aboutsummaryrefslogtreecommitdiff
path: root/dep/g3dlite/G3D/PointKDTree.h
blob: 151cbd5f2f31d52470c88fecdd691b608bba3185 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
/**
  @file PointKDTree.h
  
  @maintainer Morgan McGuire, http://graphics.cs.williams.edu
 
  @created 2004-01-11
  @edited  2008-11-02

  Copyright 2000-2009, Morgan McGuire.
  All rights reserved.
  
  */

#ifndef X_PointKDTree_H
#define X_PointKDTree_H

#include "G3D/platform.h"
#include "G3D/Array.h"
#include "G3D/Table.h"
#include "G3D/Vector2.h"
#include "G3D/Vector3.h"
#include "G3D/Vector4.h"
#include "G3D/AABox.h"
#include "G3D/Sphere.h"
#include "G3D/Box.h"
#include "G3D/BinaryInput.h"
#include "G3D/BinaryOutput.h"
#include "G3D/CollisionDetection.h"
#include "G3D/GCamera.h"
#include "G3D/PositionTrait.h"
#include <algorithm>

namespace G3D {

/**
 A set data structure that supports spatial queries using an axis-aligned
 BSP tree for speed.

 PointKDTree allows you to quickly find points in 3D that lie within
 a box or sphere. For large sets of objects it is much faster
 than testing each object for a collision.  See also G3D::KDTree; this class
 is optimized for point sets, e.g.,for use in photon mapping and mesh processing.

 <B>Template Parameters</B>

 <br>

 <br>The template parameter <I>T</I> must be one for which
 the following functions are overloaded:

  <pre>
      T::T(); <I>(public constructor of no arguments)</I>

       template<> struct PositionTrait<class T> {
         static void getPosition(const T& v, G3D::Vector3& p);};

       template <> struct HashTrait<class T> {
         static size_t hashCode(const T& key);};

       template<> struct EqualsTrait<class T> {
           static bool equals(const T& a, const T& b); };
    </pre>

 <p>

 G3D provides these for the Vector2, Vector3, and Vector4 classes.
 If you use a custom class, or a pointer to a custom class, you will need
 to define those functions.

 <B>Moving %Set Members</B>
 <DT>It is important that objects do not move without updating the
 PointKDTree.  If the position of an object is about
 to change, PointKDTree::remove it before they change and 
 PointKDTree::insert it again afterward.  For objects
 where the hashCode and == operator are invariant with respect 
 to the 3D position,
 you can use the PointKDTree::update method as a shortcut to
 insert/remove an object in one step after it has moved.
 

 Note: Do not mutate any value once it has been inserted into PointKDTree. Values
 are copied interally. All PointKDTree iterators convert to pointers to constant
 values to reinforce this.

 If you want to mutate the objects you intend to store in a PointKDTree
 simply insert <I>pointers</I> to your objects instead of the objects
 themselves, and ensure that the above operations are defined. (And
 actually, because values are copied, if your values are large you may
 want to insert pointers anyway, to save space and make the balance
 operation faster.)

 <B>Dimensions</B>
 Although designed as a 3D-data structure, you can use the PointKDTree
 for data distributed along 2 or 1 axes by simply returning bounds
 that are always zero along one or more dimensions.

*/
template<class T,
         class PositionFunc = PositionTrait<T>, 
         class HashFunc     = HashTrait<T>, 
         class EqualsFunc   = EqualsTrait<T> > 
class PointKDTree {
protected:
#define TreeType PointKDTree<T, PositionFunc, HashFunc, EqualsFunc>

    // Unlike the KDTree, the PointKDTree assumes that T elements are
    // small and keeps the handle and cached position together instead of
    // placing them in separate bounds arrays.  Also note that a copy of T
    // is kept in the member table and that there is no indirection.
    class Handle {
    private:
        Vector3             m_position;

    public:
        T                   value;

        inline Handle() {}
        inline Handle(const T& v) : value(v) {
            PositionFunc::getPosition(v, m_position);
        }

        /** Used by makeNode to create fake handles for partitioning. */
        void setPosition(const Vector3& v) {
            m_position = v;
        }

        inline const Vector3& position() const {
            return m_position;
        }
    };

    /** Returns the bounds of the sub array. Used by makeNode. */
    static AABox computeBounds(
        const Array<Handle>&  point) {
    
        if (point.size() == 0) {
            return AABox(Vector3::inf(), Vector3::inf());
        }

        AABox bounds(point[0].position());

        for (int p = 0; p < point.size(); ++p) {
            bounds.merge(point[p].position());
        }

        return bounds;
    }

    class Node {
    public:

        /** Spatial bounds on all values at this node and its children, based purely on
            the parent's splitting planes.  May be infinite */
        AABox               splitBounds;

        Vector3::Axis       splitAxis;

        /** Location along the specified axis */
        float               splitLocation;
 
        /** child[0] contains all values strictly 
            smaller than splitLocation along splitAxis.

            child[1] contains all values strictly
            larger.

            Both may be NULL if there are not enough
            values to bother recursing.
        */
        Node*               child[2];

        /** Values if  this is a leaf node). */
        Array<Handle>       valueArray;

        /** Creates node with NULL children */
        Node() {
            splitAxis     = Vector3::X_AXIS;
            splitLocation = 0;
            splitBounds   = AABox(-Vector3::inf(), Vector3::inf());
            for (int i = 0; i < 2; ++i) {
                child[i] = NULL;
            }
        }

        /**
         Doesn't clone children.
         */
        Node(const Node& other) : valueArray(other.valueArray) {
            splitAxis       = other.splitAxis;
            splitLocation   = other.splitLocation;
            splitBounds     = other.splitBounds;            
            for (int i = 0; i < 2; ++i) {
                child[i] = NULL;
            }
        }

        /** Copies the specified subarray of pt into point, NULLs the children.
            Assumes a second pass will set splitBounds. */
        Node(const Array<Handle>& pt) {
            splitAxis     = Vector3::X_AXIS;
            splitLocation = 0;
            for (int i = 0; i < 2; ++i) {
                child[i] = NULL;
            }
            valueArray = pt;
        }


        /** Deletes the children (but not the values) */
        ~Node() {
            for (int i = 0; i < 2; ++i) {
                delete child[i];
            }
        }


        /** Returns true if this node is a leaf (no children) */
        inline bool isLeaf() const {
            return (child[0] == NULL) && (child[1] == NULL);
        }


        /**
         Recursively appends all handles and children's handles
         to the array.
         */
        void getHandles(Array<Handle>& handleArray) const {
            handleArray.append(valueArray);
            for (int i = 0; i < 2; ++i) {
                if (child[i] != NULL) {
                    child[i]->getHandles(handleArray);
                }
            }
        }


	    void verifyNode(const Vector3& lo, const Vector3& hi) {
            //		debugPrintf("Verifying: split %d @ %f [%f, %f, %f], [%f, %f, %f]\n",
            //			    splitAxis, splitLocation, lo.x, lo.y, lo.z, hi.x, hi.y, hi.z);

            debugAssert(lo == splitBounds.low());
            debugAssert(hi == splitBounds.high());

		    for (int i = 0; i < valueArray.length(); ++i) {
			    const Vector3& b = valueArray[i].position();
                debugAssert(splitBounds.contains(b));
		    }

		    if (child[0] || child[1]) {
			    debugAssert(lo[splitAxis] < splitLocation);
			    debugAssert(hi[splitAxis] > splitLocation);
		    }

		    Vector3 newLo = lo;
		    newLo[splitAxis] = splitLocation;
		    Vector3 newHi = hi;
		    newHi[splitAxis] = splitLocation;

		    if (child[0] != NULL) {
			    child[0]->verifyNode(lo, newHi);
		    }

		    if (child[1] != NULL) {
			    child[1]->verifyNode(newLo, hi);
		    }
	    }


        /**
          Stores the locations of the splitting planes (the structure but not the content)
          so that the tree can be quickly rebuilt from a previous configuration without 
          calling balance.
         */
        static void serializeStructure(const Node* n, BinaryOutput& bo) {
            if (n == NULL) {
                bo.writeUInt8(0);
            } else {
                bo.writeUInt8(1);
                n->splitBounds.serialize(bo);
                serialize(n->splitAxis, bo);
                bo.writeFloat32(n->splitLocation);
                for (int c = 0; c < 2; ++c) {
                    serializeStructure(n->child[c], bo);
                }
            }
        }

        /** Clears the member table */
        static Node* deserializeStructure(BinaryInput& bi) {
            if (bi.readUInt8() == 0) {
                return NULL;
            } else {
                Node* n = new Node();
                n->splitBounds.deserialize(bi);
                deserialize(n->splitAxis, bi);
                n->splitLocation = bi.readFloat32();
                for (int c = 0; c < 2; ++c) {
                    n->child[c] = deserializeStructure(bi);
                }
            }
        }

        /** Returns the deepest node that completely contains bounds. */
        Node* findDeepestContainingNode(const Vector3& point) {

            // See which side of the splitting plane the bounds are on
            if (point[splitAxis] < splitLocation) {
                // Point is on the low side.  Recurse into the child
                // if it exists.
                if (child[0] != NULL) {
                    return child[0]->findDeepestContainingNode(point);
                }
            } else if (point[splitAxis] > splitLocation) {
                // Point is on the high side, recurse into the child
                // if it exists.
                if (child[1] != NULL) {
                    return child[1]->findDeepestContainingNode(point);
                }
            }

            // There was no containing child, so this node is the
            // deepest containing node.
            return this;
        }

        /** Appends all members that intersect the box. 
            If useSphere is true, members are tested against the sphere instead. */
        void getIntersectingMembers(
            const AABox&        sphereBounds,
            const Sphere&       sphere,
            Array<T>&           members) const {

            // Test all values at this node.  Extract the
            // underlying C array for speed
            const int N = valueArray.size();
            const Handle* handleArray = valueArray.getCArray();
            
            const float r2 = square(sphere.radius);

            // Copy the sphere center so that it is on the stack near the radius
            const Vector3 center = sphere.center; 
            for (int v = 0; v < N; ++v) {
                if ((center - handleArray[v].position()).squaredLength() <= r2) {
                    members.append(handleArray[v].value);
                }
            }

            // If the left child overlaps the box, recurse into it
            if (child[0] && (sphereBounds.low()[splitAxis] < splitLocation)) {
                child[0]->getIntersectingMembers(sphereBounds, sphere, members);
            }

            // If the right child overlaps the box, recurse into it
            if (child[1] && (sphereBounds.high()[splitAxis] > splitLocation)) {
                child[1]->getIntersectingMembers(sphereBounds, sphere, members);
            }
        }

        /** Appends all members that intersect the box. 
            If useSphere is true, members are tested against the sphere instead. 
            
            Implemented using both box and sphere tests to simplify the implementation
            of a future beginSphereInteresection iterator using the same underlying
            BoxIterator class.           
            */
        void getIntersectingMembers(
            const AABox&        box, 
            const Sphere&       sphere,
            Array<T>&           members,
            bool                useSphere) const {

            // Test all values at this node
            for (int v = 0; v < valueArray.size(); ++v) {
                if ((useSphere && sphere.contains(valueArray[v].position())) ||
                    (! useSphere && box.contains(valueArray[v].position()))) {
                    members.append(valueArray[v].value);
                }
            }

            // If the left child overlaps the box, recurse into it
            if ((child[0] != NULL) && (box.low()[splitAxis] < splitLocation)) {
                child[0]->getIntersectingMembers(box, sphere, members, useSphere);
            }

            // If the right child overlaps the box, recurse into it
            if ((child[1] != NULL) && (box.high()[splitAxis] > splitLocation)) {
                child[1]->getIntersectingMembers(box, sphere, members, useSphere);
            }
        }

        /**
         Recurse through the tree, assigning splitBounds fields.
         */
        void assignSplitBounds(const AABox& myBounds) {
            splitBounds = myBounds;

#           ifdef G3D_DEBUG
                if (child[0] || child[1]) {
                    debugAssert(splitBounds.high()[splitAxis] > splitLocation);
                    debugAssert(splitBounds.low()[splitAxis] < splitLocation);
                }
#           endif

            AABox childBounds[2];
            myBounds.split(splitAxis, splitLocation, childBounds[0], childBounds[1]);

            for (int c = 0; c < 2; ++c) {
                if (child[c]) {
                    child[c]->assignSplitBounds(childBounds[c]);
                }
            }
        }
    };

    class AxisComparator {
    private:
        Vector3::Axis sortAxis;

    public:

        AxisComparator(Vector3::Axis s) : sortAxis(s) {}

        inline int operator()(const Handle& A, const Handle& B) const {
            if (A.position()[sortAxis] > B.position()[sortAxis]) {
                return -1;
            } else if (A.position()[sortAxis] < B.position()[sortAxis]) {
                return 1;
            } else {
                return 0;
            }
        }
    };

    /**
     Recursively subdivides the subarray.

     The source array will be cleared after it is used

     Call assignSplitBounds() on the root node after making a tree.
     */
    Node* makeNode(
        Array<Handle>& source, 
        Array<Handle>& temp,
        int valuesPerNode, 
        int numMeanSplits)  {

        Node* node = NULL;
        
        if (source.size() <= valuesPerNode) {
            // Make a new leaf node
            node = new Node(source);
            
            // Set the pointers in the memberTable
            for (int i = 0; i < source.size(); ++i) {
                memberTable.set(source[i].value, node);
            }
            
        } else {
            // Make a new internal node
            node = new Node();
            
            const AABox bounds = computeBounds(source);
            const Vector3 extent = bounds.high() - bounds.low();
            
            Vector3::Axis splitAxis = extent.primaryAxis();
            
            float splitLocation;
            
            Array<Handle> lt, gt;

            if (numMeanSplits <= 0) {
                source.medianPartition(lt, node->valueArray, gt, temp, AxisComparator(splitAxis));
                splitLocation = node->valueArray[0].position()[splitAxis];
                
                if ((node->valueArray.size() > source.size() / 2) &&
                    (source.size() > 10)) {
                    // Our median split put an awful lot of points on the splitting plane.  Try a mean
                    // split instead
                    numMeanSplits = 1;
                }
            }

            if (numMeanSplits > 0) {
                // Compute the mean along the axis

                splitLocation = (bounds.high()[splitAxis] + 
                                 bounds.low()[splitAxis]) / 2.0;

                Handle splitHandle;
                Vector3 v;
                v[splitAxis] = splitLocation;
                splitHandle.setPosition(v);

                source.partition(splitHandle, lt, node->valueArray, gt, AxisComparator(splitAxis));
            }

#           if defined(G3D_DEBUG) && defined(VERIFY_TREE)
                for (int i = 0; i < lt.size(); ++i) {
                    const Vector3& v = lt[i].position(); 
                    debugAssert(v[splitAxis] < splitLocation);
                }
                for (int i = 0; i < gt.size(); ++i) {
                    debugAssert(gt[i].position()[splitAxis] > splitLocation);
                }
                for (int i = 0; i < node->valueArray.size(); ++i) {
                    debugAssert(node->valueArray[i].position()[splitAxis] == splitLocation);
                }
#           endif

            node->splitAxis = splitAxis;
            node->splitLocation = splitLocation;

            // Throw away the source array to save memory
            source.fastClear();
        
            if (lt.size() > 0) {
                node->child[0] = makeNode(lt, temp, valuesPerNode, numMeanSplits - 1);
            }

            if (gt.size() > 0) {
                node->child[1] = makeNode(gt, temp, valuesPerNode, numMeanSplits - 1);
            }

            // Add the values stored at this interior node to the member table
            for(int i = 0; i < node->valueArray.size(); ++i) {
                memberTable.set(node->valueArray[i].value, node);
            }
		    
	    }
	    
	    return node;
    }

    /**
     Recursively clone the passed in node tree, setting
     pointers for members in the memberTable as appropriate.
     called by the assignment operator.
     */
    Node* cloneTree(Node* src) {
        Node* dst = new Node(*src);

        // Make back pointers
        for (int i = 0; i < dst->valueArray.size(); ++i) {
            memberTable.set(dst->valueArray[i].value, dst);
        }

        // Clone children
        for (int i = 0; i < 2; ++i) {
            if (src->child[i] != NULL) {
                dst->child[i] = cloneTree(src->child[i]);
            }
        }

        return dst;
    }

    /** Maps members to the node containing them */
    typedef Table<T, Node*, HashFunc, EqualsFunc> MemberTable;
    MemberTable             memberTable;

    Node*                   root;

public:

    /** To construct a balanced tree, insert the elements and then call
      PointKDTree::balance(). */
    PointKDTree() : root(NULL) {}


    PointKDTree(const PointKDTree& src) : root(NULL) {
        *this = src;
    }


    PointKDTree& operator=(const PointKDTree& src) {
        delete root;
        // Clone tree takes care of filling out the memberTable.
        root = cloneTree(src.root);
        return *this;
    }


    ~PointKDTree() {
        clear();
    }

    /**
     Throws out all elements of the set and erases the structure of the tree.
     */
    void clear() {
        memberTable.clear();
        delete root;
        root = NULL;
    }

    /** Removes all elements of the set while maintaining the structure of the tree */
    void clearData() {
        memberTable.clear();
        Array<Node*> stack;
        stack.push(root);
        while (stack.size() > 0) {
            Node* node = stack.pop();
            node->valueArray.fastClear();

            for (int i = 0; i < 2; ++i) {
                if (node->child[i] != NULL) {
                    stack.push(node->child[i]);
                }
            }
        }
    }


    int size() const {
        return memberTable.size();
    }

    /**
     Inserts an object into the set if it is not
     already present.  O(log n) time.  Does not
     cause the tree to be balanced.
     */
    void insert(const T& value) {
        if (contains(value)) {
            // Already in the set
            return;
        }

        Handle h(value);

        if (root == NULL) {
            // This is the first node; create a root node
            root = new Node();
        }

        Node* node = root->findDeepestContainingNode(h.position());

        // Insert into the node
        node->valueArray.append(h);
        
        // Insert into the node table
        memberTable.set(value, node);
    }

    /** Inserts each elements in the array in turn.  If the tree
        begins empty (no structure and no elements), this is faster
        than inserting each element in turn.  You still need to balance
        the tree at the end.*/
    void insert(const Array<T>& valueArray) {
        // Pre-size the member table to avoid multiple allocations
        memberTable.setSizeHint(valueArray.size() + size());

        if (root == NULL) {
            // Optimized case for an empty tree; don't bother
            // searching or reallocating the root node's valueArray
            // as we incrementally insert.
            root = new Node();
            root->valueArray.resize(valueArray.size());
            for (int i = 0; i < valueArray.size(); ++i) {
                // Insert in opposite order so that we have the exact same
                // data structure as if we inserted each (i.e., order is reversed
                // from array).
                root->valueArray[valueArray.size() - i - 1] = Handle(valueArray[i]);
                memberTable.set(valueArray[i], root);
            }
        } else {
            // Insert at appropriate tree depth.
            for (int i = 0; i < valueArray.size(); ++i) {
                insert(valueArray[i]);
            }
        }
    }


    /**
     Returns true if this object is in the set, otherwise
     returns false.  O(1) time.
     */
    bool contains(const T& value) {
        return memberTable.containsKey(value);
    }


    /**
     Removes an object from the set in O(1) time.
     It is an error to remove members that are not already
     present.  May unbalance the tree.  
     
     Removing an element never causes a node (split plane) to be removed...
     nodes are only changed when the tree is rebalanced.  This behavior
     is desirable because it allows the split planes to be serialized,
     and then deserialized into an empty tree which can be repopulated.
    */
    void remove(const T& value) {
        debugAssertM(contains(value),
            "Tried to remove an element from a "
            "PointKDTree that was not present");

        Array<Handle>& list = memberTable[value]->valueArray;

        // Find the element and remove it
        for (int i = list.length() - 1; i >= 0; --i) {
            if (list[i].value == value) {
                list.fastRemove(i);
                break;
            }
        }
        memberTable.remove(value);
    }


    /**
     If the element is in the set, it is removed.
     The element is then inserted.

     This is useful when the == and hashCode methods
     on <I>T</I> are independent of the bounds.  In
     that case, you may call update(v) to insert an
     element for the first time and call update(v)
     again every time it moves to keep the tree 
     up to date.
     */
    void update(const T& value) {
        if (contains(value)) {
            remove(value);
        }
        insert(value);
    }


    /**
     Rebalances the tree (slow).  Call when objects
     have moved substantially from their original positions
     (which unbalances the tree and causes the spatial
     queries to be slow).
     
     @param valuesPerNode Maximum number of elements to put at
     a node. 

     @param numMeanSplits numMeanSplits = 0 gives a 
     fully axis aligned BSP-tree, where the balance operation attempts to balance
     the tree so that every splitting plane has an equal number of left
     and right children (i.e. it is a <B>median</B> split along that axis).  
     This tends to maximize average performance; all querries will return in the same amount of time.

     You can override this behavior by
     setting a number of <B>mean</B> (average) splits.  numMeanSplits = MAX_INT
     creates a full oct-tree, which tends to optimize peak performance (some areas of the scene will terminate after few recursive splits) at the expense of
     peak performance. 
     */
    void balance(int valuesPerNode = 40, int numMeanSplits = 3) {
        if (root == NULL) {
            // Tree is empty
            return;
        }

        Array<Handle> handleArray;
        root->getHandles(handleArray);

        // Delete the old tree
        clear();

        Array<Handle> temp;
        root = makeNode(handleArray, temp, valuesPerNode, numMeanSplits);
        temp.fastClear();

        // Walk the tree, assigning splitBounds.  We start with unbounded
        // space.
        root->assignSplitBounds(AABox::maxFinite());

#       ifdef _DEBUG
            root->verifyNode(Vector3::minFinite(), Vector3::maxFinite());
#       endif
    }

private:

    /**
     Returns the elements

     @param parentMask The mask that this node returned from culledBy.
     */
    static void getIntersectingMembers(
        const Array<Plane>&         plane,
        Array<T>&                   members,
        Node*                       node,
        uint32                      parentMask) {

        int dummy;

        if (parentMask == 0) {
            // None of these planes can cull anything
            for (int v = node->valueArray.size() - 1; v >= 0; --v) {
                members.append(node->valueArray[v].value);
            }

            // Iterate through child nodes
            for (int c = 0; c < 2; ++c) {
                if (node->child[c]) {
                    getIntersectingMembers(plane, members, node->child[c], 0);
                }
            }
        } else {

            if (node->valueArray.size() >  0) {
                // This is a leaf; check the points
                debugAssertM(node->child[0] == NULL, "Malformed Point tree");
                debugAssertM(node->child[1] == NULL, "Malformed Point tree");

                // Test values at this node against remaining planes
                for (int p = 0; p < plane.size(); ++p) {
                    if ((parentMask >> p) & 1 != 0) {
                        // Test against this plane
                        const Plane& curPlane = plane[p];
                        for (int v = node->valueArray.size() - 1; v >= 0; --v) {
                            if (curPlane.halfSpaceContains(node->valueArray[v].position())) {
                                members.append(node->valueArray[v].value);
                            }
                        }
                    }
                }
            } else {

                uint32 childMask  = 0xFFFFFF;

                // Iterate through child nodes
                for (int c = 0; c < 2; ++c) {
                    if (node->child[c] &&
                        ! node->child[c]->splitBounds.culledBy(plane, dummy, parentMask, childMask)) {
                        // This node was not culled
                        getIntersectingMembers(plane, members, node->child[c], childMask);
                    }
                }
            }
        }
    }

public:

    /**
     Returns all members inside the set of planes.  
      @param members The results are appended to this array.
     */
    void getIntersectingMembers(const Array<Plane>& plane, Array<T>& members) const {
        if (root == NULL) {
            return;
        }

        getIntersectingMembers(plane, members, root, 0xFFFFFF);
    }

    /**
     Typically used to find all visible
     objects inside the view frustum (see also GCamera::getClipPlanes)... i.e. all objects
     <B>not</B> culled by frustum.

     Example:
      <PRE>
        Array<Object*>  visible;
        tree.getIntersectingMembers(camera.frustum(), visible);
        // ... Draw all objects in the visible array.
      </PRE>
      @param members The results are appended to this array.
      */
    void getIntersectingMembers(const GCamera::Frustum& frustum, Array<T>& members) const {
        Array<Plane> plane;
        
        for (int i = 0; i < frustum.faceArray.size(); ++i) {
            plane.append(frustum.faceArray[i].plane);
        }

        getIntersectingMembers(plane, members);
    }

    /**
     C++ STL style iterator variable.  See beginBoxIntersection().
     The iterator overloads the -> (dereference) operator, so this
     acts like a pointer to the current member.
     */
    // This iterator turns Node::getIntersectingMembers into a
    // coroutine.  It first translates that method from recursive to
    // stack based, then captures the system state (analogous to a Scheme
    // continuation) after each element is appended to the member array,
    // and allowing the computation to be restarted.
    class BoxIntersectionIterator {
    private:
        friend class TreeType;

        /** True if this is the "end" iterator instance */
        bool            isEnd;

        /** The box that we're testing against. */
        AABox           box;

        /** Node that we're currently looking at.  Undefined if isEnd
            is true. */
        Node*           node;

        /** Nodes waiting to be processed */
        // We could use backpointers within the tree and careful
        // state management to avoid ever storing the stack-- but
        // it is much easier this way and only inefficient if the
        // caller uses post increment (which they shouldn't!).
        Array<Node*>    stack;

        /** The next index of current->valueArray to return. 
            Undefined when isEnd is true.*/
        int             nextValueArrayIndex;

        BoxIntersectionIterator() : isEnd(true) {}
        
        BoxIntersectionIterator(const AABox& b, const Node* root) : 
           isEnd(root == NULL), box(b), 
           node(const_cast<Node*>(root)), nextValueArrayIndex(-1) {

           // We intentionally start at the "-1" index of the current
           // node so we can use the preincrement operator to move
           // ourselves to element 0 instead of repeating all of the
           // code from the preincrement method.  Note that this might
           // cause us to become the "end" instance.
           ++(*this);
        }

    public:

        inline bool operator!=(const BoxIntersectionIterator& other) const {
            return ! (*this == other);
        }

        bool operator==(const BoxIntersectionIterator& other) const {
            if (isEnd) {
                return other.isEnd;
            } else if (other.isEnd) {
                return false;
            } else {
                // Two non-end iterators; see if they match.  This is kind of 
                // silly; users shouldn't call == on iterators in general unless
                // one of them is the end iterator.
                if ((box != other.box) || (node != other.node) || 
                    (nextValueArrayIndex != other.nextValueArrayIndex) ||
                    (stack.length() != other.stack.length())) {
                    return false;
                }

                // See if the stacks are the same
                for (int i = 0; i < stack.length(); ++i) {
                    if (stack[i] != other.stack[i]) {
                        return false;
                    }
                }

                // We failed to find a difference; they must be the same
                return true;
            }
        }

        /**
         Pre increment.
         */
        BoxIntersectionIterator& operator++() {
            ++nextValueArrayIndex;

			bool foundIntersection = false;
            while (! isEnd && ! foundIntersection) {

				// Search for the next node if we've exhausted this one
                while ((! isEnd) &&  (nextValueArrayIndex >= node->valueArray.length())) {
					// If we entered this loop, then the iterator has exhausted the elements at 
					// node (possibly because it just switched to a child node with no members).
					// This loop continues until it finds a node with members or reaches
					// the end of the whole intersection search.

					// If the right child overlaps the box, push it onto the stack for
					// processing.
					if ((node->child[1] != NULL) &&
						(box.high()[node->splitAxis] > node->splitLocation)) {
						stack.push(node->child[1]);
					}
                
					// If the left child overlaps the box, push it onto the stack for
					// processing.
					if ((node->child[0] != NULL) &&
						(box.low()[node->splitAxis] < node->splitLocation)) {
						stack.push(node->child[0]);
					}

					if (stack.length() > 0) {
						// Go on to the next node (which may be either one of the ones we 
						// just pushed, or one from farther back the tree).
						node = stack.pop();
						nextValueArrayIndex = 0;
					} else {
						// That was the last node; we're done iterating
						isEnd = true;
					}
				}

				// Search for the next intersection at this node until we run out of children
				while (! isEnd && ! foundIntersection && (nextValueArrayIndex < node->valueArray.length())) {
					if (box.intersects(node->valueArray[nextValueArrayIndex].bounds)) {
						foundIntersection = true;
					} else {
						++nextValueArrayIndex;
						// If we exhaust this node, we'll loop around the master loop 
						// to find a new node.
					}
				}
            }

            return *this;
        }

        /**
         Post increment (much slower than preincrement!).
         */
        BoxIntersectionIterator operator++(int) {
            BoxIntersectionIterator old = *this;
            ++this;
            return old;
        }

        /** Overloaded dereference operator so the iterator can masquerade as a pointer
            to a member */
        const T& operator*() const {
            alwaysAssertM(! isEnd, "Can't dereference the end element of an iterator");
            return node->valueArray[nextValueArrayIndex].value;
        }

        /** Overloaded dereference operator so the iterator can masquerade as a pointer
            to a member */
        T const * operator->() const {
            alwaysAssertM(! isEnd, "Can't dereference the end element of an iterator");
            return &(stack.last()->valueArray[nextValueArrayIndex].value);
        }

        /** Overloaded cast operator so the iterator can masquerade as a pointer
            to a member */
        operator T*() const {
            alwaysAssertM(! isEnd, "Can't dereference the end element of an iterator");
            return &(stack.last()->valueArray[nextValueArrayIndex].value);
        }
    };


    /**
     Iterates through the members that intersect the box
     */
    BoxIntersectionIterator beginBoxIntersection(const AABox& box) const {
        return BoxIntersectionIterator(box, root);
    }

    BoxIntersectionIterator endBoxIntersection() const {
        // The "end" iterator instance
        return BoxIntersectionIterator();
    }

    /**
     Appends all members whose bounds intersect the box.
     See also PointKDTree::beginBoxIntersection.
     */
    void getIntersectingMembers(const AABox& box, Array<T>& members) const {
        if (root == NULL) {
            return;
        }
        root->getIntersectingMembers(box, Sphere(Vector3::zero(), 0), members, false);
    }


    /**
      @param members The results are appended to this array.
     */
    void getIntersectingMembers(const Sphere& sphere, Array<T>& members) const {
        if (root == NULL) {
            return;
        }

        AABox box;
        sphere.getBounds(box);
        root->getIntersectingMembers(box, sphere, members);

    }


    /**
      Stores the locations of the splitting planes (the structure but not the content)
      so that the tree can be quickly rebuilt from a previous configuration without 
      calling balance.
     */
    void serializeStructure(BinaryOutput& bo) const {
        Node::serializeStructure(root, bo);
    }

    /** Clears the member table */
    void deserializeStructure(BinaryInput& bi) {
        clear();
        root = Node::deserializeStructure(bi);
    }

    /**
     Returns an array of all members of the set.  See also PointKDTree::begin.
     */
    void getMembers(Array<T>& members) const {
        memberTable.getKeys(members);
    }


    /**
     C++ STL style iterator variable.  See begin().
     Overloads the -> (dereference) operator, so this acts like a pointer
     to the current member.
    */
    class Iterator {
    private:
        friend class TreeType;

        // Note: this is a Table iterator, we are currently defining
        // Set iterator
        typename MemberTable::Iterator it;

        Iterator(const typename MemberTable::Iterator& it) : it(it) {}

    public:
        inline bool operator!=(const Iterator& other) const {
            return !(*this == other);
        }

        bool operator==(const Iterator& other) const {
            return it == other.it;
        }

        /**
         Pre increment.
         */
        Iterator& operator++() {
            ++it;
            return *this;
        }

        /**
         Post increment (slower than preincrement).
         */
        Iterator operator++(int) {
            Iterator old = *this;
            ++(*this);
            return old;
        }

        const T& operator*() const {
            return it->key;
        }

        T* operator->() const {
            return &(it->key);
        }

        operator T*() const {
            return &(it->key);
        }
    };


    /**
     C++ STL style iterator method.  Returns the first member.  
     Use preincrement (++entry) to get to the next element (iteration
     order is arbitrary).  
     Do not modify the set while iterating.
     */
    Iterator begin() const {
        return Iterator(memberTable.begin());
    }


    /**
     C++ STL style iterator method.  Returns one after the last iterator
     element.
     */
    Iterator end() const {
        return Iterator(memberTable.end());
    }
#undef TreeType
};

}

#endif