + /** Nodes waiting to be processed */ + // We could use backpointers within the tree and careful + // state management to avoid ever storing the stack-- but + // it is much easier this way and only inefficient if the + // caller uses post increment (which they shouldn't!). + Array<Node*> stack; + + /** The next index of current->valueArray to return. + Undefined when isEnd is true.*/ + int nextValueArrayIndex; + + BoxIntersectionIterator() : isEnd(true) {} + + BoxIntersectionIterator(const AABox& b, const Node* root) : + isEnd(root == NULL), box(b), + node(const_cast<Node*>(root)), nextValueArrayIndex(-1) { + + // We intentionally start at the "-1" index of the current + // node so we can use the preincrement operator to move + // ourselves to element 0 instead of repeating all of the + // code from the preincrement method. Note that this might + // cause us to become the "end" instance. + ++(*this); + } + + public: + + inline bool operator!=(const BoxIntersectionIterator& other) const { + return ! (*this == other); + } + + bool operator==(const BoxIntersectionIterator& other) const { + if (isEnd) { + return other.isEnd; + } else if (other.isEnd) { + return false; + } else { + // Two non-end iterators; see if they match. This is kind of + // silly; users shouldn't call == on iterators in general unless + // one of them is the end iterator. + if ((box != other.box) || (node != other.node) || + (nextValueArrayIndex != other.nextValueArrayIndex) || + (stack.length() != other.stack.length())) { + return false; + } + + // See if the stacks are the same + for (int i = 0; i < stack.length(); ++i) { + if (stack[i] != other.stack[i]) { + return false; + } + } + + // We failed to find a difference; they must be the same + return true; + } + } + + /** + Pre increment. + */ + BoxIntersectionIterator& operator++() { + ++nextValueArrayIndex; + + bool foundIntersection = false; + while (! isEnd && ! foundIntersection) { + + // Search for the next node if we've exhausted this one + while ((! isEnd) && (nextValueArrayIndex >= node->valueArray.length())) { + // If we entered this loop, then the iterator has exhausted the elements at + // node (possibly because it just switched to a child node with no members). + // This loop continues until it finds a node with members or reaches + // the end of the whole intersection search. + + // If the right child overlaps the box, push it onto the stack for + // processing. + if ((node->child[1] != NULL) && + (box.high()[node->splitAxis] > node->splitLocation)) { + stack.push(node->child[1]); + } + + // If the left child overlaps the box, push it onto the stack for + // processing. + if ((node->child[0] != NULL) && + (box.low()[node->splitAxis] < node->splitLocation)) { + stack.push(node->child[0]); + } + + if (stack.length() > 0) { + // Go on to the next node (which may be either one of the ones we + // just pushed, or one from farther back the tree). + node = stack.pop(); + nextValueArrayIndex = 0; + } else { + // That was the last node; we're done iterating + isEnd = true; + } + } + + // Search for the next intersection at this node until we run out of children + while (! isEnd && ! foundIntersection && (nextValueArrayIndex < node->valueArray.length())) { + if (box.intersects(node->boundsArray[nextValueArrayIndex])) { + foundIntersection = true; + } else { + ++nextValueArrayIndex; + // If we exhaust this node, we'll loop around the master loop + // to find a new node. + } + } + } + + return *this; + } + + private: + /** + Post increment (much slower than preincrement!). Intentionally overloaded to preclude accidentally slow code. + */ + BoxIntersectionIterator operator++(int); + /*{ + BoxIntersectionIterator old = *this; + ++this; + return old; + }*/ + + public: + + /** Overloaded dereference operator so the iterator can masquerade as a pointer + to a member */ + const T& operator*() const { + alwaysAssertM(! isEnd, "Can't dereference the end element of an iterator"); + return node->valueArray[nextValueArrayIndex]->value; + } + + /** Overloaded dereference operator so the iterator can masquerade as a pointer + to a member */ + T const * operator->() const { + alwaysAssertM(! isEnd, "Can't dereference the end element of an iterator"); + return &(stack.last()->valueArray[nextValueArrayIndex]->value); + } + + /** Overloaded cast operator so the iterator can masquerade as a pointer + to a member */ + operator T*() const { + alwaysAssertM(! isEnd, "Can't dereference the end element of an iterator"); + return &(stack.last()->valueArray[nextValueArrayIndex]->value); + } + }; + + + /** + Iterates through the members that intersect the box + */ + BoxIntersectionIterator beginBoxIntersection(const AABox& box) const { + return BoxIntersectionIterator(box, root); + } + + BoxIntersectionIterator endBoxIntersection() const { + // The "end" iterator instance + return BoxIntersectionIterator(); + } + + /** + Appends all members whose bounds intersect the box. + See also AABSPTree::beginBoxIntersection. + */ + void getIntersectingMembers(const AABox& box, Array<T>& members) const { + if (root == NULL) { + return; + } + root->getIntersectingMembers(box, Sphere(Vector3::zero(), 0), members, false); + } + + + /** + Invoke a callback for every member along a ray until the closest intersection is found. + + @param callback either a function or an instance of a class with an overloaded operator() of the form: + + <code>void callback(const Ray& ray, const T& object, float& distance)</code>. If the ray hits the object + before travelling distance <code>distance</code>, updates <code>distance</code> with the new distance to + the intersection, otherwise leaves it unmodified. A common example is: + + <pre> + class Entity { + public: + + void intersect(const Ray& ray, float& maxDist, Vector3& outLocation, Vector3& outNormal) { + float d = maxDist; + + // ... search for intersection distance d + + if ((d > 0) && (d < maxDist)) { + // Intersection occured + maxDist = d; + outLocation = ...; + outNormal = ...; + } + } + }; + + // Finds the surface normal and location of the first intersection with the scene + class Intersection { + public: + Entity* closestEntity; + Vector3 hitLocation; + Vector3 hitNormal; + + void operator()(const Ray& ray, const Entity* entity, float& distance) { + entity->intersect(ray, distance, hitLocation, hitNormal); + } + }; + + AABSPTree<Entity*> scene; + + Intersection intersection; + float distance = inf(); + scene.intersectRay(camera.worldRay(x, y), intersection, distance); + </pre> + + + @param distance When the method is invoked, this is the maximum distance that the tree should search for an intersection. + On return, this is set to the distance to the first intersection encountered. + + @param intersectCallbackIsFast If false, each object's bounds are tested before the intersectCallback is invoked. + If the intersect callback runs at the same speed or faster than AABox-ray intersection, set this to true. + */ + template<typename RayCallback> + void intersectRay( + const Ray& ray, + RayCallback& intersectCallback, + float& distance, + bool pStopAtFirstHit, + bool intersectCallbackIsFast = false) const { + + root->intersectRay(ray, intersectCallback, distance, pStopAtFirstHit, intersectCallbackIsFast); + + } + + + /** + @param members The results are appended to this array. + */ + void getIntersectingMembers(const Sphere& sphere, Array<T>& members) const { + if (root == NULL) { + return; + } + + AABox box; + sphere.getBounds(box); + root->getIntersectingMembers(box, sphere, members, true); + + } +#if 0 + /** + Stores the locations of the splitting planes (the structure but not the content) + so that the tree can be quickly rebuilt from a previous configuration without + calling balance. + */ + void serializeStructure(BinaryOutput& bo) const { + Node::serializeStructure(root, bo); + } + + /** Clears the member table */ + void deserializeStructure(BinaryInput& bi) { + clear(); + root = Node::deserializeStructure(bi); + } +#endif + /** + Returns an array of all members of the set. See also AABSPTree::begin. + */ + void getMembers(Array<T>& members) const { + Array<Member> temp; + memberTable.getKeys(temp); + for (int i = 0; i < temp.size(); ++i) { + members.append(temp[i].handle->value); + } + } + + + /** + C++ STL style iterator variable. See begin(). + Overloads the -> (dereference) operator, so this acts like a pointer + to the current member. + */ + class Iterator { + private: + friend class AABSPTree<T>; + + // Note: this is a Table iterator, we are currently defining + // Set iterator + typename Table<Member, Node*>::Iterator it; + + Iterator(const typename Table<Member, Node*>::Iterator& it) : it(it) {} + + public: + + inline bool operator!=(const Iterator& other) const { + return !(*this == other); + } + + bool operator==(const Iterator& other) const { + return it == other.it; + } + + /** + Pre increment. + */ + Iterator& operator++() { + ++it; + return *this; + } + + private: + /** + Post increment (slower than preincrement). Intentionally unimplemented to prevent slow code. + */ + Iterator operator++(int);/* { + Iterator old = *this; + ++(*this); + return old; + }*/ + public: + + const T& operator*() const { + return it->key.handle->value; + } + + T* operator->() const { + return &(it->key.handle->value); + } + + operator T*() const { + return &(it->key.handle->value); + } + }; + + + /** + C++ STL style iterator method. Returns the first member. + Use preincrement (++entry) to get to the next element (iteration + order is arbitrary). + Do not modify the set while iterating. + */ + Iterator begin() const { + return Iterator(memberTable.begin()); + } + + + /** + C++ STL style iterator method. Returns one after the last iterator + element. + */ + Iterator end() const { + return Iterator(memberTable.end()); + } +}; + +} + +#endif + + + |