aboutsummaryrefslogtreecommitdiff
path: root/externals/SFMT/SFMT-sse2.h
blob: 4e91d9c6121f72c9119aa049f345d7965570b2f9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
/** 
 * @file  SFMT-sse2.h
 * @brief SIMD oriented Fast Mersenne Twister(SFMT) for Intel SSE2
 *
 * @author Mutsuo Saito (Hiroshima University)
 * @author Makoto Matsumoto (Hiroshima University)
 *
 * @note We assume LITTLE ENDIAN in this file
 *
 * Copyright (C) 2006, 2007 Mutsuo Saito, Makoto Matsumoto and Hiroshima
 * University. All rights reserved.
 *
 * The new BSD License is applied to this software, see LICENSE.txt
 */

#ifndef SFMT_SSE2_H
#define SFMT_SSE2_H

PRE_ALWAYS static __m128i mm_recursion(__m128i *a, __m128i *b, __m128i c,
				   __m128i d, __m128i mask) ALWAYSINLINE;

/**
 * This function represents the recursion formula.
 * @param a a 128-bit part of the interal state array
 * @param b a 128-bit part of the interal state array
 * @param c a 128-bit part of the interal state array
 * @param d a 128-bit part of the interal state array
 * @param mask 128-bit mask
 * @return output
 */
PRE_ALWAYS static __m128i mm_recursion(__m128i *a, __m128i *b, 
				   __m128i c, __m128i d, __m128i mask) {
    __m128i v, x, y, z;
    
    x = _mm_load_si128(a);
    y = _mm_srli_epi32(*b, SR1);
    z = _mm_srli_si128(c, SR2);
    v = _mm_slli_epi32(d, SL1);
    z = _mm_xor_si128(z, x);
    z = _mm_xor_si128(z, v);
    x = _mm_slli_si128(x, SL2);
    y = _mm_and_si128(y, mask);
    z = _mm_xor_si128(z, x);
    z = _mm_xor_si128(z, y);
    return z;
}

/**
 * This function fills the internal state array with pseudorandom
 * integers.
 */
inline static void gen_rand_all(void) {
    int i;
    __m128i r, r1, r2, mask;
    mask = _mm_set_epi32(MSK4, MSK3, MSK2, MSK1);

    r1 = _mm_load_si128(&sfmt[N - 2].si);
    r2 = _mm_load_si128(&sfmt[N - 1].si);
    for (i = 0; i < N - POS1; i++) {
	r = mm_recursion(&sfmt[i].si, &sfmt[i + POS1].si, r1, r2, mask);
	_mm_store_si128(&sfmt[i].si, r);
	r1 = r2;
	r2 = r;
    }
    for (; i < N; i++) {
	r = mm_recursion(&sfmt[i].si, &sfmt[i + POS1 - N].si, r1, r2, mask);
	_mm_store_si128(&sfmt[i].si, r);
	r1 = r2;
	r2 = r;
    }
}

/**
 * This function fills the user-specified array with pseudorandom
 * integers.
 *
 * @param array an 128-bit array to be filled by pseudorandom numbers.  
 * @param size number of 128-bit pesudorandom numbers to be generated.
 */
inline static void gen_rand_array(w128_t *array, int size) {
    int i, j;
    __m128i r, r1, r2, mask;
    mask = _mm_set_epi32(MSK4, MSK3, MSK2, MSK1);

    r1 = _mm_load_si128(&sfmt[N - 2].si);
    r2 = _mm_load_si128(&sfmt[N - 1].si);
    for (i = 0; i < N - POS1; i++) {
	r = mm_recursion(&sfmt[i].si, &sfmt[i + POS1].si, r1, r2, mask);
	_mm_store_si128(&array[i].si, r);
	r1 = r2;
	r2 = r;
    }
    for (; i < N; i++) {
	r = mm_recursion(&sfmt[i].si, &array[i + POS1 - N].si, r1, r2, mask);
	_mm_store_si128(&array[i].si, r);
	r1 = r2;
	r2 = r;
    }
    /* main loop */
    for (; i < size - N; i++) {
	r = mm_recursion(&array[i - N].si, &array[i + POS1 - N].si, r1, r2,
			 mask);
	_mm_store_si128(&array[i].si, r);
	r1 = r2;
	r2 = r;
    }
    for (j = 0; j < 2 * N - size; j++) {
	r = _mm_load_si128(&array[j + size - N].si);
	_mm_store_si128(&sfmt[j].si, r);
    }
    for (; i < size; i++) {
	r = mm_recursion(&array[i - N].si, &array[i + POS1 - N].si, r1, r2,
			 mask);
	_mm_store_si128(&array[i].si, r);
	_mm_store_si128(&sfmt[j++].si, r);
	r1 = r2;
	r2 = r;
    }
}

#endif