aboutsummaryrefslogtreecommitdiff
path: root/dep/g3dlite/source/Box.cpp
blob: 3ee3dc04013894b25b0fe3c12749a1eb542bd457 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
/**
  \file G3D.lib/source/Box.cpp
  Box class

  \maintainer Morgan McGuire, http://graphics.cs.williams.edu, Michael Mara

  \created 2001-06-02
  \edited  2013-04-13
*/

#include "G3D/Box.h"
#include "G3D/debug.h"
#include "G3D/Plane.h"
#include "G3D/AABox.h"
#include "G3D/CoordinateFrame.h"
#include "G3D/vectorMath.h"
#include "G3D/Any.h"

namespace G3D {

Box::Box() : _area(0), _volume(0) {
}


Box::Box
   (const Point3& min,
    const Point3& max) {
    init(min.min(max), min.max(max));
}


Box::Box(const Point3& min) {
    init(min, min);
}


Box::Box
   (const Point3& min,
    const Point3& max,
    const CFrame& c) {
    init(min.min(max), min.max(max));
    *this = c.toWorldSpace(*this);
}


Box::Box(const AABox& b) {
    debugAssert(! b.isEmpty());
    init(b.low(), b.high());
}


Box::Box(BinaryInput& b) {
    deserialize(b);    
}


Box::Box(const Any& a) {
    if (a.name() == "Box::inf") {
        *this = Box::inf();
    } else {
        a.verifyName("Box", "AABox", "Point3");

        if (a.name() == "Point3") {
            *this = Box(Point3(a));
        } else if (a.size() == 1) {
            // Single point
            *this = Box(Point3(a[0]));
        } else if (a.size() == 2) {
            *this = Box(Point3(a[0]), Point3(a[1]));
        } else {
            // Oriented box
            a.verifySize(2);
            a.verifyName("Box");
            *this = Box(Point3(a[0]), Point3(a[1]), CFrame(a[2]));
        }
    }
}


Any Box::toAny() const {
    if (! isFinite()) {
        return Any(Any::ARRAY, "Box::inf");
    } else {
        CFrame c;
        getLocalFrame(c);
        if (c.rotation == Matrix3::identity()) {
            // Aligned box
            AABox b;
            getBounds(b);
            return b.toAny();
        } else {
            // Oriented box
            Any a(Any::ARRAY, "Box");

            AABox b;
            c.toObjectSpace(*this).getBounds(b);
            a.append(b.low(), b.high(), c);
            return a;
        }
    }
}


Box Box::operator*(float f) const {
    Box b;

    for (int i = 0; i < 3; ++i) {
        b._edgeVector[i] = _edgeVector[i] * f;
        b._center = _center * f;
        b._area = _area * square(f * f);
        b._volume = _area * (f * f * f);
    }

    return b;
}


void Box::serialize(BinaryOutput& b) const {
    int i;
    for (i = 0; i < 3; ++i) {
        _edgeVector[i].serialize(b);
    }
    _center.serialize(b);

    // Other state can be reconstructed
}


void Box::deserialize(class BinaryInput& b) {
    int i;
    for (i = 0; i < 3; ++i) {
        _edgeVector[i].deserialize(b);
    }
    _center.deserialize(b);

    float extent0 = extent(0);
    float extent1 = extent(1);
    float extent2 = extent(2);
    _volume = extent0 * extent1 * extent2;

    _area = 2 * 
        (extent0 * extent1 +
         extent1 * extent2 +
         extent2 * extent0);
}


void Box::init
   (const Point3& min,
    const Point3& max) {

    debugAssert(
        (min.x <= max.x) &&
        (min.y <= max.y) &&
        (min.z <= max.z));

    _center = (max + min) * 0.5f;

    Vector3 bounds = Vector3(max.x - min.x, max.y - min.y, max.z - min.z);
    _edgeVector[0] = Vector3(bounds.x, 0, 0);
    _edgeVector[1] = Vector3(0, bounds.y, 0);
    _edgeVector[2] = Vector3(0, 0, bounds.z);
    bool finiteExtent = true;
    
    for (int i = 0; i < 3; ++i) {
        if (! G3D::isFinite(extent(i))) {
            finiteExtent = false;
            // If the extent is infinite along an axis, make the center zero to avoid NaNs
            _center[i] = 0.0f;
        }
    }


    if (finiteExtent) {
        _volume = bounds.x * bounds.y * bounds.z;
    } else {
        _volume = G3D::finf();
    }

    debugAssert(! _edgeVector[0].isNaN());

    _area = 2 * 
        (bounds.x * bounds.y +
         bounds.y * bounds.z +
         bounds.z * bounds.x);
}


Vector3 Box::corner(int i) const{
    debugAssert(i < 8);
    // The corner forms a bit mask (xyz), where a one indicates we should
    // add half of the corresponding edge vector from center, and a zero indicates 
    // we should subtract it. Note:
    // 1 = 001
    // 2 = 010
    // 4 = 100
    // 
    // The following bit-hacky code shows this directly:
    // return _center + ((_edgeVector[0] * ((i&1) - 0.5) +
    //                  _edgeVector[1] * (((i>>1)&1) - 0.5) +
    //                  _edgeVector[2] * (((i>>2)&1) - 0.5)));
    // This method is implemented as a swtich statement due to being marginally faster than the bit-hack method
    // Also, the _center + 0.5f * (...) is repeated every time for similarly speed-based reasons.
    switch(i) {
        case 0:  return _center + (0.5f * (-_edgeVector[0]  - _edgeVector[1] - _edgeVector[2]));
        case 1:  return _center + (0.5f * ( _edgeVector[0]  - _edgeVector[1] - _edgeVector[2]));
        case 2:  return _center + (0.5f * (-_edgeVector[0]  + _edgeVector[1] - _edgeVector[2]));
        case 3:  return _center + (0.5f * ( _edgeVector[0]  + _edgeVector[1] - _edgeVector[2]));
        case 4:  return _center + (0.5f * (-_edgeVector[0]  - _edgeVector[1] + _edgeVector[2]));
        case 5:  return _center + (0.5f * ( _edgeVector[0]  - _edgeVector[1] + _edgeVector[2]));
        case 6:  return _center + (0.5f * (-_edgeVector[0]  + _edgeVector[1] + _edgeVector[2]));
        default: return _center + (0.5f * ( _edgeVector[0]  + _edgeVector[1] + _edgeVector[2]));//case 7
    }
        
}

float Box::volume() const {
    return _volume;
}


float Box::area() const {
    return _area;
}


void Box::getLocalFrame(CoordinateFrame& frame) const {
    const Vector3& axis0 = axis(0);
    const Vector3& axis1 = axis(1);
    const Vector3& axis2 = axis(2);

    frame.rotation = Matrix3(
        axis0[0], axis1[0], axis2[0],
        axis0[1], axis1[1], axis2[1],
        axis0[2], axis1[2], axis2[2]);

    frame.translation = _center;
}


CoordinateFrame Box::localFrame() const {
    CoordinateFrame out;
    getLocalFrame(out);
    return out;
}


void Box::getFaceCorners(int f, Point3& v0, Point3& v1, Point3& v2, Point3& v3) const {
    switch (f) {
    case 0:
        v0 = corner(0); v1 = corner(2); v2 = corner(3); v3 = corner(1);
        break;

    case 1:
        v0 = corner(1); v1 = corner(3); v2 = corner(7); v3 = corner(5);
        break;

    case 2:
        v0 = corner(6); v1 = corner(4); v2 = corner(5); v3 = corner(7);
        break;

    case 3:
        v0 = corner(3); v1 = corner(2); v2 = corner(6); v3 = corner(7);
        break;

    case 4:
        v0 = corner(2); v1 = corner(0); v2 = corner(4); v3 = corner(6);
        break;

    case 5:
        v0 = corner(1); v1 = corner(5); v2 = corner(4); v3 = corner(0);
        break;

    default:
        debugAssert((f >= 0) && (f < 6));
    }
}



int Box::dummy = 0;

bool Box::culledBy
   (const Array<Plane>& plane,
    int&                cullingPlane,
    const uint32        _inMask,
    uint32&             childMask) const {

    uint32 inMask = _inMask;
    assert(plane.size() < 31);

    childMask = 0;

    // See if there is one plane for which all of the
    // vertices are in the negative half space.
    for (int p = 0; p < plane.size(); ++p) {

        // Only test planes that are not masked
        if ((inMask & 1) != 0) {

            int numContained = 0;
            int v = 0;

            // We can early-out only if we have found one point on each
            // side of the plane (i.e. if we are straddling).  That
            // occurs when (numContained < v) && (numContained > 0)
            for (v = 0; (v < 8) && ((numContained == v) || (numContained == 0)); ++v) {
                if (plane[p].halfSpaceContains(corner(v))) {
                    ++numContained;
                }
            }

            if (numContained == 0) {
                // Plane p culled the box
                cullingPlane = p;

                // The caller should not recurse into the children,
                // since the parent is culled.  If they do recurse,
                // make them only test against this one plane, which
                // will immediately cull the volume.
                childMask = 1 << p;
                return true;

            } else if (numContained < v) {
                // The bounding volume straddled the plane; we have
                // to keep testing against this plane
                childMask |= (1 << p);
            }
        }

        // Move on to the next bit.
        inMask = inMask >> 1;
    }

    // None of the planes could cull this box
    cullingPlane = -1;
    return false;
}


bool Box::culledBy
   (const Array<Plane>& plane,
    int&                cullingPlane,
    const uint32        _inMask) const {

    uint32 inMask = _inMask;
    assert(plane.size() < 31);

    // See if there is one plane for which all of the
    // vertices are in the negative half space.
    for (int p = 0; p < plane.size(); ++p) {

        // Only test planes that are not masked
        if ((inMask & 1) != 0) {
        
            bool culled = true;

            int v;

            // Assume this plane culls all points.  See if there is a point
            // not culled by the plane... early out when at least one point
            // is in the positive half space.
            for (v = 0; (v < 8) && culled; ++v) {
                culled = ! plane[p].halfSpaceContains(corner(v));
            }

            if (culled) {
                // Plane p culled the box
                cullingPlane = p;

                return true;
            }
        }

        // Move on to the next bit.
        inMask = inMask >> 1;
    }

    // None of the planes could cull this box
    cullingPlane = -1;
    return false;
}


bool Box::contains
    (const Point3&      point) const {

    // Form axes from three edges, transform the point into that
    // space, and perform 3 interval tests
    // TODO: Write in a more intuitive way. I left it as it was before after figuring it out, but
    // this should make no sense to someone who is just starting to read this code.
    const Vector3& u = _edgeVector[2];
    const Vector3& v = _edgeVector[1];
    const Vector3& w = _edgeVector[0];

    Matrix3 M = Matrix3(u.x, v.x, w.x,
                        u.y, v.y, w.y,
                        u.z, v.z, w.z);

    // M^-1 * (point - _corner[0]) = point in unit cube's object space
    // compute the inverse of M
    Vector3 osPoint = M.inverse() * (point - corner(0));

    return
        (osPoint.x >= 0) && 
        (osPoint.y >= 0) &&
        (osPoint.z >= 0) &&
        (osPoint.x <= 1) &&
        (osPoint.y <= 1) &&
        (osPoint.z <= 1);
}




void Box::getRandomSurfacePoint(Vector3& P, Vector3& N) const {
    float aXY = extent(0) * extent(1);
    float aYZ = extent(1) * extent(2);
    float aZX = extent(2) * extent(0);

    float r = (float)uniformRandom(0, aXY + aYZ + aZX);

    // Choose evenly between positive and negative face planes
    float d = (uniformRandom(0, 1) < 0.5f) ? -1.0f : 1.0f;

    // The probability of choosing a given face is proportional to
    // its area.
    if (r < aXY) {
        P = _edgeVector[0] * (float)uniformRandom(-0.5, 0.5) +
            _edgeVector[1] * (float)uniformRandom(-0.5, 0.5) +
            _center + _edgeVector[2] * d  * 0.5f;
        N = axis(2) * d;
    } else if (r < aYZ) {
        P = _edgeVector[1] * (float)uniformRandom(-0.5, 0.5) +
            _edgeVector[2] * (float)uniformRandom(-0.5, 0.5) +
            _center + _edgeVector[0] * d  * 0.5f;
        N = axis(0) * d;
    } else {
        P = _edgeVector[2] * (float)uniformRandom(-0.5, 0.5) +
            _edgeVector[0] *(float) uniformRandom(-0.5, 0.5) +
            _center + _edgeVector[1] * d * 0.5f;
        N = axis(1) * d;
    }
}


Vector3 Box::randomInteriorPoint() const {
    Vector3 sum = _center;

    for (int a = 0; a < 3; ++a) {
        sum += _edgeVector[a] * (float)uniformRandom(-0.5, 0.5);
    }

    return sum;
}


Box Box::inf() {
    return Box(-Vector3::inf(), Vector3::inf());
}


void Box::getBounds(AABox& aabb) const {
    debugAssert(! _edgeVector[0].isNaN());
    debugAssert(! _center.isNaN());
    aabb = AABox::empty();
    for (int i = 0; i < 8; ++i) {
        aabb.merge(corner(i));
    }
}


} // namespace