1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
|
/**
@file AABSPTree.h
@maintainer Morgan McGuire, matrix@graphics3d.com
@created 2004-01-11
@edited 2007-02-16
Copyright 2000-2007, Morgan McGuire.
All rights reserved.
*/
#ifndef G3D_AABSPTREE_H
#define G3D_AABSPTREE_H
#include "VMapTools.h"
#include "G3D/platform.h"
#include "G3D/Array.h"
#include "G3D/Table.h"
#include "G3D/Vector3.h"
#include "G3D/AABox.h"
#include "G3D/Sphere.h"
#include "G3D/Box.h"
#include "G3D/Triangle.h"
#include "G3D/Ray.h"
#include "G3D/GCamera.h"
#if 0
#include "G3D/BinaryInput.h"
#include "G3D/BinaryOutput.h"
#endif
#include "G3D/CollisionDetection.h"
#include "G3D/GCamera.h"
#include <algorithm>
// If defined, in debug mode the tree is checked for consistency
// as a way of detecting corruption due to implementation bugs
// #define VERIFY_TREE
inline void getBounds(const G3D::Vector3& v, G3D::AABox& out) {
out = G3D::AABox(v);
}
inline void getBounds(const G3D::AABox& a, G3D::AABox& out) {
out = a;
}
inline void getBounds(const G3D::Sphere& s, G3D::AABox& out) {
s.getBounds(out);
}
inline void getBounds(const G3D::Box& b, G3D::AABox& out) {
b.getBounds(out);
}
inline void getBounds(const G3D::Triangle& t, G3D::AABox& out) {
t.getBounds(out);
}
inline void getBounds(const G3D::Vector3* v, G3D::AABox& out) {
out = G3D::AABox(*v);
}
inline void getBounds(const G3D::AABox* a, G3D::AABox& out) {
getBounds(*a, out);
}
inline void getBounds(const G3D::Sphere* s, G3D::AABox& out) {
s->getBounds(out);
}
inline void getBounds(const G3D::Box* b, G3D::AABox& out) {
b->getBounds(out);
}
inline void getBounds(const G3D::Triangle* t, G3D::AABox& out) {
t->getBounds(out);
}
namespace G3D {
namespace _internal {
/**
Wraps a pointer value so that it can be treated as the instance itself;
convenient for inserting pointers into a Table but using the
object equality instead of pointer equality.
*/
template<class Type>
class Indirector {
public:
Type* handle;
inline Indirector(Type* h) : handle(h) {}
inline Indirector() : handle(NULL) {}
/** Returns true iff the values referenced by the handles are equivalent. */
inline bool operator==(const Indirector& m) {
return *handle == *(m.handle);
}
inline bool operator==(const Type& m) {
return *handle == m;
}
inline size_t hashCode() const {
return handle->hashCode();
}
};
} // namespace internal
} // namespace G3D
template <class Handle>
struct GHashCode<typename G3D::_internal::Indirector<Handle> >
{
size_t operator()(const G3D::_internal::Indirector<Handle>& key) const { return key.hashCode(); }
};
namespace G3D {
/**
A set that supports spatial queries using an axis-aligned
BSP tree for speed.
AABSPTree allows you to quickly find objects in 3D that lie within
a box or along a ray. For large sets of objects it is much faster
than testing each object for a collision.
AABSPTree is as powerful as but more general than a Quad Tree, Oct
Tree, or KD Tree, but less general than an unconstrained BSP tree
(which is much slower to create).
Internally, objects
are arranged into an axis-aligned BSP-tree according to their
axis-aligned bounds. This increases the cost of insertion to
O(log n) but allows fast overlap queries.
<B>Template Parameters</B>
<DT>The template parameter <I>T</I> must be one for which
the following functions are all overloaded:
<P><CODE>void ::getBounds(const T&, G3D::AABox&);</CODE>
<DT><CODE>bool ::operator==(const T&, const T&);</CODE>
<DT><CODE>unsigned int ::hashCode(const T&);</CODE>
<DT><CODE>T::T();</CODE> <I>(public constructor of no arguments)</I>
G3D provides these for common classes like G3D::Vector3 and G3D::Sphere.
If you use a custom class, or a pointer to a custom class, you will need
to define those functions.
<B>Moving %Set Members</B>
<DT>It is important that objects do not move without updating the
AABSPTree. If the axis-aligned bounds of an object are about
to change, AABSPTree::remove it before they change and
AABSPTree::insert it again afterward. For objects
where the hashCode and == operator are invariant with respect
to the 3D position,
you can use the AABSPTree::update method as a shortcut to
insert/remove an object in one step after it has moved.
Note: Do not mutate any value once it has been inserted into AABSPTree. Values
are copied interally. All AABSPTree iterators convert to pointers to constant
values to reinforce this.
If you want to mutate the objects you intend to store in a AABSPTree
simply insert <I>pointers</I> to your objects instead of the objects
themselves, and ensure that the above operations are defined. (And
actually, because values are copied, if your values are large you may
want to insert pointers anyway, to save space and make the balance
operation faster.)
<B>Dimensions</B>
Although designed as a 3D-data structure, you can use the AABSPTree
for data distributed along 2 or 1 axes by simply returning bounds
that are always zero along one or more dimensions.
*/
namespace _AABSPTree {
/** Wrapper for a value that includes a cache of its bounds.
Except for the test value used in a set-query operation, there
is only ever one instance of the handle associated with any
value and the memberTable and Nodes maintain pointers to that
heap-allocated value.
*/
template<class TValue>
class Handle {
public:
/** The bounds of each object are constrained to AABox::maxFinite */
AABox bounds;
/** Center of bounds. We cache this value to avoid recomputing it
during the median sort, and because MSVC 6 std::sort goes into
an infinite loop if we compute the midpoint on the fly (possibly
a floating point roundoff issue, where B<A and A<B both are true).*/
Vector3 center;
TValue value;
Handle<TValue>() {}
inline Handle<TValue>(const TValue& v) : value(v) {
getBounds(v, bounds);
bounds = bounds.intersect(AABox::maxFinite());
center = bounds.center();
}
inline bool operator==(const Handle<TValue>& other) const {
return (*value).operator==(*other.value);
}
inline size_t hashCode() const {
return value->hashCode();
}
};
template<>
class Handle<Triangle> {
public:
/** The bounds of each object are constrained to AABox::maxFinite */
AABox bounds;
/** Center of bounds. We cache this value to avoid recomputing it
during the median sort, and because MSVC 6 std::sort goes into
an infinite loop if we compute the midpoint on the fly (possibly
a floating point roundoff issue, where B<A and A<B both are true).*/
Vector3 center;
Triangle value;
Handle<Triangle>() {}
inline Handle<Triangle>(const Triangle& v) : value(v) {
getBounds(v, bounds);
bounds = bounds.intersect(AABox::maxFinite());
center = bounds.center();
}
inline bool operator==(const Handle<Triangle>& other) const {
return value.operator==(other.value);
}
inline size_t hashCode() const {
return value.hashCode();
}
};
}
template<class T> class AABSPTree {
protected:
public:
/** Returns the bounds of the sub array. Used by makeNode. */
static AABox computeBounds(
const Array<_AABSPTree::Handle<T>*>& point,
int beginIndex,
int endIndex) {
Vector3 lo = Vector3::inf();
Vector3 hi = -lo;
for (int p = beginIndex; p <= endIndex; ++p) {
lo = lo.min(point[p]->bounds.low());
hi = hi.max(point[p]->bounds.high());
}
return AABox(lo, hi);
}
/** Compares centers */
class CenterComparator {
public:
Vector3::Axis sortAxis;
CenterComparator(Vector3::Axis a) : sortAxis(a) {}
inline int operator()(_AABSPTree::Handle<T>* A, const _AABSPTree::Handle<T>* B) const {
float a = A->center[sortAxis];
float b = B->center[sortAxis];
if (a < b) {
return 1;
} else if (a > b) {
return -1;
} else {
return 0;
}
}
};
/** Compares bounds for strict >, <, or overlap*/
class BoundsComparator {
public:
Vector3::Axis sortAxis;
BoundsComparator(Vector3::Axis a) : sortAxis(a) {}
inline int operator()(_AABSPTree::Handle<T>* A, const _AABSPTree::Handle<T>* B) const {
const AABox& a = A->bounds;
const AABox& b = B->bounds;
if (a.high()[sortAxis] < b.low()[sortAxis]) {
return 1;
} else if (a.low()[sortAxis] > b.high()[sortAxis]) {
return -1;
} else {
return 0;
}
}
};
/** Compares bounds to the sort location */
class Comparator {
public:
Vector3::Axis sortAxis;
float sortLocation;
Comparator(Vector3::Axis a, float l) : sortAxis(a), sortLocation(l) {}
inline int operator()(_AABSPTree::Handle<T>* ignore, const _AABSPTree::Handle<T>* handle) const {
const AABox& box = handle->bounds;
debugAssert(ignore == NULL);
if (box.high()[sortAxis] < sortLocation) {
// Box is strictly below the sort location
return -1;
} else if (box.low()[sortAxis] > sortLocation) {
// Box is strictly above the sort location
return 1;
} else {
// Box overlaps the sort location
return 0;
}
}
};
// Using System::malloc with this class provided no speed improvement.
class Node {
public:
/** Spatial bounds on all values at this node and its children, based purely on
the parent's splitting planes. May be infinite. */
AABox splitBounds;
Vector3::Axis splitAxis;
/** Location along the specified axis */
float splitLocation;
/** child[0] contains all values strictly
smaller than splitLocation along splitAxis.
child[1] contains all values strictly
larger.
Both may be NULL if there are not enough
values to bother recursing.
*/
Node* child[2];
/** Array of values at this node (i.e., values
straddling the split plane + all values if
this is a leaf node).
This is an array of pointers because that minimizes
data movement during tree building, which accounts
for about 15% of the time cost of tree building.
*/
Array<_AABSPTree::Handle<T> * > valueArray;
/** For each object in the value array, a copy of its bounds.
Packing these into an array at the node level
instead putting them in the valueArray improves
cache coherence, which is about a 3x performance
increase when performing intersection computations.
*/
Array<AABox> boundsArray;
/** Creates node with NULL children */
Node() {
splitAxis = Vector3::X_AXIS;
splitLocation = 0;
splitBounds = AABox(-Vector3::inf(), Vector3::inf());
for (int i = 0; i < 2; ++i) {
child[i] = NULL;
}
}
/**
Doesn't clone children.
*/
Node(const Node& other) : valueArray(other.valueArray), boundsArray(other.boundsArray) {
splitAxis = other.splitAxis;
splitLocation = other.splitLocation;
splitBounds = other.splitBounds;
for (int i = 0; i < 2; ++i) {
child[i] = NULL;
}
}
/** Copies the specified subarray of pt into point, NULLs the children.
Assumes a second pass will set splitBounds. */
Node(const Array<_AABSPTree::Handle<T> * >& pt) : valueArray(pt) {
splitAxis = Vector3::X_AXIS;
splitLocation = 0;
for (int i = 0; i < 2; ++i) {
child[i] = NULL;
}
boundsArray.resize(valueArray.size());
for (int i = 0; i < valueArray.size(); ++i) {
boundsArray[i] = valueArray[i]->bounds;
}
}
/** Deletes the children (but not the values) */
~Node() {
for (int i = 0; i < 2; ++i) {
delete child[i];
}
}
/** Returns true if this node is a leaf (no children) */
inline bool isLeaf() const {
return (child[0] == NULL) && (child[1] == NULL);
}
/**
Recursively appends all handles and children's handles
to the array.
*/
void getHandles(Array<_AABSPTree::Handle<T> * >& handleArray) const {
handleArray.append(valueArray);
for (int i = 0; i < 2; ++i) {
if (child[i] != NULL) {
child[i]->getHandles(handleArray);
}
}
}
void verifyNode(const Vector3& lo, const Vector3& hi) {
// debugPrintf("Verifying: split %d @ %f [%f, %f, %f], [%f, %f, %f]\n",
// splitAxis, splitLocation, lo.x, lo.y, lo.z, hi.x, hi.y, hi.z);
debugAssert(lo == splitBounds.low());
debugAssert(hi == splitBounds.high());
for (int i = 0; i < valueArray.length(); ++i) {
const AABox& b = valueArray[i]->bounds;
debugAssert(b == boundsArray[i]);
for(int axis = 0; axis < 3; ++axis) {
debugAssert(b.low()[axis] <= b.high()[axis]);
debugAssert(b.low()[axis] >= lo[axis]);
debugAssert(b.high()[axis] <= hi[axis]);
}
}
if (child[0] || child[1]) {
debugAssert(lo[splitAxis] < splitLocation);
debugAssert(hi[splitAxis] > splitLocation);
}
Vector3 newLo = lo;
newLo[splitAxis] = splitLocation;
Vector3 newHi = hi;
newHi[splitAxis] = splitLocation;
if (child[0] != NULL) {
child[0]->verifyNode(lo, newHi);
}
if (child[1] != NULL) {
child[1]->verifyNode(newLo, hi);
}
}
#if 0
/**
Stores the locations of the splitting planes (the structure but not the content)
so that the tree can be quickly rebuilt from a previous configuration without
calling balance.
*/
static void serializeStructure(const Node* n, BinaryOutput& bo) {
if (n == NULL) {
bo.writeUInt8(0);
} else {
bo.writeUInt8(1);
n->splitBounds.serialize(bo);
serialize(n->splitAxis, bo);
bo.writeFloat32(n->splitLocation);
for (int c = 0; c < 2; ++c) {
serializeStructure(n->child[c], bo);
}
}
}
/** Clears the member table */
static Node* deserializeStructure(BinaryInput& bi) {
if (bi.readUInt8() == 0) {
return NULL;
} else {
Node* n = new Node();
n->splitBounds.deserialize(bi);
deserialize(n->splitAxis, bi);
n->splitLocation = bi.readFloat32();
for (int c = 0; c < 2; ++c) {
n->child[c] = deserializeStructure(bi);
}
}
}
#endif
/** Returns the deepest node that completely contains bounds. */
Node* findDeepestContainingNode(const AABox& bounds) {
// See which side of the splitting plane the bounds are on
if (bounds.high()[splitAxis] < splitLocation) {
// Bounds are on the low side. Recurse into the child
// if it exists.
if (child[0] != NULL) {
return child[0]->findDeepestContainingNode(bounds);
}
} else if (bounds.low()[splitAxis] > splitLocation) {
// Bounds are on the high side, recurse into the child
// if it exists.
if (child[1] != NULL) {
return child[1]->findDeepestContainingNode(bounds);
}
}
// There was no containing child, so this node is the
// deepest containing node.
return this;
}
/** Appends all members that intersect the box.
If useSphere is true, members that pass the box test
face a second test against the sphere. */
void getIntersectingMembers(
const AABox& box,
const Sphere& sphere,
Array<T>& members,
bool useSphere) const {
// Test all values at this node
for (int v = 0; v < boundsArray.size(); ++v) {
const AABox& bounds = boundsArray[v];
if (bounds.intersects(box) &&
(! useSphere || bounds.intersects(sphere))) {
members.append(valueArray[v]->value);
}
}
// If the left child overlaps the box, recurse into it
if ((child[0] != NULL) && (box.low()[splitAxis] < splitLocation)) {
child[0]->getIntersectingMembers(box, sphere, members, useSphere);
}
// If the right child overlaps the box, recurse into it
if ((child[1] != NULL) && (box.high()[splitAxis] > splitLocation)) {
child[1]->getIntersectingMembers(box, sphere, members, useSphere);
}
}
/**
Recurse through the tree, assigning splitBounds fields.
*/
void assignSplitBounds(const AABox& myBounds) {
splitBounds = myBounds;
AABox childBounds[2];
myBounds.split(splitAxis, splitLocation, childBounds[0], childBounds[1]);
# if defined(G3D_DEBUG) && defined(VERIFY_TREE)
// Verify the split
for (int v = 0; v < boundsArray.size(); ++v) {
const AABox& bounds = boundsArray[v];
debugAssert(myBounds.contains(bounds));
}
# endif
for (int c = 0; c < 2; ++c) {
if (child[c]) {
child[c]->assignSplitBounds(childBounds[c]);
}
}
}
/** Returns true if the ray intersects this node */
bool intersects(const Ray& ray, float distance) const {
// See if the ray will ever hit this node or its children
Vector3 location;
bool alreadyInsideBounds = false;
bool rayWillHitBounds =
VMAP::MyCollisionDetection::collisionLocationForMovingPointFixedAABox(
ray.origin, ray.direction, splitBounds, location, alreadyInsideBounds);
bool canHitThisNode = (alreadyInsideBounds ||
(rayWillHitBounds && ((location - ray.origin).squaredLength() < square(distance))));
return canHitThisNode;
}
template<typename RayCallback>
void intersectRay(
const Ray& ray,
RayCallback& intersectCallback,
float& distance,
bool pStopAtFirstHit,
bool intersectCallbackIsFast) const {
float enterDistance = distance;
if (! intersects(ray, distance)) {
// The ray doesn't hit this node, so it can't hit the children of the node.
return;
}
// Test for intersection against every object at this node.
for (int v = 0; v < valueArray.size(); ++v) {
bool canHitThisObject = true;
if (! intersectCallbackIsFast) {
// See if
Vector3 location;
const AABox& bounds = boundsArray[v];
bool alreadyInsideBounds = false;
bool rayWillHitBounds =
VMAP::MyCollisionDetection::collisionLocationForMovingPointFixedAABox(
ray.origin, ray.direction, bounds, location, alreadyInsideBounds);
canHitThisObject = (alreadyInsideBounds ||
(rayWillHitBounds && ((location - ray.origin).squaredLength() < square(distance))));
}
if (canHitThisObject) {
// It is possible that this ray hits this object. Look for the intersection using the
// callback.
const T& value = valueArray[v]->value;
intersectCallback(ray, value, pStopAtFirstHit, distance);
}
if(pStopAtFirstHit && distance < enterDistance)
return;
}
// There are three cases to consider next:
//
// 1. the ray can start on one side of the splitting plane and never enter the other,
// 2. the ray can start on one side and enter the other, and
// 3. the ray can travel exactly down the splitting plane
enum {NONE = -1};
int firstChild = NONE;
int secondChild = NONE;
if (ray.origin[splitAxis] < splitLocation) {
// The ray starts on the small side
firstChild = 0;
if (ray.direction[splitAxis] > 0) {
// The ray will eventually reach the other side
secondChild = 1;
}
} else if (ray.origin[splitAxis] > splitLocation) {
// The ray starts on the large side
firstChild = 1;
if (ray.direction[splitAxis] < 0) {
secondChild = 0;
}
} else {
// The ray starts on the splitting plane
if (ray.direction[splitAxis] < 0) {
// ...and goes to the small side
firstChild = 0;
} else if (ray.direction[splitAxis] > 0) {
// ...and goes to the large side
firstChild = 1;
}
}
// Test on the side closer to the ray origin.
if ((firstChild != NONE) && child[firstChild]) {
child[firstChild]->intersectRay(ray, intersectCallback, distance, pStopAtFirstHit, intersectCallbackIsFast);
if(pStopAtFirstHit && distance < enterDistance)
return;
}
if (ray.direction[splitAxis] != 0) {
// See if there was an intersection before hitting the splitting plane.
// If so, there is no need to look on the far side and recursion terminates.
float distanceToSplittingPlane = (splitLocation - ray.origin[splitAxis]) / ray.direction[splitAxis];
if (distanceToSplittingPlane > distance) {
// We aren't going to hit anything else before hitting the splitting plane,
// so don't bother looking on the far side of the splitting plane at the other
// child.
return;
}
}
// Test on the side farther from the ray origin.
if ((secondChild != NONE) && child[secondChild]) {
child[secondChild]->intersectRay(ray, intersectCallback, distance, pStopAtFirstHit, intersectCallbackIsFast);
}
}
};
/**
Recursively subdivides the subarray.
Clears the source array as soon as it is no longer needed.
Call assignSplitBounds() on the root node after making a tree.
*/
Node* makeNode(
Array<_AABSPTree::Handle<T> * >& source,
int valuesPerNode,
int numMeanSplits,
Array<_AABSPTree::Handle<T> * >& temp) {
Node* node = NULL;
if (source.size() <= valuesPerNode) {
// Make a new leaf node
node = new Node(source);
// Set the pointers in the memberTable
for (int i = 0; i < source.size(); ++i) {
memberTable.set(Member(source[i]), node);
}
source.clear();
} else {
// Make a new internal node
node = new Node();
const AABox bounds = computeBounds(source, 0, source.size() - 1);
const Vector3 extent = bounds.high() - bounds.low();
Vector3::Axis splitAxis = extent.primaryAxis();
float splitLocation;
// Arrays for holding the children
Array<_AABSPTree::Handle<T> * > lt, gt;
if (numMeanSplits <= 0) {
source.medianPartition(lt, node->valueArray, gt, temp, CenterComparator(splitAxis));
// Choose the split location to be the center of whatever fell in the center
splitLocation = node->valueArray[0]->center[splitAxis];
// Some of the elements in the lt or gt array might really overlap the split location.
// Move them as needed.
for (int i = 0; i < lt.size(); ++i) {
const AABox& bounds = lt[i]->bounds;
if ((bounds.low()[splitAxis] <= splitLocation) && (bounds.high()[splitAxis] >= splitLocation)) {
node->valueArray.append(lt[i]);
// Remove this element and process the new one that
// is swapped in in its place.
lt.fastRemove(i); --i;
}
}
for (int i = 0; i < gt.size(); ++i) {
const AABox& bounds = gt[i]->bounds;
if ((bounds.low()[splitAxis] <= splitLocation) && (bounds.high()[splitAxis] >= splitLocation)) {
node->valueArray.append(gt[i]);
// Remove this element and process the new one that
// is swapped in in its place.
gt.fastRemove(i); --i;
}
}
if ((node->valueArray.size() > (source.size() / 2)) &&
(source.size() > 6)) {
// This was a bad partition; we ended up putting the splitting plane right in the middle of most of the
// objects. We could try to split on a different axis, or use a different partition (e.g., the extents mean,
// or geometric mean). This implementation falls back on the extents mean, since that case is already handled
// below.
numMeanSplits = 1;
}
}
// Note: numMeanSplits may have been increased by the code in the previous case above in order to
// force a re-partition.
if (numMeanSplits > 0) {
// Split along the mean
splitLocation = (bounds.high()[splitAxis] +
bounds.low()[splitAxis]) / 2.0;
source.partition(NULL, lt, node->valueArray, gt, Comparator(splitAxis, splitLocation));
// The Comparator ensures that elements are strictly on the correct side of the split
}
# if defined(G3D_DEBUG) && defined(VERIFY_TREE)
debugAssert(lt.size() + node->valueArray.size() + gt.size() == source.size());
// Verify that all objects ended up on the correct side of the split.
// (i.e., make sure that the Array partition was correct)
for (int i = 0; i < lt.size(); ++i) {
const AABox& bounds = lt[i]->bounds;
debugAssert(bounds.high()[splitAxis] < splitLocation);
}
for (int i = 0; i < gt.size(); ++i) {
const AABox& bounds = gt[i]->bounds;
debugAssert(bounds.low()[splitAxis] > splitLocation);
}
for (int i = 0; i < node->valueArray.size(); ++i) {
const AABox& bounds = node->valueArray[i]->bounds;
debugAssert(bounds.high()[splitAxis] >= splitLocation);
debugAssert(bounds.low()[splitAxis] <= splitLocation);
}
# endif
// The source array is no longer needed
source.clear();
node->splitAxis = splitAxis;
node->splitLocation = splitLocation;
// Update the bounds array and member table
node->boundsArray.resize(node->valueArray.size());
for (int i = 0; i < node->valueArray.size(); ++i) {
_AABSPTree::Handle<T> * v = node->valueArray[i];
node->boundsArray[i] = v->bounds;
memberTable.set(Member(v), node);
}
if (lt.size() > 0) {
node->child[0] = makeNode(lt, valuesPerNode, numMeanSplits - 1, temp);
}
if (gt.size() > 0) {
node->child[1] = makeNode(gt, valuesPerNode, numMeanSplits - 1, temp);
}
}
return node;
}
/**
Recursively clone the passed in node tree, setting
pointers for members in the memberTable as appropriate.
called by the assignment operator.
*/
Node* cloneTree(Node* src) {
Node* dst = new Node(*src);
// Make back pointers
for (int i = 0; i < dst->valueArray.size(); ++i) {
memberTable.set(Member(dst->valueArray[i]), dst);
}
// Clone children
for (int i = 0; i < 2; ++i) {
if (src->child[i] != NULL) {
dst->child[i] = cloneTree(src->child[i]);
}
}
return dst;
}
/**
Wrapper for a Handle; used to create a memberTable that acts like Table<Handle, Node*> but
stores only Handle* internally to avoid memory copies.
*/
typedef _internal::Indirector<_AABSPTree::Handle<T> > Member;
typedef Table<Member, Node*> MemberTable;
/** Maps members to the node containing them */
MemberTable memberTable;
Node* root;
public:
/** To construct a balanced tree, insert the elements and then call
AABSPTree::balance(). */
AABSPTree() : root(NULL) {}
AABSPTree(const AABSPTree& src) : root(NULL) {
*this = src;
}
AABSPTree& operator=(const AABSPTree& src) {
delete root;
// Clone tree takes care of filling out the memberTable.
root = cloneTree(src.root);
return *this;
}
~AABSPTree() {
clear();
}
/**
Throws out all elements of the set.
*/
void clear() {
typedef typename Table<_internal::Indirector<_AABSPTree::Handle<T> >, Node* >::Iterator It;
// Delete all handles stored in the member table
It cur = memberTable.begin();
It end = memberTable.end();
while (cur != end) {
delete cur->key.handle;
cur->key.handle = NULL;
++cur;
}
memberTable.clear();
// Delete the tree structure itself
delete root;
root = NULL;
}
size_t size() const {
return memberTable.size();
}
/**
Inserts an object into the set if it is not
already present. O(log n) time. Does not
cause the tree to be balanced.
*/
void insert(const T& value) {
if (contains(value)) {
// Already in the set
return;
}
_AABSPTree::Handle<T>* h = new _AABSPTree::Handle<T>(value);
if (root == NULL) {
// This is the first node; create a root node
root = new Node();
}
Node* node = root->findDeepestContainingNode(h->bounds);
// Insert into the node
node->valueArray.append(h);
node->boundsArray.append(h->bounds);
// Insert into the node table
Member m(h);
memberTable.set(m, node);
}
/** Inserts each elements in the array in turn. If the tree
begins empty (no structure and no elements), this is faster
than inserting each element in turn. You still need to balance
the tree at the end.*/
void insert(const Array<T>& valueArray) {
if (root == NULL) {
// Optimized case for an empty tree; don't bother
// searching or reallocating the root node's valueArray
// as we incrementally insert.
root = new Node();
root->valueArray.resize(valueArray.size());
root->boundsArray.resize(root->valueArray.size());
for (int i = 0; i < valueArray.size(); ++i) {
// Insert in opposite order so that we have the exact same
// data structure as if we inserted each (i.e., order is reversed
// from array).
_AABSPTree::Handle<T>* h = new _AABSPTree::Handle<T>(valueArray[i]);
int j = valueArray.size() - i - 1;
root->valueArray[j] = h;
root->boundsArray[j] = h->bounds;
memberTable.set(Member(h), root);
}
} else {
// Insert at appropriate tree depth.
for (int i = 0; i < valueArray.size(); ++i) {
insert(valueArray[i]);
}
}
}
/**
Returns true if this object is in the set, otherwise
returns false. O(1) time.
*/
bool contains(const T& value) {
// Temporarily create a handle and member
_AABSPTree::Handle<T> h(value);
return memberTable.containsKey(Member(&h));
}
/**
Removes an object from the set in O(1) time.
It is an error to remove members that are not already
present. May unbalance the tree.
Removing an element never causes a node (split plane) to be removed...
nodes are only changed when the tree is rebalanced. This behavior
is desirable because it allows the split planes to be serialized,
and then deserialized into an empty tree which can be repopulated.
*/
void remove(const T& value) {
debugAssertM(contains(value),
"Tried to remove an element from a "
"AABSPTree that was not present");
// Get the list of elements at the node
_AABSPTree::Handle<T> h(value);
Member m(&h);
Array<_AABSPTree::Handle<T> * >& list = memberTable[m]->valueArray;
_AABSPTree::Handle<T>* ptr = NULL;
// Find the element and remove it
for (int i = list.length() - 1; i >= 0; --i) {
if (list[i]->value == value) {
// This was the element. Grab the pointer so that
// we can delete it below
ptr = list[i];
// Remove the handle from the node
list.fastRemove(i);
// Remove the corresponding bounds
memberTable[m]->boundsArray.fastRemove(i);
break;
}
}
// Remove the member
memberTable.remove(m);
// Delete the handle data structure
delete ptr;
ptr = NULL;
}
/**
If the element is in the set, it is removed.
The element is then inserted.
This is useful when the == and hashCode methods
on <I>T</I> are independent of the bounds. In
that case, you may call update(v) to insert an
element for the first time and call update(v)
again every time it moves to keep the tree
up to date.
*/
void update(const T& value) {
if (contains(value)) {
remove(value);
}
insert(value);
}
/**
Rebalances the tree (slow). Call when objects
have moved substantially from their original positions
(which unbalances the tree and causes the spatial
queries to be slow).
@param valuesPerNode Maximum number of elements to put at
a node.
@param numMeanSplits numMeanSplits = 0 gives a
fully axis aligned BSP-tree, where the balance operation attempts to balance
the tree so that every splitting plane has an equal number of left
and right children (i.e. it is a <B>median</B> split along that axis).
This tends to maximize average performance.
You can override this behavior by
setting a number of <B>mean</B> (average) splits. numMeanSplits = MAX_INT
creates a full oct-tree, which tends to optimize peak performance at the expense of
average performance. It tends to have better clustering behavior when
members are not uniformly distributed.
*/
void balance(int valuesPerNode = 5, int numMeanSplits = 3) {
if (root == NULL) {
// Tree is empty
return;
}
// Get all handles and delete the old tree structure
Node* oldRoot = root;
for (int c = 0; c < 2; ++c) {
if (root->child[c] != NULL) {
root->child[c]->getHandles(root->valueArray);
// Delete the child; this will delete all structure below it
delete root->child[c];
root->child[c] = NULL;
}
}
Array<_AABSPTree::Handle<T> * > temp;
// Make a new root. Work with a copy of the value array because
// makeNode clears the source array as it progresses
Array<_AABSPTree::Handle<T> * > copy(oldRoot->valueArray);
root = makeNode(copy, valuesPerNode, numMeanSplits, temp);
// Throw away the old root node
delete oldRoot;
oldRoot = NULL;
// Walk the tree, assigning splitBounds. We start with unbounded
// space. This will override the current member table.
root->assignSplitBounds(AABox::maxFinite());
# ifdef _DEBUG
// Ensure that the balanced tree is till correct
root->verifyNode(Vector3::minFinite(), Vector3::maxFinite());
# endif
}
protected:
/**
@param parentMask The mask that this node returned from culledBy.
*/
static void getIntersectingMembers(
const Array<Plane>& plane,
Array<T>& members,
Node* node,
uint32 parentMask) {
int dummy;
if (parentMask == 0) {
// None of these planes can cull anything
for (int v = node->valueArray.size() - 1; v >= 0; --v) {
members.append(node->valueArray[v]->value);
}
// Iterate through child nodes
for (int c = 0; c < 2; ++c) {
if (node->child[c]) {
getIntersectingMembers(plane, members, node->child[c], 0);
}
}
} else {
// Test values at this node against remaining planes
for (int v = node->boundsArray.size() - 1; v >= 0; --v) {
if (! node->boundsArray[v].culledBy(plane, dummy, parentMask)) {
members.append(node->valueArray[v]->value);
}
}
uint32 childMask = 0xFFFFFF;
// Iterate through child nodes
for (int c = 0; c < 2; ++c) {
if (node->child[c] &&
! node->child[c]->splitBounds.culledBy(plane, dummy, parentMask, childMask)) {
// This node was not culled
getIntersectingMembers(plane, members, node->child[c], childMask);
}
}
}
}
public:
/**
Returns all members inside the set of planes.
@param members The results are appended to this array.
*/
void getIntersectingMembers(const Array<Plane>& plane, Array<T>& members) const {
if (root == NULL) {
return;
}
getIntersectingMembers(plane, members, root, 0xFFFFFF);
}
/**
Typically used to find all visible
objects inside the view frustum (see also GCamera::getClipPlanes)... i.e. all objects
<B>not<B> culled by frustum.
Example:
<PRE>
Array<Object*> visible;
tree.getIntersectingMembers(camera.frustum(), visible);
// ... Draw all objects in the visible array.
</PRE>
@param members The results are appended to this array.
*/
void getIntersectingMembers(const GCamera::Frustum& frustum, Array<T>& members) const {
Array<Plane> plane;
for (int i = 0; i < frustum.faceArray.size(); ++i) {
plane.append(frustum.faceArray[i].plane);
}
getIntersectingMembers(plane, members);
}
/**
C++ STL style iterator variable. See beginBoxIntersection().
The iterator overloads the -> (dereference) operator, so this
acts like a pointer to the current member.
*/
// This iterator turns Node::getIntersectingMembers into a
// coroutine. It first translates that method from recursive to
// stack based, then captures the system state (analogous to a Scheme
// continuation) after each element is appended to the member array,
// and allowing the computation to be restarted.
class BoxIntersectionIterator {
private:
friend class AABSPTree<T>;
/** True if this is the "end" iterator instance */
bool isEnd;
/** The box that we're testing against. */
AABox box;
/** Node that we're currently looking at. Undefined if isEnd
is true. */
Node* node;
/** Nodes waiting to be processed */
// We could use backpointers within the tree and careful
// state management to avoid ever storing the stack-- but
// it is much easier this way and only inefficient if the
// caller uses post increment (which they shouldn't!).
Array<Node*> stack;
/** The next index of current->valueArray to return.
Undefined when isEnd is true.*/
int nextValueArrayIndex;
BoxIntersectionIterator() : isEnd(true) {}
BoxIntersectionIterator(const AABox& b, const Node* root) :
isEnd(root == NULL), box(b),
node(const_cast<Node*>(root)), nextValueArrayIndex(-1) {
// We intentionally start at the "-1" index of the current
// node so we can use the preincrement operator to move
// ourselves to element 0 instead of repeating all of the
// code from the preincrement method. Note that this might
// cause us to become the "end" instance.
++(*this);
}
public:
inline bool operator!=(const BoxIntersectionIterator& other) const {
return ! (*this == other);
}
bool operator==(const BoxIntersectionIterator& other) const {
if (isEnd) {
return other.isEnd;
} else if (other.isEnd) {
return false;
} else {
// Two non-end iterators; see if they match. This is kind of
// silly; users shouldn't call == on iterators in general unless
// one of them is the end iterator.
if ((box != other.box) || (node != other.node) ||
(nextValueArrayIndex != other.nextValueArrayIndex) ||
(stack.length() != other.stack.length())) {
return false;
}
// See if the stacks are the same
for (int i = 0; i < stack.length(); ++i) {
if (stack[i] != other.stack[i]) {
return false;
}
}
// We failed to find a difference; they must be the same
return true;
}
}
/**
Pre increment.
*/
BoxIntersectionIterator& operator++() {
++nextValueArrayIndex;
bool foundIntersection = false;
while (! isEnd && ! foundIntersection) {
// Search for the next node if we've exhausted this one
while ((! isEnd) && (nextValueArrayIndex >= node->valueArray.length())) {
// If we entered this loop, then the iterator has exhausted the elements at
// node (possibly because it just switched to a child node with no members).
// This loop continues until it finds a node with members or reaches
// the end of the whole intersection search.
// If the right child overlaps the box, push it onto the stack for
// processing.
if ((node->child[1] != NULL) &&
(box.high()[node->splitAxis] > node->splitLocation)) {
stack.push(node->child[1]);
}
// If the left child overlaps the box, push it onto the stack for
// processing.
if ((node->child[0] != NULL) &&
(box.low()[node->splitAxis] < node->splitLocation)) {
stack.push(node->child[0]);
}
if (stack.length() > 0) {
// Go on to the next node (which may be either one of the ones we
// just pushed, or one from farther back the tree).
node = stack.pop();
nextValueArrayIndex = 0;
} else {
// That was the last node; we're done iterating
isEnd = true;
}
}
// Search for the next intersection at this node until we run out of children
while (! isEnd && ! foundIntersection && (nextValueArrayIndex < node->valueArray.length())) {
if (box.intersects(node->boundsArray[nextValueArrayIndex])) {
foundIntersection = true;
} else {
++nextValueArrayIndex;
// If we exhaust this node, we'll loop around the master loop
// to find a new node.
}
}
}
return *this;
}
private:
/**
Post increment (much slower than preincrement!). Intentionally overloaded to preclude accidentally slow code.
*/
BoxIntersectionIterator operator++(int);
/*{
BoxIntersectionIterator old = *this;
++this;
return old;
}*/
public:
/** Overloaded dereference operator so the iterator can masquerade as a pointer
to a member */
const T& operator*() const {
alwaysAssertM(! isEnd, "Can't dereference the end element of an iterator");
return node->valueArray[nextValueArrayIndex]->value;
}
/** Overloaded dereference operator so the iterator can masquerade as a pointer
to a member */
T const * operator->() const {
alwaysAssertM(! isEnd, "Can't dereference the end element of an iterator");
return &(stack.last()->valueArray[nextValueArrayIndex]->value);
}
/** Overloaded cast operator so the iterator can masquerade as a pointer
to a member */
operator T*() const {
alwaysAssertM(! isEnd, "Can't dereference the end element of an iterator");
return &(stack.last()->valueArray[nextValueArrayIndex]->value);
}
};
/**
Iterates through the members that intersect the box
*/
BoxIntersectionIterator beginBoxIntersection(const AABox& box) const {
return BoxIntersectionIterator(box, root);
}
BoxIntersectionIterator endBoxIntersection() const {
// The "end" iterator instance
return BoxIntersectionIterator();
}
/**
Appends all members whose bounds intersect the box.
See also AABSPTree::beginBoxIntersection.
*/
void getIntersectingMembers(const AABox& box, Array<T>& members) const {
if (root == NULL) {
return;
}
root->getIntersectingMembers(box, Sphere(Vector3::zero(), 0), members, false);
}
/**
Invoke a callback for every member along a ray until the closest intersection is found.
@param callback either a function or an instance of a class with an overloaded operator() of the form:
<code>void callback(const Ray& ray, const T& object, float& distance)</code>. If the ray hits the object
before travelling distance <code>distance</code>, updates <code>distance</code> with the new distance to
the intersection, otherwise leaves it unmodified. A common example is:
<pre>
class Entity {
public:
void intersect(const Ray& ray, float& maxDist, Vector3& outLocation, Vector3& outNormal) {
float d = maxDist;
// ... search for intersection distance d
if ((d > 0) && (d < maxDist)) {
// Intersection occured
maxDist = d;
outLocation = ...;
outNormal = ...;
}
}
};
// Finds the surface normal and location of the first intersection with the scene
class Intersection {
public:
Entity* closestEntity;
Vector3 hitLocation;
Vector3 hitNormal;
void operator()(const Ray& ray, const Entity* entity, float& distance) {
entity->intersect(ray, distance, hitLocation, hitNormal);
}
};
AABSPTree<Entity*> scene;
Intersection intersection;
float distance = inf();
scene.intersectRay(camera.worldRay(x, y), intersection, distance);
</pre>
@param distance When the method is invoked, this is the maximum distance that the tree should search for an intersection.
On return, this is set to the distance to the first intersection encountered.
@param intersectCallbackIsFast If false, each object's bounds are tested before the intersectCallback is invoked.
If the intersect callback runs at the same speed or faster than AABox-ray intersection, set this to true.
*/
template<typename RayCallback>
void intersectRay(
const Ray& ray,
RayCallback& intersectCallback,
float& distance,
bool pStopAtFirstHit,
bool intersectCallbackIsFast = false) const {
root->intersectRay(ray, intersectCallback, distance, pStopAtFirstHit, intersectCallbackIsFast);
}
/**
@param members The results are appended to this array.
*/
void getIntersectingMembers(const Sphere& sphere, Array<T>& members) const {
if (root == NULL) {
return;
}
AABox box;
sphere.getBounds(box);
root->getIntersectingMembers(box, sphere, members, true);
}
#if 0
/**
Stores the locations of the splitting planes (the structure but not the content)
so that the tree can be quickly rebuilt from a previous configuration without
calling balance.
*/
void serializeStructure(BinaryOutput& bo) const {
Node::serializeStructure(root, bo);
}
/** Clears the member table */
void deserializeStructure(BinaryInput& bi) {
clear();
root = Node::deserializeStructure(bi);
}
#endif
/**
Returns an array of all members of the set. See also AABSPTree::begin.
*/
void getMembers(Array<T>& members) const {
Array<Member> temp;
memberTable.getKeys(temp);
for (int i = 0; i < temp.size(); ++i) {
members.append(temp[i].handle->value);
}
}
/**
C++ STL style iterator variable. See begin().
Overloads the -> (dereference) operator, so this acts like a pointer
to the current member.
*/
class Iterator {
private:
friend class AABSPTree<T>;
// Note: this is a Table iterator, we are currently defining
// Set iterator
typename Table<Member, Node*>::Iterator it;
Iterator(const typename Table<Member, Node*>::Iterator& it) : it(it) {}
public:
inline bool operator!=(const Iterator& other) const {
return !(*this == other);
}
bool operator==(const Iterator& other) const {
return it == other.it;
}
/**
Pre increment.
*/
Iterator& operator++() {
++it;
return *this;
}
private:
/**
Post increment (slower than preincrement). Intentionally unimplemented to prevent slow code.
*/
Iterator operator++(int);/* {
Iterator old = *this;
++(*this);
return old;
}*/
public:
const T& operator*() const {
return it->key.handle->value;
}
T* operator->() const {
return &(it->key.handle->value);
}
operator T*() const {
return &(it->key.handle->value);
}
};
/**
C++ STL style iterator method. Returns the first member.
Use preincrement (++entry) to get to the next element (iteration
order is arbitrary).
Do not modify the set while iterating.
*/
Iterator begin() const {
return Iterator(memberTable.begin());
}
/**
C++ STL style iterator method. Returns one after the last iterator
element.
*/
Iterator end() const {
return Iterator(memberTable.end());
}
};
}
#endif
|