aboutsummaryrefslogtreecommitdiff
path: root/dep/src/g3dlite/Triangle.cpp
blob: 253438ad5fb151ae6962f8b9d738f83a4750207f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
/**
 @file Triangle.cpp
 
 @maintainer Morgan McGuire, http://graphics.cs.williams.edu
 
 @created 2001-04-06
 @edited  2008-12-28

 Copyright 2000-2009, Morgan McGuire.
 All rights reserved.
 */

#include "G3D/platform.h"
#include "G3D/Triangle.h"
#include "G3D/Plane.h"
#include "G3D/BinaryInput.h"
#include "G3D/BinaryOutput.h"
#include "G3D/debugAssert.h"
#include "G3D/AABox.h"
#include "G3D/Ray.h"

namespace G3D {

    
void Triangle::init(const Vector3& v0, const Vector3& v1, const Vector3& v2) {

    _plane = Plane(v0, v1, v2);
    _vertex[0] = v0;
    _vertex[1] = v1;
    _vertex[2] = v2;

    static int next[] = {1,2,0};

    for (int i = 0; i < 3; ++i) {
        const Vector3& e  = _vertex[next[i]] - _vertex[i];
        edgeMagnitude[i]  = e.magnitude();

        if (edgeMagnitude[i] == 0) {
            edgeDirection[i] = Vector3::zero();
        } else {
            edgeDirection[i] = e / (float)edgeMagnitude[i];
        }
    }

    _edge01 = _vertex[1] - _vertex[0];
    _edge02 = _vertex[2] - _vertex[0];

    _primaryAxis = _plane.normal().primaryAxis();
    _area = 0.5f * edgeDirection[0].cross(edgeDirection[2]).magnitude() * (edgeMagnitude[0] * edgeMagnitude[2]);
        //0.5f * (_vertex[1] - _vertex[0]).cross(_vertex[2] - _vertex[0]).dot(_plane.normal());
}


Triangle::Triangle() {
    init(Vector3::zero(), Vector3::zero(), Vector3::zero());
}
    

Triangle::Triangle(const Vector3& v0, const Vector3& v1, const Vector3& v2) {
    init(v0, v1, v2);
}

    
Triangle::~Triangle() {
}


Triangle::Triangle(class BinaryInput& b) {
    deserialize(b);
}


void Triangle::serialize(class BinaryOutput& b) {
    _vertex[0].serialize(b);
    _vertex[1].serialize(b);
    _vertex[2].serialize(b);
}


void Triangle::deserialize(class BinaryInput& b) {
    _vertex[0].deserialize(b);
    _vertex[1].deserialize(b);
    _vertex[2].deserialize(b);
    init(_vertex[0], _vertex[1], _vertex[2]);
}


float Triangle::area() const {
    return _area;
}


const Vector3& Triangle::normal() const {
    return _plane.normal();
}


const Plane& Triangle::plane() const {
    return _plane;
}


Vector3 Triangle::center() const {
    return (_vertex[0] + _vertex[1] + _vertex[2]) / 3.0;
}

Vector3 Triangle::randomPoint() const {
    // Choose a random point in the parallelogram

    float s = uniformRandom();
    float t = uniformRandom();

    if (t > 1.0f - s) {
        // Outside the triangle; reflect about the
        // diagonal of the parallelogram
        t = 1.0f - t;
        s = 1.0f - s;
    }

    return _edge01 * s + _edge02 * t + _vertex[0];
}


void Triangle::getBounds(AABox& out) const {
    Vector3 lo = _vertex[0];
    Vector3 hi = lo;

    for (int i = 1; i < 3; ++i) {
        lo = lo.min(_vertex[i]);
        hi = hi.max(_vertex[i]);
    }

    out = AABox(lo, hi);
}


bool Triangle::intersect(const Ray& ray, float& distance, float baryCoord[3]) const {
    static const float EPS = 1e-5f;

    // See RTR2 ch. 13.7 for the algorithm.

    const Vector3& e1 = edge01();
    const Vector3& e2 = edge02();
    const Vector3 p(ray.direction().cross(e2));
    const float a = e1.dot(p);

    if (abs(a) < EPS) {
        // Determinant is ill-conditioned; abort early
        return false;
    }

    const float f = 1.0f / a;
    const Vector3 s(ray.origin() - vertex(0));
    const float u = f * s.dot(p);

    if ((u < 0.0f) || (u > 1.0f)) {
        // We hit the plane of the m_geometry, but outside the m_geometry
        return false;
    }

    const Vector3 q(s.cross(e1));
    const float v = f * ray.direction().dot(q);

    if ((v < 0.0f) || ((u + v) > 1.0f)) {
        // We hit the plane of the triangle, but outside the triangle
        return false;
    }

    const float t = f * e2.dot(q);

    if ((t > 0.0f) && (t < distance)) {
        // This is a new hit, closer than the previous one
        distance = t;

        baryCoord[0] = 1.0 - u - v;
        baryCoord[1] = u;
        baryCoord[2] = v;

        return true;
    } else {
        // This hit is after the previous hit, so ignore it
        return false;
    }
}

} // G3D