1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
|
/**
\file UprightFrame.cpp
\maintainer Morgan McGuire, http://graphics.cs.williams.edu
*/
#include "G3D/UprightFrame.h"
#include "G3D/BinaryInput.h"
#include "G3D/BinaryOutput.h"
namespace G3D {
UprightFrame::UprightFrame(const CoordinateFrame& cframe) {
Vector3 look = cframe.lookVector();
yaw = (float)(G3D::pi() + atan2(look.x, look.z));
pitch = asin(look.y);
translation = cframe.translation;
}
UprightFrame::UprightFrame(const Any& any) {
any.verifyName("UprightFrame");
any.verifyType(Any::TABLE);
translation = any["translation"];
pitch = any["pitch"];
yaw = any["yaw"];
}
Any UprightFrame::toAny() const {
Any any(Any::TABLE, "UprightFrame");
any["translation"] = translation;
any["pitch"] = pitch;
any["yaw"] = yaw;
return any;
}
UprightFrame& UprightFrame::operator=(const Any& any) {
*this = UprightFrame(any);
return *this;
}
CoordinateFrame UprightFrame::toCoordinateFrame() const {
CoordinateFrame cframe;
Matrix3 P(Matrix3::fromAxisAngle(Vector3::unitX(), pitch));
Matrix3 Y(Matrix3::fromAxisAngle(Vector3::unitY(), yaw));
cframe.rotation = Y * P;
cframe.translation = translation;
return cframe;
}
UprightFrame UprightFrame::operator+(const UprightFrame& other) const {
return UprightFrame(translation + other.translation, pitch + other.pitch, yaw + other.yaw);
}
UprightFrame UprightFrame::operator*(const float k) const {
return UprightFrame(translation * k, pitch * k, yaw * k);
}
void UprightFrame::unwrapYaw(UprightFrame* a, int N) {
// Use the first point to establish the wrapping convention
for (int i = 1; i < N; ++i) {
const float prev = a[i - 1].yaw;
float& cur = a[i].yaw;
// No two angles should be more than pi (i.e., 180-degrees) apart.
if (abs(cur - prev) > G3D::pi()) {
// These angles must have wrapped at zero, causing them
// to be interpolated the long way.
// Find canonical [0, 2pi] versions of these numbers
float p = (float)wrap(prev, twoPi());
float c = (float)wrap(cur, twoPi());
// Find the difference -pi < diff < pi between the current and previous values
float diff = c - p;
if (diff < -G3D::pi()) {
diff += (float)twoPi();
} else if (diff > G3D::pi()) {
diff -= (float)twoPi();
}
// Offset the current from the previous by the difference
// between them.
cur = prev + diff;
}
}
}
void UprightFrame::serialize(class BinaryOutput& b) const {
translation.serialize(b);
b.writeFloat32(pitch);
b.writeFloat32(yaw);
}
void UprightFrame::deserialize(class BinaryInput& b) {
translation.deserialize(b);
pitch = b.readFloat32();
yaw = b.readFloat32();
}
///////////////////////////////////////////////////////////////////////////////////////////
UprightSpline::UprightSpline() : Spline<UprightFrame>() {
}
UprightSpline::UprightSpline(const Any& any) {
any.verifyName("UprightSpline");
any.verifyType(Any::TABLE);
extrapolationMode = any["extrapolationMode"];
const Any& controlsAny = any["control"];
controlsAny.verifyType(Any::ARRAY);
control.resize(controlsAny.length());
for (int controlIndex = 0; controlIndex < control.length(); ++controlIndex) {
control[controlIndex] = controlsAny[controlIndex];
}
const Any& timesAny = any["time"];
timesAny.verifyType(Any::ARRAY);
time.resize(timesAny.length());
for (int timeIndex = 0; timeIndex < time.length(); ++timeIndex) {
time[timeIndex] = timesAny[timeIndex];
}
}
Any UprightSpline::toAny(const std::string& myName) const {
Any any(Any::TABLE, myName);
any["extrapolationMode"] = extrapolationMode;
Any controlsAny(Any::ARRAY);
for (int controlIndex = 0; controlIndex < control.length(); ++controlIndex) {
controlsAny.append(control[controlIndex]);
}
any["control"] = controlsAny;
Any timesAny(Any::ARRAY);
for (int timeIndex = 0; timeIndex < time.length(); ++timeIndex) {
timesAny.append(Any(time[timeIndex]));
}
any["time"] = timesAny;
return any;
}
Any UprightSpline::toAny() const {
return toAny("UprightSpline");
}
UprightSpline& UprightSpline::operator=(const Any& any) {
*this = UprightSpline(any);
return *this;
}
void UprightSpline::serialize(class BinaryOutput& b) const {
b.writeInt32(extrapolationMode);
b.writeInt32(control.size());
for (int i = 0; i < control.size(); ++i) {
control[i].serialize(b);
}
b.writeInt32(time.size());
for (int i = 0; i < time.size(); ++i) {
b.writeFloat32(time[i]);
}
}
void UprightSpline::deserialize(class BinaryInput& b) {
extrapolationMode = SplineExtrapolationMode(b.readInt32());
control.resize(b.readInt32());
for (int i = 0; i < control.size(); ++i) {
control[i].deserialize(b);
}
if (b.hasMore()) {
time.resize(b.readInt32());
for (int i = 0; i < time.size(); ++i) {
time[i] = b.readFloat32();
}
debugAssert(time.size() == control.size());
} else {
// Import legacy path
time.resize(control.size());
for (int i = 0; i < time.size(); ++i) {
time[i] = (float)i;
}
}
}
}
|