aboutsummaryrefslogtreecommitdiff
path: root/dep/include/g3dlite/G3D/g3dmath.h
blob: 5dbd008409f701a04b24180cdf5140b2e5f036fd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
/**
 @file g3dmath.h

 Math util class.

 @maintainer Morgan McGuire, matrix@graphics3d.com
 @cite highestBit by Jukka Liimatta

 @created 2001-06-02
 @edited  2006-01-16

 Copyright 2000-2006, Morgan McGuire.
 All rights reserved.
 */

#ifndef G3DMATH_H
#define G3DMATH_H

#ifdef _MSC_VER
// Disable conditional expression is constant, which occurs incorrectly on inlined functions
#   pragma warning (push)
#   pragma warning (disable : 4127)
// disable: "C++ exception handler used"
#   pragma warning (disable : 4530)
#endif

#include "G3D/platform.h"
#include <ctype.h>
#include <string>
#include <float.h>
#include <limits>

/*These defines enable functionality introduced with the 1999 ISO C
**standard. They must be defined before the inclusion of math.h to
**engage them. If optimisation is enabled, these functions will be
**inlined. With optimisation switched off, you have to link in the
**maths library using -lm.
*/

#define _ISOC9X_SOURCE1
#define _ISOC99_SOURCE1
#define __USE_ISOC9X1
#define __USE_ISOC991

#include <math.h>

#include "G3D/debug.h"

#undef min
#undef max

namespace G3D {

#if defined(_MSC_VER)

#if !defined(_WIN64)

/**
   Win32 implementation of the C99 fast rounding routines.

   @cite routines are
   Copyright (C) 2001 Erik de Castro Lopo <erikd AT mega-nerd DOT com>

   Permission to use, copy, modify, distribute, and sell this file for any
   purpose is hereby granted without fee, provided that the above copyright
   and this permission notice appear in all copies.  No representations are
   made about the suitability of this software for any purpose.  It is
   provided "as is" without express or implied warranty.
*/

__inline long int lrint (double flt) {
    int intgr;

    _asm {
        fld flt
        fistp intgr
    };

    return intgr;
}

__inline long int lrintf(float flt) {
    int intgr;

    _asm {
        fld flt
        fistp intgr
    };

    return intgr;
}

#else

    __inline long int lrint (double flt) {
        return (long int)floor(flt+0.5f);
    }

    __inline long int lrintf(float flt) {
        return (long int)floorf(flt+0.5f);
    }


#endif

#endif


const double fuzzyEpsilon = 0.00001;

/** Returns a reference to a static double.
    This value should not be tested against directly, instead
    G3D::isNan() and G3D::isFinite() will return reliable results. */
inline const double& inf() {

// We already have <limits> included but
// not using it in older gcc for safe compilations
#if (__GNUC__ == 2)
    static const double i = 1.0/sin(0.0);
#else
    // double is a standard type and should have infinity
    static const double i = std::numeric_limits<double>::infinity();
#endif
    return i;
}

/** Returns a reference to a static double.
    This value should not be tested against directly, instead
    G3D::isNan() and G3D::isFinite() will return reliable results. */
inline const double& nan() {

// We already have <limits> included but
// not using it in older gcc for safe compilations
#if (__GNUC__ == 2)
    static const double n = 0.0/sin(0.0);
#else
    // double is a standard type and should have quiet NaN
    static const double n = std::numeric_limits<double>::quiet_NaN();
#endif
    return n;
}

/** Returns a reference to a static double. Use instead of G3D_PI. */
inline const double& pi() {
    static const double p = 3.1415926535898;
    return p;
}

/** Returns a reference to a static double. Use instead of G3D_HALF_PI. */
inline const double& halfPi() {
    static const double p = 1.5707963267949;
    return p;
}

/** Returns a reference to a static double. Use instead of G3D_TWO_PI. */
inline const double& twoPi() {
    static const double p = 6.283185;
    return p;
}

/** @def G3D_PI
    @deprecated Use G3D::pi() instead. */
#define G3D_PI      (3.1415926535898)
/** @def G3D_HALF_PI
    @deprecated Use G3D::halfPi() instead. */
#define G3D_HALF_PI (1.5707963267949)
/** @def G3D_TWO_PI
    @deprecated Use G3D::twoPi() instead. */
#define G3D_TWO_PI  (6.283185)

typedef signed char     int8;
typedef unsigned char   uint8;
typedef short           int16;
typedef unsigned short  uint16;
typedef int             int32;
typedef unsigned int    uint32;

#ifdef _MSC_EXTENSIONS
    typedef __int64            int64;
    typedef unsigned __int64   uint64;
#else
    typedef long long          int64;
    typedef unsigned long long uint64;
#endif
typedef unsigned int uint;

typedef float           float32;
typedef double          float64;

int iAbs(int iValue);
int iCeil(double fValue);

/**
 Clamps the value to the range [low, hi] (inclusive)
 */
int iClamp(int val, int low, int hi);
double clamp(double val, double low, double hi);
float clamp(float val, float low, float hi);

/**
 Returns a + (b - a) * f;
 */
inline double lerp(double a, double b, double f) {
    return a + (b - a) * f;
}

inline float lerp(float a, float b, float f) {
    return a + (b - a) * f;
}

/**
 Wraps the value to the range [0, hi) (exclusive
 on the high end).  This is like the clock arithmetic
 produced by % (modulo) except the result is guaranteed
 to be positive.
 */
int iWrap(int val, int hi);

int iFloor(double fValue);

int iSign(int iValue);
int iSign(double fValue);

inline int iSign(float f) {
    return iSign((double)f);
}


/**
    Fast round to integer using the lrint routine.
    Typically 6x faster than casting to integer.
 */
inline int iRound(double fValue) {
    return lrint(fValue);
}

/**
    Fast round to integer using the lrint routine.
    Typically 6x faster than casting to integer.
 */
inline int iRound(float f) {
    return lrintf(f);
}

/**
 Returns a random number uniformly at random between low and hi
 (inclusive).
 */
int iRandom(int low, int hi);

double abs (double fValue);
double aCos (double fValue);
double aSin (double fValue);
double aTan (double fValue);
double aTan2 (double fY, double fX);
double sign (double fValue);
double square (double fValue);

/**
 Returns true if the argument is a finite real number.
 */
bool isFinite(double x);

/**
 Returns true if the argument is NaN (not a number).
 You can't use x == nan to test this because all
 comparisons against nan return false.
 */
bool isNaN(double x);

/**
 Computes x % 3.
 */
int iMod3(int x);

/**
 [0, 1]
 @deprecated use uniformRandom()
 */
double unitRandom ();

/**
 Uniform random number between low and hi, inclusive.
 @deprecated use uniformRandom()
 */
double random(double low, double hi);

/**
 [-1, 1]
 @deprecated use uniformRandom()
 */
double symmetricRandom ();

/**
 Uniform random number between low and hi, inclusive. [low, hi]
 */
float uniformRandom(float low = 0.0f, float hi = 1.0f);

/**
 Normally distributed random number.
 */
float gaussRandom(float mean = 0.0f, float stdev = 1.0f);

#if defined(_MSC_VER) && (_MSC_VER <= 1200)

    /** VC6 lacks std::min and std::max */
    inline double min(double x, double y) {
        return std::_cpp_min(x, y);
    }

    /** VC6 lacks std::min and std::max */
    inline float min(float x, float y) {
        return std::_cpp_min(x, y);
    }

    /** VC6 lacks std::min and std::max */
    inline int min(int x, int y) {
        return std::_cpp_min(x, y);
    }

    /** VC6 lacks std::min and std::max */
    inline double max(double x, double y) {
        return std::_cpp_max(x, y);
    }

    /** VC6 lacks std::min and std::max */
    inline float max(float x, float y) {
        return std::_cpp_max(x, y);
    }

    /** VC6 lacks std::min and std::max */
    inline int max(int x, int y) {
        return std::_cpp_max(x, y);
    }

#else
    template <class T>
    inline T min(const T& x, const T& y) {
        return std::min<T>(x, y);
    }

    template <class T>
    inline T max(const T& x, const T& y) {
        return std::max<T>(x, y);
    }

#endif

int iMin(int x, int y);
int iMax(int x, int y);

double square(double x);
double sumSquares(double x, double y);
double sumSquares(double x, double y, double z);
double distance(double x, double y);
double distance(double x, double y, double z);

/**
  Returnes the 0-based index of the highest 1 bit from
  the left.  -1 means the number was 0.

  @cite Based on code by jukka@liimatta.org
 */
int highestBit(uint32 x);

/**
 Note that fuzzyEq(a, b) && fuzzyEq(b, c) does not imply
 fuzzyEq(a, c), although that will be the case on some
 occasions.
 */
bool fuzzyEq(double a, double b);

/** True if a is definitely not equal to b.
    Guaranteed false if a == b.
    Possibly false when a != b.*/
bool fuzzyNe(double a, double b);

/** Is a strictly greater than b? (Guaranteed false if a <= b).
    (Possibly false if a > b) */
bool fuzzyGt(double a, double b);

/** Is a near or greater than b? */
bool fuzzyGe(double a, double b);

/** Is a strictly less than b? (Guaranteed false if a >= b)*/
bool fuzzyLt(double a, double b);

/** Is a near or less than b? */
bool fuzzyLe(double a, double b);

/**
 Computes 1 / sqrt(x).
 */
inline float rsq(float x) {
    return 1.0f / sqrtf(x);
}

/**
 Uses SSE to implement rsq.
 @cite Nick nicolas@capens.net
 */
inline float SSErsq(float x) {

    #if defined(SSE) && defined(G3D_WIN32) && !defined(_WIN64)
        __asm {
           movss xmm0, x
           rsqrtss xmm0, xmm0
           movss x, xmm0
        }
        return x;
    #else
        return 1.0f / sqrt(x);
    #endif
}

/**
 Return the next power of 2 higher than the input
 If the input is already a power of 2, the output will be the same
 as the input.
 */
int ceilPow2(unsigned int in);

/**
 * True if num is a power of two.
 */
bool isPow2(int num);

bool isOdd(int num);
bool isEven(int num);

double toRadians(double deg);
double toDegrees(double rad);

/**
 Returns true if x is not exactly equal to 0.0f.
 */
inline bool any(float x) {
    return x != 0;
}

/**
 Returns true if x is not exactly equal to 0.0f.
 */
inline bool all(float x) {
    return x != 0;
}

/**
 v / v (for DirectX/Cg support)
 */
inline float normalize(float v) {
    return v / v;
}

/**
 a * b (for DirectX/Cg support)
 */
inline float dot(float a, float b) {
    return a * b;
}


/**
 a * b (for DirectX/Cg support)
 */
inline float mul(float a, float b) {
    return a * b;
}

/**
 2^x
 */
inline double exp2(double x) {
    return pow(2.0, x);
}

inline double rsqrt(double x) {
    return 1.0 / sqrt(x);
}


/**
 sin(x)/x
 */
inline double sinc(double x) {
    double r = sin(x) / x;

    if (isNaN(r)) {
        return 1.0;
    } else {
        return r;
    }
}

/**
 Computes a floating point modulo; the result is t wrapped to the range [lo, hi).
 */
inline double wrap(double t, double lo, double hi) {
    if ((t >= lo) && (t < hi)) {
        return t;
    }

    debugAssert(hi > lo);

    double interval = hi - lo;

    return t - interval * iFloor((t - lo) / interval);

}

inline double wrap(double t, double hi) {
    return wrap(t, 0, hi);
}


} // namespace

#ifdef _MSC_VER
#   pragma warning (pop)
#endif

#include "g3dmath.inl"

#endif